Drivable Area Detection

Chau Huynh, Sandesh Banskota
Instructor: Mari Ostendorf
TA: Sitong Zhou
University of Washington
Seattle, WA 98195 USA

ABSTRACT

Image segmentation is a critical part of
autonomous vehicle perception algorithms. In this
paper, we present a Convolution Network architecture
to detect drivable surface area on images taken from
the dashboard of vehicles. The convolution network
developed in this project is heavily influenced by
U-Net', the state of the art in medical image
segmentation, which relies mainly on augmented data
rather than a large dataset to train the network. We
show that this medical image segmentation technique
is quite practical for drivable area detection for
autonomous vehicles. We trained and tested the
network on images and labels from the Berkeley Deep
Drive (BDD) dataset’ and achieved outstanding results
on clear, daytime images of roads and satisfactory
results on nighttime and crowded images. The network
is fast and can keep up with the bandwidth of
on-demand drivable area detection for autonomous
driving applications.

1. INTRODUCTION

In recent years, self-driving cars have been rapidly
developed around the world. Autonomous driving
softwares relies heavily on object recognition
techniques to identify traffic indicators and avoid
obstacles. To allow autonomous vehicles to recognize
its surroundings, object detection and segmentation
algorithms are an area of much current research.
Recognition of surroundings often includes detecting
drivable roads, detecting lanes, identifying curbs,
traffic signs, and obstacles used for navigation.
Reliable drivable area segmentation or detection
provides a critical foundation for avoiding obstacles
during autonomous driving.

Previous researches have shown that convolutional
neural networks (CNN) perform well for image
classification tasks and have been widely used for this
application. However, since CNN typically assigns
only a single class label for an image, it is insufficient
for image segmentation, where each pixel needs its
own label. More advanced convolutional network

architectures have been developed to perform image
segmentation tasks. U-Net is a model that does not
have any fully connected layer and only uses the
relevant convolutional layer to retain the context from
the input image. This convolution network architecture
implements upsampling operations after traditional
convolutional layers with downsampling using
maxpool. This upsampling allows the network to
produce an output with the same resolution as the
input. The downsampling part and the upsampling part
are symmetrical, resulting in a u-shape architecture.
This U-Net also propagates context information from
the downsampling part to the corresponding
upsampling part of the same level, allowing the
network to reinforce information learned from
previous layers.

This paper applied a simplified U-Net architecture
to perform drivable areas detection. This architecture
provides a solid way to classify each pixel as
belonging to a drivable surface or not. After
implementing, training, and testing with the Berkeley
Deep Drive dataset, the CNN model was able to
predict drivable area by an accuracy of 81%. For
comparison, a baseline classification algorithm was
implemented using logistic regression. The accuracy
of the baseline algorithm is 56%. The model was able
to increase the accuracy by around 30%.

2. APPROACH
A. DATASET

The BDD dataset contains 90k RGB images from
dashboard of vehicles looking towards the road and
correspondingly labeled 90k colored label images that
either have a [0,0,0] (black) RGB value, indicating the
pixel is not part of the drivable area class on the image,
or a non-black RGB value, indicating that the pixel is
part of the drivable area class on the image. Figure 1 is
an example of a pair of an input image and its
corresponding label. With these 90k samples, the
dataset was split into 50k for training, 20k for
validation, and 20k for testing. Since the dataset is



large, the cross validation method is using a held-out
set instead of k-fold validation.

Figure 1. Example input image and corresponding
label in the BDD dataset

B. IMAGE PREPROCESSING

Due to limited computing resources, both the input
and the label images’ resolutions were reduced from
the original 1280x720 to 128x72 wusing nearest
neighbor filtering. While this reduced the dimension of
the images, the filtering did not reduce much
information since many features in the images are
generally large and are distinctly visible in the
compressed images.

In addition to being compressed, the label images
were modified to grayscale. Finally, while being
converted to numpy arrays, any non-black pixel was
replaced with 1, indicating the pixel is of the drivable
class, and the rest of the pixels were assigned a zero.
The input images were also converted to numpy
arrays, but the original RGB values were maintained.

| e

Figure 2. Initial labelled image and converted
labelled image where white is drivable, black is not
drivable

C. COMPUTATIONAL SOFTWARE AND
HARDWARE

The CNN in this project was built using PyTorch
and primarily its torchvision libraries. The training,
validating, and testing happened on a CUDA 11.0
enabled machine with a NVIDIA GeForce GTX GPU
with a 4 GB memory size.

D. CONVOLUTION ARCHITECTURE

We incrementally built the CNN in order to
improve performance without having to build an
unnecessarily large neural network. We also referenced

the results from the U-Net paper to improve our
model. We chose BCEWithLogitsLoss as it is typically
best suited for image reconstruction error and due to
its numerical stability.

Hz,y)=L={l,..., v},
Figure 3. BCEwithLogitsLoss function

The initial design was using a CNN with two
convolution layers. This did not work well and the loss
value saturated at 0.4. Adding too many convolution
layers in series was also not working since much of the
feature was being lost by the end of the network. After
many iterations, we built the CNN depicted in Figure

6 6
Qutput
image
[

Input > >

image

¥ 12 12 1212 *
> P> I*b ID-L
’ 24 24 24 24 ’
» P > >
=»conv 3x3, RelLU
copy and crop

¥ max pool 2x2
4 up-conv 2x2

’7 = conv 1x1

> P

i

Figure 4. Final Convolution Network Architecture

The architecture was heavily influenced by U-Net.
Though U-Net was built for medical application, it has
characteristics that are transferable to this application.
The drivable area detection model has to classify the
pixels but also has to reconstruct the position mapping
of the pixels. The initial designs had many convolution
layers but much of the positional and edge information
was getting lost as images were convolved many
times. The bypass allows this type of positional
information to be saved from the initial convolution
layers and concatenated with the output of a later
convolution layer. The convolution Ilevels and
bypassing allows the model to learn classification and
positioning.

b = —wy [Yn - loga(z,) + (1 —y,) -log(1 — o(z,))]



3. EXPERIMENTAL RESULTS

The performance of the model was evaluated
based on accuracy. For each input image, the model
outputs a scale of how likely each pixel belongs to a
class. The pixels are then assigned to the class that
they are more likely to be in. The accuracy is
calculated by taking the ratio of the total number of
pixels in the predicted images that match the true label
images, over the total number of pixels to classify.

A. CNN RESULTS

The model was trained with 1000 batches, each
batch has 50 image and label pairs, to cover all of 50k
training images. The learning rate was set at 0.005 and
the model made 5 passes over the entire training set.
Figure 5 below shows the evolution of the loss values
throughout the training process.

0.8 1 —— Training loss
0.7 1
0.6 1
0.5 1
0.4 1
0.3 1

0.2 4

0.1 -

] 1000 2000 1000 4000 5000
Figure 5. Evolution of training loss over the epochs

When tested with the test data set, the CNN model
produced predictions with the average accuracy of
81.38%. The average testing loss over the batches was
0.144, reflecting the value at the end of the curve in
Figure 5 above. This loss value shows that with the
test set, the model performs as well as with the training
set, so the model did not overfit the training set. The
model also performed well on both daytime and
nighttime images. To visualize the performance of the
model, refer to Figure 6 and 7 below for examples
predicted output during the daytime and nighttime.

Figure 6. Daytime example of input image, label
image, and predicted output image

Figure 7. Nighttime example of input image, label
image, and predicted output image

B. BASELINE RESULTS

To better evaluate the results of the CNN model, a
simple binary classification method was created using
logistic regression. Since logistic regression can only
assign a single label for one input, some additional
preprocessing steps were necessary. First, for
simplicity, input images were converted into grayscale.
Second, input images were padded and broken down
into a list of 11x11 square patches, where each pixel in
an input image will have one 11x11 square patch
associated with it. These square patches will then be
used as the input for the logistic regression model. The
label images are unrolled into a one-column vector and
then used as the true label for the model.

To prevent overfitting, the logistic regression
model was trained with several regularization
approaches and hyperparameter alpha for the amount
of regularization. The regularization schemes
attempted were L1 regularization, L2 regularization,
and no regularization applied. For alpha, the model
was trained with values 0.10, 0.25, 0.5, 0.75, 1. The
model was also set to balance out the class weights for
each class to avoid predicting the most frequent class
every time. Using the validation data set, the
parameters with the highest accuracy were L1
regularization with 0.25 for the alpha. With these
parameters, the logistic regression model achieved an
accuracy of 56.141% on the test data set. Figure 8
below is an example of how well the logistic
regression model could predict for a single input
image.

Figure 8. Example of label image and logistic
regression predicted output image

4. ANALYSIS

Table 1 below shows that the CNN performed
better than the baseline logistic regression.



Logistic CNN
regression
Accuracy 56.14% 81.38%

Table 1. Accuracy results

An accuracy of 56.14% for a binary classification
problem indicates that the logistic regression model
only does a little bit better than randomly guessing the
label for each pixel. Meanwhile, the CNN model could
detect the drivable area with a much higher accuracy.
However, there are some edge cases in the data that
affects the CNN performance. For example, there
might be a patch of road in the input image that is too
small to fit a car. This area is not labeled as drivable by
the true label image. However, our model will classify
this area as drivable. This labeling from the model is
technically correct, even though it does not match the
label. These edge cases require additional processing
on the model’s output images. For this example, a
post-processing method can be calculating the area of
the predicted drivable area and rejecting the areas that
are smaller than the dimensions of the vehicle. Without
these edge cases, the model would have performed
better, producing a higher pixel label accuracy.

5. SUMMARY

While the developed CNN architecture is
functional, it could be further improved with better
training hardware and data augmentation to better
account for edge conditions. The CNN performs better
than the baseline. It also does a great job in clear and
simple conditions but struggles with rainy, shadowy,
and nighttime conditions. given the hardware
resources it was trained on.

The promise in using U-Net for drivable area
image segmentation is that fewer images might be
needed to train the model. If further improved, this
model could be better at handling rarely seen edge
cases than other models.

There were many limitations in this project. Our
model could not train on data with large dimensions,
thus some of the feature information was lost in the
preprocessing image reduction step. Additionally,
there was a limitation to the number of layers and
channels that could be used because of GPU memory
constraints. The data was also sometimes flawed with
significant glare and inconsistent dashboard sizes.

While the model could be further improved, it is
currently fast and accurate enough for general driver
verification in daytime, clear conditions. The result of
the limited CNN is that although the result isn’t as

accurate as it could be, the processing time is quick.
This model could be used for non-safety critical
drivable detection applications as it is.

REFERENCES

[1] Ronneberger, Olaf, Philipp Fischer, and Thomas
Brox. "U-Net: Convolutional networks for
biomedical image segmentation." International
Conference on Medical image computing and
computer-assisted intervention. Springer, Cham,
2015.

[2] BerkeleyDeepDrive,
https://bdd-data.berkeley.edu/, 2020.

[3] BCEWithLogitsLoss,
https://pytorch.org/docs/stable/generated/torch.nn.
BCEWithLogitsLoss.html, 2020.


https://bdd-data.berkeley.edu/

