{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Parameter Labels\n", "This tutorials show how model parameters are labelled, and how this can be used to create more complex parameterizations for a model." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pygsti\n", "import numpy as np\n", "from pygsti.modelpacks import smq1Q_XY as std\n", "from pygsti.baseobjs import Label\n", "\n", "mdl1 = std.target_model(\"H+s\") # choose a H+s model because it has a simple parameterization" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Getting parameter labels\n", "A `Model`'s parameters have corresponding labels, which can be accessed in a variety of ways. Individual operators also have labeled parameters. An `OpModel` (e.g. an `ExplicitModel` or `ImplicitModel`) sets default parameter labels based on the parameter labels of its contained operators, but the model's parameters can vary independently." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# print the raw labels, straight up\n", "mdl1.parameter_labels" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# model parameters can be set to arbitrary user-defined values\n", "mdl1.set_parameter_label(index=0, label=\"My favorite parameter\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Model parameters in a nice format for printing\n", "mdl1.parameter_labels_pretty" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# For a single operator: you can get it's \"local\" parameter labels (in general different from the model's parameter labels)\n", "mdl1.operations[('Gxpi2',0)].parameter_labels" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# The parameters of all the operators, with mappings to non-default model parameters \n", "mdl1.print_parameters_by_op()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Collecting parameters\n", "You can combined multiple parameters into one using the `collect_parameters` method. This effectively ties the values for all the original parameters together." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mdl1.collect_parameters([ (('Gxpi2',0), 'X Hamiltonian error coefficient'),\n", " (('Gypi2',0), 'Y Hamiltonian error coefficient')],\n", " new_param_label='Over-rotation')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Using \"pretty\" labels works too:\n", "mdl1.collect_parameters(['Gxpi2:0: Y stochastic coefficient',\n", " 'Gxpi2:0: Z stochastic coefficient' ],\n", " new_param_label='Gxpi2 off-axis stochastic')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# You can also use integer indices, and parameter labels can be tuples too.\n", "mdl1.collect_parameters([3,4,5], new_param_label=(\"rho0\", \"common stochastic coefficient\"))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# There are now fewer parameters\n", "mdl1.parameter_labels_pretty" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# And you can see how they're wired up for each op:\n", "mdl1.print_parameters_by_op()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Un-collecting parameters\n", "You can also reverse the above process and \"un-collect\" a parameter so that one parameter gets replaced my multiple independent ones." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mdl1.uncollect_parameters('Gxpi2 off-axis stochastic')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mdl1.print_parameters_by_op()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.11" } }, "nbformat": 4, "nbformat_minor": 4 }