

Machine Learning

An Introduction

Machine Learning (ML)

Learn from experience

Follow instructions

Learn from experience

Machine Learning (ML)

ML Algorithms

Automatically find patterns in data - prediction

> Supervised Learning

$$f: x \to y$$

$$f: x \to y$$
$$y = f(x)$$

Create useful representations of data

> Unsupervised Learning

Regression

Regression

$$y = ax + b$$

Feature x

$$y = ax^2 + bx + c$$

f(x)

\$\$\$

Regression

$$\hat{y} = ax + b$$

$$MSE = \sum (y - \hat{y})^2$$

$$Loss = f(a, b)$$

Gradient Descent

Loss = f(a, b)

Gradient Descent

Initialize model parameters (a, b) randomly Iterate between:

- 1) Compute *loss* (mean square error MSE)
- 2) Update model parameters (a, b) in direction of gradient

Cross-Validation

- 1) Train model parameters on training set
- 2) Evaluate training with the validation set
- 3) Report error on test set

Fold	Data distribution
1	
2	
3	
	•••
10	

Overfitting

Bias-Variance Tradeoff

Model Complexity

Bias-Variance Tradeoff

Regularization

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p$$

Penalties on the *LOSS* function to prevent overfitting!

Regularization

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p$$

Penalties on the *LOSS* function to prevent overfitting!

 L1/Lasso: constrains parameters to be sparse

$$MSE = \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

Regularization

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p$$

Penalties on the *LOSS* function to prevent overfitting!

1) L1/Lasso: constrains parameters to be sparse

$$MSE = \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

2) L2/Ridge: constrains parameters to be small

$$MSE = \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Classification

Classification

- LogisticRegression
- Support Vector Machine (SVM)

Classification

Decision Trees

Random Forests

Neural Networks

Clustering

- *K*-means
- Hierarchical clustering
- Mixture of Gaussians

Dimensionality Reduction

- Principal Component Analysis (PCA)
- Independent Component Analysis (ICA)
- t-SNE

