{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Latitude-dependent grey radiation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here is a quick example of using the `climlab.GreyRadiationModel` with a latitude dimension and seasonally varying insolation." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import climlab" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "climlab Process of type . \n", "State variables and domain shapes: \n", " Tatm: (90, 30) \n", " Ts: (90, 1) \n", "The subprocess tree: \n", "top: \n", " LW: \n", " SW: \n", " insolation: \n", "\n" ] } ], "source": [ "model = climlab.GreyRadiationModel(num_lev=30, num_lat=90)\n", "print model" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[-89. -87. -85. -83. -81. -79. -77. -75. -73. -71. -69. -67. -65. -63. -61.\n", " -59. -57. -55. -53. -51. -49. -47. -45. -43. -41. -39. -37. -35. -33. -31.\n", " -29. -27. -25. -23. -21. -19. -17. -15. -13. -11. -9. -7. -5. -3. -1.\n", " 1. 3. 5. 7. 9. 11. 13. 15. 17. 19. 21. 23. 25. 27. 29.\n", " 31. 33. 35. 37. 39. 41. 43. 45. 47. 49. 51. 53. 55. 57. 59.\n", " 61. 63. 65. 67. 69. 71. 73. 75. 77. 79. 81. 83. 85. 87. 89.]\n" ] } ], "source": [ "print model.lat" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "insolation = climlab.radiation.DailyInsolation(domains=model.Ts.domain)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "model.add_subprocess('insolation', insolation)\n", "model.subprocess.SW.flux_from_space = insolation.insolation" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "climlab Process of type . \n", "State variables and domain shapes: \n", " Tatm: (90, 30) \n", " Ts: (90, 1) \n", "The subprocess tree: \n", "top: \n", " LW: \n", " SW: \n", " insolation: \n", "\n" ] } ], "source": [ "print model" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "model.compute_diagnostics()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPW9xvHPN5M9IYQlhBAIAQRkDxhxRW0FRVxAUUFs\ni7VKb9Wr3CutYnurtbZ111qlStUWWwVFpVJaRcVdVAhL2DFhk4QlrAlbAkl+948c26BAEkhyZibP\n+/XiNWfOnJM8HMKTM785iznnEBGR8BXhdwAREWlYKnoRkTCnohcRCXMqehGRMKeiFxEJcyp6EZEw\np6IXEQlzKnoRkTCnohcRCXORfgcAaN26tcvMzPQ7hohISFmwYMF251xKTcsFRdFnZmaSk5PjdwwR\nkZBiZhtqs5yGbkREwpyKXkQkzKnoRUTCnIpeRCTMqehFRMKcil5EJMyp6EVEwlxQHEd/vIpKSnnh\nsw0kx0fRPC6KFvHRpCbF0rF1PEmxUX7HExEJCiFd9IW7DzDpg3wqj3Db25YJ0XRqnUCf9OZkdUim\nX4dkMlvFY2aNH1RExEcWDDcHz87Odsd7ZmxlpWPvwXJ27zvErv0H2VxcyoYd+9iwcz/5W/eytLCY\nA4cqAGjTLIZzu6VwbvcUBp2UQvN47fWLSOgyswXOueyalgvpPXqAiAgjKTaKpNgoMlrF06/D4a+X\nV1SSv20vi77azSf525m9fAvTFxQQGWGc2y2Fy7LaMbhHKgkxIb8pRESOKOzbLTIQwcltkzi5bRLX\nDMygvKKS3ILdvL18KzNzNzFnVRFxUQEu69eO75/Rkd7pzf2OLCJSr0J+6OZEVFY65q/fyYxFhbyx\neBMHDlVwSscW/PCsTC7qnUYgQuP5IhK8ajt006SLvrri/YeYvmAjf/t8A+t37KdzSgI3n3cSw7Pa\nERnQUagiEnxU9MepstLx1vItPDEnj1Vb9pDRMp4JF3bn0r5pOmJHRIJKbYteu6rfEBFhDOuTxr9u\nHcSffpBNQkwkt05dxOWT5pKzfqff8URE6kxFfxQREcaQnqnM+u+zeejKvmwuPsCVT3/GLS8tpKik\n1O94IiK1pqKvQSDCuCq7A+9POI/xg7vy9oqtnP/Ih/z18w1UHulMLRGRIKOir6X46EjGD+7G7PHn\n0LdDc/7v78sY+fRc1mzb63c0EZFjUtHXUafWCfztR6fx2Kh+rNu+j4uf+Jgpc9dr715EgpaK/jiY\nGZf3b8/b48/h9M6tuHvmcn7w/Dy2FGvsXkSCjw6vPEHOOabO28h9/1xBbFSAx0ZlcW63FF/zFB84\nRNGeMrbtKWP73jKKDxyi5MAhSkrLOXCwgrLyCsrKKymvdATMiDAIREQQFx1BQkwkidGRJMdHkdIs\nhpRmMbRpFkta81idTyASZJrMtW78ZmaMOS2DgZ1acvOLC7nuz/O45TsnMX5wtwY7s7b0UAXrd+xj\n/fb9bNixj/U79lOwaz+Fuw9QuOsAZeWVR1wvNiqC+OhIYiIjiI6MIBBhOAeVzlFe4ThwqIK9ZeUc\nPML6kRFGh5bxdGwVT9c2ifRsl0TPtOZ0TkkgSr8ARIKa9ujr0YGDFfzyjWVMX1BAvw7JXH9WJkN7\ntyUmMlDnr+WcY0tJKWu37WPNtr2HPRbuPnDYsi0TounQIo70FnGkJ8fRtnkcbby98daJMSTHV130\nLTqydoV8sLyS3QcOsm1PGUV7ythaXMpXO/ezYcd+1u/YR37R3n//MomJjCCrQzKnZrYkO7MFp2a2\n1AXiRBpJvZ4Za2brgT1ABVDunMs2s5bAy0AmsB642jm3y1t+IvAjb/lbnXOzj/X1w6Xov/b6wgIe\ne/dLNu48QMuEaK7on06PtCTaJFWVb2xkgLLySsrKK9hXVkHRnlK2lpSytaSMjV6hbti5j9JD/9mz\nTogO0Dklkc4pCXRunUinlAQ6tUrw5SYr5RWVrNu+jxWbS8jdWMyCDTtZtqmEikpHdCCCUzu14Lxu\nbfjOyW04qU1io2YTaUoaouiznXPbq817ENjpnLvfzO4EWjjn7jCznsBUYCDQDngX6Oacqzja1w+3\nooeqSyl8nL+dl77YwLsri6ioxVE5cVEB2reIo2OrBDq2iiezVTxdUhLpnJJIalJMUF+CYV9ZOQu/\n2sXHedv5YHURX26tOuy0e2ozhvVJ4+K+aSp9kXrWGEW/GjjPObfZzNKAD5xz3b29eZxzv/OWmw3c\n45z77GhfPxyLvrr9B8vZWlJGUUkpRXvKOFRRSWxUgJjICOKiArRJiiE1KZbEmMigLvO6KNx9gHeW\nb+FfS7cwf8NOnIN+7ZtzVXYHLu3XjuZxuumLyImq76JfBxRTNRTzjHNuspntds4le68bsMs5l2xm\nTwKfO+f+5r32HPCmc+7Vo339cC/6pm5rSSmzlmxmes5GVm3ZQ0xkBBf3TeP6szrp+v8iJ6C+j7o5\n2zlXaGZtgHfMbFX1F51zzszq9KmumY0DxgFkZGTUZVUJMalJsfzo7E5cf1YmywpLmDb/K2YsKuT1\nhYWcmtmC68/qxAW92ur6/yINpFaHYTjnCr3HImAGVePvW70hG7zHIm/xQqD6Df3ae/O++TUnO+ey\nnXPZKSn+HXcujcfM6NO+Ob+5vA+fTTyfX1zcgy0lpfzkxYUMeexDXltQwKGKIx8aKiLHr8aiN7ME\nM2v29TRwAbAMmAmM9RYbC7zhTc8ERptZjJl1AroC8+o7uIS25nFR3DCoMx9M+A5PjRlATGSA26fn\n8p2HP+CV+RspV+GL1Jsax+jNrDNVe/FQNdTzknPuN2bWCngFyAA2UHV45U5vnZ8D1wPlwHjn3JvH\n+h4aoxfnHHNWFvGH9/LILSjmpDaJTLigOxf2Sg2bD6hF6pvuMCUhyTnH7OVbeHD2atZu28eAjGTu\nvrQX/Tok+x1NJOjoDlMSksyMob3TeHv8OTwwsg8bdx1g+FOf8tPpuWzbU+Z3PJGQpKKXoBQZiGDU\nqRm8d/u5/Piczvx9cSHfffgD/vLpulqdfCYi/6Gil6DWLDaKicN6MHv8OWRlJHPPP1Yw8o9zWbWl\nxO9oIiFDRS8hoXNKIi9cP5DHR2Xx1c79XPLEJzw8e/URr7QpIodT0UvIMDNG9E9nzv+ey2VZ7Xjy\n/Xwue/ITVm7W3r3IsajoJeS0SIjm0auzePYH2Wzfe5DLnvyEp97P19i9yFGo6CVkDe6Zytv/cw5D\neqby0OzVjPnT57qdo8gRqOglpLVMiOapMQN46Mq+LCko5qLff8SclVv9jiUSVFT0EvLMjKuyOzDr\n1rNJax7Hj6bkcN+sFbpujohHRS9ho0tKIq/fdCY/OKMjz36yjmv/9AVFezSUI6Kil7ASGxXg3uG9\neXxUFksKd3PJE58wf/1Ov2OJ+EpFL2FpRP90Ztx0FvHRAa6Z/DkvffGV35FEfKOil7DVIy2JN245\nm7NOas1dM5Zyz8zluvyxNEkqeglrzeOieP66U7nh7E78Ze56fviX+RTvP+R3LJFGpaKXsBeIMH5x\nSU8eGNmHz9fuYOTTcynYtd/vWCKNRkUvTcaoUzN44frTKCop5fJJc1laUOx3JJFGoaKXJuWMLq14\n7SdnEh2IYNTkz3h/VVHNK4mEOBW9NDldU5sx4+Yz6ZKSyA0v5PDaggK/I4k0KBW9NEltmsUyddzp\nnNG5FbdPz+W5T9b5HUmkwajopclKjInkueuyGdanLb+etYKHZq8iGO6hLFLfIv0OIOKnmMgAf7hm\nAMnxy3jq/TXsKS3nnkt7ERFhfkcTqTcqemnyAhHGb0b0pllMJM98tJayQ5X89oo+BFT2EiZU9CJU\nXQHzzotOJiYqwBNz8igtr+CRq/oRGdDopoQ+Fb2Ix8z43yHdiI2K4MG3VnOoopLfj+5PlMpeQpyK\nXuQbbjrvJKIDEdz3z5UYi/n96Czt2UtIU9GLHMENgzoDVJW9weOjVPYSulT0Ikdxw6DOVDrHb/+1\niggzHhuVpQ9oJSTVehfFzAJmtsjMZnnPW5rZO2aW5z22qLbsRDPLN7PVZnZhQwQXaQzjzunCHUNP\nZmbuJu54bQmVlTrOXkJPXd6L3gasrPb8TmCOc64rMMd7jpn1BEYDvYChwCQzC9RPXJHG95PzunDb\n+V15dUEBv/rHcp1UJSGnVkVvZu2Bi4Fnq80eDkzxpqcAI6rNn+acK3POrQPygYH1E1fEH+MHd+XG\nQZ2Y8tkGHpq92u84InVS2zH6x4GfAc2qzUt1zm32prcAqd50OvB5teUKvHmHMbNxwDiAjIyMOkQW\naXxmxl3DerDvYAWTPlhDQkwkN3/nJL9jidRKjXv0ZnYJUOScW3C0ZVzVe9k6vZ91zk12zmU757JT\nUlLqsqqIL8yM+4b3ZnhWOx6avZpp83QfWgkNtdmjPwu4zMyGAbFAkpn9DdhqZmnOuc1mlgZ8fWHv\nQqBDtfXbe/NEQl5EhPHwVf0oPnCIu2YsJTk+iqG90/yOJXJMNe7RO+cmOufaO+cyqfqQ9T3n3PeA\nmcBYb7GxwBve9ExgtJnFmFknoCswr96Ti/gkKhDBpGsHkNUhmVunLmbumu1+RxI5phM5A+R+YIiZ\n5QGDvec455YDrwArgLeAm51zFScaVCSYxEdH8vx1p9KxVTzjXljAik0lfkcSOSoLhkPFsrOzXU5O\njt8xROpsc/EBrpg0l0rneP2ms0hPjvM7kjQhZrbAOZdd03I6p1vkBKQ1j+MvPxzI/oMVXPf8PIr3\nH/I7ksi3qOhFTlD3ts145vunsH7HPm78aw5l5RqplOCiohepB2d2ac3DV/Vj3rqd/HT6Ep09K0FF\nFzUTqSfDs9Ip2HWAh2avplPrBP5nSDe/I4kAKnqRenXTeV1Yt30fv5+TR2breC7v397vSCIqepH6\nZGb89vI+FO46wB2vLiU9OZ6BnVr6HUuaOI3Ri9Sz6MgInv7eKbRvGceP/5rDVzv2+x1JmjgVvUgD\naB4fxfNjT6XSwQ0vzGdPqQ67FP+o6EUaSGbrBP547QDWbNvHbdMWU6GblohPVPQiDejMk1pzz2W9\neG9VEQ++tcrvONJE6cNYkQb2/dM78uWWPTzz0Vq6t23GFQN0JI40Lu3RizSCX17akzM6t+LO15ey\npGC333GkiVHRizSCqEAET47pT0piDD/+6wK27SnzO5I0ISp6kUbSKjGGZ75/Crv2H+SmFxdwsLzS\n70jSRKjoRRpR7/TmPDCyL/PX7+LXs1b4HUeaCH0YK9LIhmels3xTCZM/WktWh2RGnqIPZ6VhaY9e\nxAc/u7A7Z3RuxV0zlrKssNjvOBLmVPQiPogMRPCHMf1pmRDNT15cwO79B/2OJGFMRS/ik9aJMUy6\ndgBbi8t05qw0KBW9iI/6Z7Tg7st68uGX23jyvXy/40iYUtGL+GzMwAyuGJDO43O+5KMvt/kdR8KQ\nil7EZ2bGfSN6061NM26btohNuw/4HUnCjIpeJAjER0cy6XsDOFheyS0vLdTJVFKvVPQiQaJLSiIP\nXNmXhV/t5v43daVLqT8qepEgcknfdlx3ZibPf7qOt5dv8TuOhAkVvUiQmTjsZPqkN2fC9Fw27tRt\nCOXE1Vj0ZhZrZvPMLNfMlpvZr7z5Lc3sHTPL8x5bVFtnopnlm9lqM7uwIf8CIuEmJjLAU2MG4Bzc\nMnWRxuvlhNVmj74M+K5zrh+QBQw1s9OBO4E5zrmuwBzvOWbWExgN9AKGApPMLNAQ4UXCVUareB64\nsi+5GzVeLyeuxqJ3VfZ6T6O8Pw4YDkzx5k8BRnjTw4Fpzrky59w6IB8YWK+pRZqAYX3SGHtGR57/\ndB3vrtjqdxwJYbUaozezgJktBoqAd5xzXwCpzrnN3iJbgFRvOh3YWG31Am+eiNTRxGE96JmWxE9f\nzWVzsY6vl+NTq6J3zlU457KA9sBAM+v9jdcdVXv5tWZm48wsx8xytm3T2YAiRxIbFeAPY/pTVl6p\n6+HIcavTUTfOud3A+1SNvW81szQA77HIW6wQ6FBttfbevG9+rcnOuWznXHZKSsrxZBdpErqkJPLr\n4b2Zt24nf3gvz+84EoJqc9RNipkle9NxwBBgFTATGOstNhZ4w5ueCYw2sxgz6wR0BebVd3CRpmTk\nKe25on86T8zJ44u1O/yOIyGmNnv0acD7ZrYEmE/VGP0s4H5giJnlAYO95zjnlgOvACuAt4CbnXMV\nDRFepCm5d0RvMlrGM/7lxRTvP+R3HAkhVjW87q/s7GyXk5PjdwyRoLekYDcj/ziXwT1SmXTtAMzM\n70jiIzNb4JzLrmk5nRkrEkL6tk9mwgXdeXPZFqbN31jzCiKo6EVCzo2DOnP2Sa351T+Wk1+0t+YV\npMlT0YuEmIgI49Gr+xEfHcmtUxdRVq6PwOTYVPQiIahNUiwPjOzLis0lPPL2l37HkSCnohcJUUN6\npnLtaRlM/mgtn+Zv9zuOBDEVvUgI+8XFPemcksDtr+Sye/9Bv+NIkFLRi4SwuOgAT4zuz459ZUx8\nfSnBcLi0BB8VvUiI653enNu9Qy5fXVDgdxwJQip6kTBw46DOnNapJb/6xwrdlUq+RUUvEgYCEcYj\nV/fDgP95WVe5lMOp6EXCRPsW8dw7ohc5G3bx9Idr/I4jQURFLxJGRmSlc3HfNB5750uWFRb7HUeC\nhIpeJIyYGb8Z0ZvWiTGMf3kxpYd01qyo6EXCTnJ8NA9e2Zf8or08NHu133EkCKjoRcLQOd1S+MEZ\nHXnuk3XMXaOzZps6Fb1ImJp4UQ86t05gwiu5lJTqRiVNmYpeJEzFRQd45Op+bN1Txj0zl/sdR3yk\nohcJY/0zWnDzeV14fWEhs5dv8TuO+ERFLxLmbvluV3q1S+Ku15eyfW+Z33HEByp6kTAXHRnBo1dn\nsae0nJ/P0IXPmiIVvUgT0L1tM26/oBuzl29lxqJCv+NII1PRizQRNwzqzKmZLbh75nI27T7gdxxp\nRCp6kSYiEGE8fFU/Kiodd7y2REM4TYiKXqQJ6dgqgYnDevBx3nZemveV33GkkajoRZqY752WwaCu\nrfnNP1fy1Q5du74pUNGLNDFmxgMj+xIwY8KruVTq2vVhT0Uv0gS1S47jl5f2ZN66nfx57nq/40gD\nq7HozayDmb1vZivMbLmZ3ebNb2lm75hZnvfYoto6E80s38xWm9mFDfkXEJHjc+Up7Rncow0PvrWK\ntdv2+h1HGlBt9ujLgdudcz2B04GbzawncCcwxznXFZjjPcd7bTTQCxgKTDKzQEOEF5HjZ2b89vI+\nxEYFmDA9V7cfDGM1Fr1zbrNzbqE3vQdYCaQDw4Ep3mJTgBHe9HBgmnOuzDm3DsgHBtZ3cBE5cW2S\nYrl3eC8WfrWbZz9e63ccaSB1GqM3s0ygP/AFkOqc2+y9tAVI9abTgY3VVivw5olIELqsXzsu7JXK\nI+98Sd7WPX7HkQZQ66I3s0TgNWC8c66k+muu6syLOr3vM7NxZpZjZjnbtm2ry6oiUo/MjPtG9CEh\numoIp7yi0u9IUs9qVfRmFkVVyb/onHvdm73VzNK819OAIm9+IdCh2urtvXmHcc5Nds5lO+eyU1JS\njje/iNSDlGYx/HpEb3ILinnmIw3hhJvaHHVjwHPASufco9VemgmM9abHAm9Umz/azGLMrBPQFZhX\nf5FFpCFc0rcdF/dJ4/F3v2T1Fg3hhJPa7NGfBXwf+K6ZLfb+DAPuB4aYWR4w2HuOc2458AqwAngL\nuNk5p1vRi4SAe4f3Iik2ignTczmkIZywYcFwYaPs7GyXk5PjdwwRAd5cupmfvLiQ24d047/P7+p3\nHDkGM1vgnMuuaTmdGSsih7moTxqX9mvHE+/lsXJzSc0rSNBT0YvIt/zqsl40j4vi9lc0hBMOVPQi\n8i0tE6K5b0QfVmwuYdL7a/yOIydIRS8iRzS0d1uGZ7XjD+/lsXxTsd9x5ASo6EXkqO65tBfJ8dFM\nmL6Eg+UawglVKnoROaoWCdH89vLerNxcwlPv5/sdR46Til5EjumCXm25vH86T72fz7JCDeGEIhW9\niNTo7kt70iIhmgnTczWEE4JU9CJSo+T4aH53eR9WbdnDkxrCCTkqehGplcE9U7lCQzghSUUvIrV2\n96W9aKUhnJCjoheRWmseH8XvrqgawnliTp7fcaSWVPQiUifn90hl5ID2/PHDNSwp2O13HKkFFb2I\n1NkvL+1J68Robn8ll7JyXYU82KnoRaTOmsdFcf/IvuQV7eXxdzWEE+xU9CJyXL7TvQ2jsjvwzIdr\nWPTVLr/jyDGo6EXkuP38kh6kJsVy+/RcSg9pCCdYqehF5LglxUbxwMi+rN22j0feXu13HDkKFb2I\nnJBzuqUw5rQMnv1kHfPX7/Q7jhyBil5ETthdw3qQnhzHhOm57D9Y7ncc+QYVvYicsMSYSB66sh8b\nduzngTdX+R1HvkFFLyL14owurbjuzEymfLaBufnb/Y4j1ajoRaTe3DH0ZDq1TuCnry5hT+khv+OI\nR0UvIvUmLjrAI1f3Y3PxAe6btdLvOOJR0YtIvRqQ0YL/OrcLL+ds5L1VW/2OI6joRaQB3Da4Kye3\nbcYdry1l176Dfsdp8lT0IlLvYiIDPHp1Frv3H+T/3ljmd5wmr8aiN7PnzazIzJZVm9fSzN4xszzv\nsUW11yaaWb6ZrTazCxsquIgEt57tkhg/uBuzlmxmZu4mv+M0abXZo/8LMPQb8+4E5jjnugJzvOeY\nWU9gNNDLW2eSmQXqLa2IhJQfn9OZ/hnJ/GLGUrYUl/odp8mqseidcx8B3zyveTgwxZueAoyoNn+a\nc67MObcOyAcG1lNWEQkxkYEIHrs6i0MVjp++mktlpfM7UpN0vGP0qc65zd70FiDVm04HNlZbrsCb\n9y1mNs7McswsZ9u2bccZQ0SCXWbrBH5+cQ8+ztvOXz/f4HecJumEP4x1zjmgzr+mnXOTnXPZzrns\nlJSUE40hIkHs2tMyOK97Cr97cyX5RXv9jtPkHG/RbzWzNADvscibXwh0qLZce2+eiDRhZsaDI/sS\nFxVg/MuLOFhe6XekJuV4i34mMNabHgu8UW3+aDOLMbNOQFdg3olFFJFw0CYplt9d0ZdlhSX8fs6X\nfsdpUmpzeOVU4DOgu5kVmNmPgPuBIWaWBwz2nuOcWw68AqwA3gJuds7ptjMiAsDQ3m0Zld2BSR+s\nYd46Xbu+sVjVELu/srOzXU5Ojt8xRKQR7CsrZ9gTH1Ne4Xhz/CCSYqP8jhSyzGyBcy67puV0ZqyI\nNKqEmEgeG5XFlpJSfvl3nTXbGFT0ItLoBmS04NbvduXvizcxY1GB33HCnopeRHxxy3dPYmBmS34x\nYxkbduzzO05YU9GLiC8CEcZjo7MIRBi3TlvMoQodctlQVPQi4pv05DgeGNmX3I27efQdHXLZUFT0\nIuKri/qkcc3ADjz94Ro+ztPlUBqCil5EfPfLS3rRtU0i46ctpqhEV7msbyp6EfFdXHSAp8YMYP/B\nCm6btpgKXeWyXqnoRSQodE1txr3De/HZ2h08MSfP7zhhRUUvIkHjquwOXDEgnSfey+PT/O1+xwkb\nKnoRCSq/Ht6bLimJ3Dp1EZuLD/gdJyyo6EUkqCTERPL09wZQeqiCn/xtIWXlui7iiVLRi0jQOalN\nMx66qh+LN+7mvlkr/Y4T8lT0IhKUhvVJY9w5nfnr5xt4faGuh3MiVPQiErR+dmF3Tu/ckomvL2VJ\nwW6/44QsFb2IBK3IQARPjhlA68QYbnwhh606meq4qOhFJKi1Tozh2bHZ7CktZ9wLOZQe0oezdaWi\nF5Gg1yMticdHZbGksJg7XltCMNwZL5So6EUkJFzQqy0TLujOG4s38fi7OnO2LiL9DiAiUls3ndeF\n9dv38fs5ebRJiuHa0zr6HSkkqOhFJGSYGb+7og879h3k//6+jNaJMVzYq63fsYKehm5EJKRUHYnT\nn77tk7l16iLmr9/pd6Sgp6IXkZATHx3J89edSnqLOH745/ks2KCyPxYVvYiEpJYJ0bx0w+m0aRbD\nD56bx7x1KvujUdGLSMhq2zyWaeNOJy05jrHPz2PuGl3a+EhU9CIS0tokxTL1xtPJaBnPD/88n5m5\nm/yOFHQarOjNbKiZrTazfDO7s6G+j4hISrMYXrrxNPq2b86tUxdx36wVlFdU+h0raDRI0ZtZAHgK\nuAjoCVxjZj0b4nuJiAC0SozhpRtP57ozM3n2k3Vc++wXbCnWtXGg4fboBwL5zrm1zrmDwDRgeAN9\nLxERAKICEdxzWS8eG9WP3ILdDHrwPW6duoic9Tub9GUTGuqEqXRgY7XnBcBpDfS9REQOc3n/9gzI\naMFf5q7n1QUFzMzdRHpyHPHRAb+jfct53VP4+cUNO+Dh25mxZjYOGAeQkZHhVwwRCVMdWyVw96W9\n+OmF3fn7ok18umZ7UO7VpybFNvj3aKiiLwQ6VHve3pv3b865ycBkgOzs7ODb+iISFuKjIxlzWgZj\nTmu6O5QNNUY/H+hqZp3MLBoYDcxsoO8lIiLH0CB79M65cjO7BZgNBIDnnXPLG+J7iYjIsTXYGL1z\n7l/Avxrq64uISO3ozFgRkTCnohcRCXMqehGRMKeiFxEJcyp6EZEwZ8FwppiZbQM2+J3jKFoDoXKR\na2VtGKGSNVRygrLWl47OuZSaFgqKog9mZpbjnMv2O0dtKGvDCJWsoZITlLWxaehGRCTMqehFRMKc\nir5mk/0OUAfK2jBCJWuo5ARlbVQaoxcRCXPaoxcRCXMq+qMws5fNbLH3Z72ZLfbmZ5rZgWqvPR0E\nWe8xs8JqmYZVe22id4P21WZ2oZ85vTwPmdkqM1tiZjPMLNmbH4zbNWhvcG9mHczsfTNbYWbLzew2\nb/5Rfxb85P0fWuplyvHmtTSzd8wsz3ts4XPG7tW222IzKzGz8cG6TetCQze1YGaPAMXOuXvNLBOY\n5Zzr7W+q/zCze4C9zrmHvzG/JzCVqnv4tgPeBbo55yoaPeR/Ml0AvOddyvoBAOfcHcG2Xb0b3H8J\nDKHqVpjzgWuccyt8DeYxszQgzTm30MyaAQuAEcDVHOFnwW9mth7Ids5trzbvQWCnc+5+7xdpC+fc\nHX5lrM4qOQwWAAAC40lEQVT79y+k6haoPyQIt2ldaI++BmZmVP3nmep3luMwHJjmnCtzzq0D8qkq\nfd845952zpV7Tz+n6u5jwSiob3DvnNvsnFvoTe8BVlJ1r+ZQMhyY4k1PoeoXVbA4H1jjnAvWEznr\nREVfs0HAVudcXrV5nby3cB+a2SC/gn3Df3vDIc9Xewt8pJu0B1MZXA+8We15MG3XYN92/+a9G+oP\nfOHNOtLPgt8c8K6ZLfDuFw2Q6pzb7E1vAVL9iXZEozl85y4Yt2mtNemiN7N3zWzZEf5U33O7hsP/\nwTcDGc65LOB/gZfMLMnnrH8EOgNZXr5HGjrPCWT9epmfA+XAi94sX7ZrqDOzROA1YLxzroQg+1mo\n5mzv3/Yi4GYzO6f6i65qDDkoxpGt6vanlwHTvVnBuk1rrcHuMBUKnHODj/W6mUUCVwCnVFunDCjz\npheY2RqgG5DTgFFrzPo1M/sTMMt7WuNN2htCLbbrdcAlwPnef3Dftusx+LLt6sLMoqgq+Redc68D\nOOe2Vnu9+s+Cr5xzhd5jkZnNoGpobKuZpTnnNnufORT5GvI/LgIWfr0tg3Wb1kWT3qOvhcHAKudc\nwdczzCzF+6AGM+sMdAXW+pTv60xp1Z5eDizzpmcCo80sxsw6UZV1XmPnq87MhgI/Ay5zzu2vNj/Y\ntmtQ3+De++zoOWClc+7RavOP9rPgGzNL8D4wxswSgAuoyjUTGOstNhZ4w5+E33LYu/hg3KZ11aT3\n6Gvhm+N0AOcA95rZIaAS+C/n3M5GT3a4B80si6q3vuuBHwM455ab2SvACqqGSW7284gbz5NADPBO\nVVfxuXPuvwiy7RoCN7g/C/g+sNS8Q3+Bu4BrjvSz4LNUYIb37x0JvOSce8vM5gOvmNmPqLp67dU+\nZgT+/YtoCIdvtyP+/wolOrxSRCTMaehGRCTMqehFRMKcil5EJMyp6EVEwpyKXkQkzKnoRUTCnIpe\nRCTMqehFRMLc/wOKWrNqwsn7dQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(model.lat, model.SW_down_TOA)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(90, 30)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.Tatm.shape" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Integrating for 365 steps, 365.2422 days, or 1 years.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/br546577/code/climlab/climlab/model/column.py:141: RuntimeWarning: divide by zero encountered in true_divide\n", " self.subprocess['SW'].flux_from_space)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Total elapsed time is 0.999336878378 years.\n" ] } ], "source": [ "model.integrate_years(1)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8FfW9//HXJzuEhLCELQTCEkBABI2IIipYFFesXlus\ntdblWi117b221v5u6229t7UutVXbYm21VWuponLdwWLVKmBAEAhb2PeEPRCyf35/ZNBIhSSQZM45\neT8fj/PI5DszyTtDeJ/JnDkz5u6IiEjsigs7gIiINC8VvYhIjFPRi4jEOBW9iEiMU9GLiMQ4Fb2I\nSIxT0YuIxDgVvYhIjKu36M0sxczmmtlCM1tiZvcE478ws2Vm9omZvWhmGXXWucvMCs1suZmd25w/\ngIiIHJnV985YMzMg1d33mVki8D5wK5AO/N3dq8zs5wDu/j0zGwz8BRgJ9ABmAgPcvfpw36Nz586e\nk5PTFD+PiEirMW/evO3unlnfcgn1LeC1zwT7gk8Tg4e7+1t1FpsN/FswPRF4zt3LgTVmVkht6X94\nuO+Rk5NDfn5+fVFERKQOM1vXkOUadIzezOLNbAFQBMxw9zmHLHIt8HownQVsqDNvYzAmIiIhaFDR\nu3u1uw8HegIjzWzowXlmdjdQBTzTmG9sZjeYWb6Z5RcXFzdmVRERaYRGnXXj7ruBWcAEADP7JnAh\ncKV/drB/E5BdZ7WewdihX2uKu+e5e15mZr2HmERE5Cg15KybzINn1JhZG2A8sMzMJgB3Ahe7e2md\nVaYDk8ws2cz6ALnA3KaPLiIiDVHvi7FAd+ApM4un9olhqru/ErzImgzMqD0xh9nufqO7LzGzqUAB\ntYd0Jh/pjBsREWleDTnr5hNgxBeM9z/COvcC9x5bNBERaQp6Z6yISIxryKEbaYWqa5yd+ysoLiln\nx/5ySsqq2FdWRUl5FRVVNVTX1FBV49Q4JMUbifFxJCXEkZqcQHpKIultEujQNomu6Sl0aJtIcHhP\nREKgom/Famqc9TtLWb6thJXbSli3o5T1O0vZsLOUrXvLqGmi2wknxcfRJT2ZXh3b0rtTKjmd2tIv\nsx2DuqeRldFGTwIizUxF30q4Oxt3HWD++l0s3LCHhRt3U7B5LwcqP3udvGtQxqP6daJH+zZ0SU8m\ns10yndolk94mgXbJtY+UxHji44x4M8ygqsaprK6hvLKGfeVV7C2rZO+BKnbsL6dobzlFJeVs3XOA\ndTtLeXPJVnbur/j0e6alJHBct3SG98pgeHYGI3pl0L19mzA2kUjMUtHHsK17ynh3ZTGzV+9gzuqd\nbNp9AICUxDiOz2rPpJHZHNctnQHd0sjt0o7U5KP7dUgMDt20TYIOqUn1Lr/nQCWFRftYtnUvy7aU\nsHjzHp78YC0VVTUA9OzQhlP7duK0/p04rV9nuqanHFUuEalV70XNWkJeXp7rWjfHrqbGmb9+F28v\nK2LWsiKWbS0BoGNqEqP6dmRU306c1LsDA7umkRAfWa/Dl1dVs3RLCfPX7WLOmh3MXr2TPQcqARjS\nI52zB3Vh3HFdGZbVnrg4HeoRATCzee6eV+9yKvroVl3jzFm9g9cWb+HNJdsoLiknIc7Iy+nA2IFd\nOHNgJgO7pkXdcfDqGmfplr28u7KYWcuKmLduFzUO3dJTOP/47lwwrBsjsjuo9KVVU9HHMHdnyea9\nvPTxJqYv3ExRSTkpiXGMHdiFCUO7MXZQF9JTEsOO2aR27a/gnRVFvLZoK/9YXkxFdQ1ZGW249MQs\nLjuxJzmdU8OOKNLiVPQxaNf+Cl78eBNT8zewbGsJifHGWQO7cMnwLMYOyqRtUut4yWVvWSVvL93G\nix9v5v2VxdQ45PXuwNdO6cX5x3cnJTE+7IgiLUJFHyPcnblrdvL0nPW8uXgrFdU1DOvZnsvzsrnw\n+O4NevEzlm3dU8aLH2/ib/kbWL19Px3aJvKVvGy+Pqo32R3bhh1PpFmp6KPcvvIqXpy/kT/PXseK\nbftIT0ng0hN78pW8bAb3SA87XsRxdz5YtYOnZ6/jrYJtuDvnDe3O9WP6MKJXh7DjiTSLhhZ96/hb\nP4qs2b6fpz5Yy/PzNrKvvIrjs9pz32XDuOiEHrRJ0iGJwzEzRvfvzOj+ndm6p4wnP1jLM3PW8eqi\nLZyc04HvjMvljNzOUfeitEhT0B59BHB33l25nSf/uYZZy4tJjDcuHNaDq0/LYXh2Rv1fQL7QvvIq\npn60gd+/t5rNe8o4oWd7bjk7l3GDuqjwJSbo0E0UOHh45skP1rKqeD+d2yVz5Sm9uHJUL7qk6U1C\nTaWiqoYX5m/k0VmFbNx1gBOyM/jeuQM5rX/nsKOJHBMVfQRbtnUvT89ex0sfb2ZfeRXDerbnmtE5\nnH98d5ITdHimuVRW1zBt/kYenrmSzXvKGJPbmTvPHcTxPduHHU3kqLSKol+/o5Rfvr2CODMMiDMj\nLo5Pr8MSHxdHYrwRH/fZ1RWTgo/JCXEkJ8aRkhBPSmLto21S8Aiu6ZKaFN9k7yAtKinj1U+2MH3h\nZj5ev5ukhDguHNadr4/qzYjsDB1KaEFlldU8PXsdj84qZFdpJZeemMWd5w6iW3v9FSXRpVW8GLuv\nvIo5q3cCUOMePGovBVDtTnW1U1lTQ1W1U3WUl2JMSYwjLSWRtJQE0lISSU9JIL1NIu3bJH56Od7a\nj4m0S46nTWICqcnxlFXWsKp4H4VF+1i8aQ8frd1JjcNx3dO5+/zj+LeTerb6UyPDkpIYz/Vj+vLV\nk7N57J1VPPHeGl5ftJWbzurHDWf01Xn4EnOieo++MdydiuoaKqudiqoayquqKausoayymrLKag5U\nVFNaUU1pZTWl5VXsCx77y6soKat97C2r/PTj3gNV7D1QSUV1zRG/b0piHP27tGPcwC5cPLwH/buk\nNevPKY23fkcp//v6Ul5fvJVeHdtyz8QhjB3YJexYIvVqFYduIkFZZXVQ/JXsL69mf0UVpeXVxMcb\n/TPbkZXRRtdjiRIfFG7nhy8vZnXxfs4b2o3/umiwLpksEU1FL3IUyquq+f17a/jV2ytJjI/j++cN\n4msje+nJWiJSQ4u+3lcazSzFzOaa2UIzW2Jm9wTjHc1shpmtDD52qLPOXWZWaGbLzezcY/tRRFpO\nckI8k8f2Z+YdZ3JCdnt++NJirnh8Nmu37w87mshRa8gpJeXAOHc/ARgOTDCzUcD3gbfdPRd4O/gc\nMxsMTAKGABOAx8xMr25JVMnu2JanrzuFn192PAVb9jLh4Xd56oO11DTV/RVFWlC9Re+19gWfJgYP\nByYCTwXjTwGXBNMTgefcvdzd1wCFwMgmTS3SAsyMr57cixm3n8movp340fQlXP3HuWzdUxZ2NJFG\nadBJ4mYWb2YLgCJghrvPAbq6+5Zgka1A12A6C9hQZ/WNwZhIVOrWPoU/fvNkfnrJUPLX7uKch/7B\nK59sDjuWSIM1qOjdvdrdhwM9gZFmNvSQ+U7tXn6DmdkNZpZvZvnFxcWNWVWkxZkZXx/Vm9duHUPf\nzHZ859mPuWvaJxyoqK5/ZZGQNeptn+6+G5hF7bH3bWbWHSD4WBQstgnIrrNaz2Ds0K81xd3z3D0v\nMzPzaLKLtLg+nVP5242ncuOZ/fjL3A1MfPR9VmwrCTuWyBE15KybTDPLCKbbAOOBZcB04OpgsauB\nl4Pp6cAkM0s2sz5ALjC3qYOLhOXgaZd/unYkO/dXcPEj7zNt/sawY4kcVkP26LsDs8zsE+Ajao/R\nvwL8DBhvZiuBLwWf4+5LgKlAAfAGMNnd9fetxJwzBmTy2q1jOKFnBndMXcgPX1pEeZV+1SXy6A1T\nIseoqrqGX7y5nN+9u5rh2Rn85usn6h210iKa7A1TInJkCfFx3HX+cfz26ydSWLSPi379T+at2xV2\nLJFPqehFmsiEod158dunkZoczxVTZvP8PB23l8igohdpQrld03h58mhO7tOB//jbQu59tYBqvZtW\nQqaiF2liGW2TeOqakXzztBwef28N335mns63l1Cp6EWaQUJ8HD++eAg/umgwbxVsY9LjsykuKQ87\nlrRSKnqRZnTN6D5MuSqPFVtL+PJj/6SwaF/9K4k0MRW9SDMbP7grf/3WKMoqq7n8tx+wYMPusCNJ\nK6OiF2kBw3pm8PyNp5GWksgVU2bzzvKi+lcSaSIqepEWktM5ledvOpU+nVO5/ql8Xl7wL5eAEmkW\nKnqRFtQlLYXnvjWKvJwO3PbXBfxl7vqwI0kroKIXaWHpKYk8ec1IzhqQyV3TFvHE+2vCjiQxTkUv\nEoKUxHh+d1Ue5w3txk9eKeDXb68MO5LEMBW9SEiSEuL49RUjuHREFg/MWMFDM1aEHUliVELYAURa\ns4T4OO6//ATi44yHg73628cPCDmVxBoVvUjI4uKMn182DEBlL81CRS8SAQ4t+/g445azc0NOJbFC\nRS8SIQ6WfY3DgzNW0DYpnuvH9A07lsQAFb1IBKkt++Mpq6zmp68upW1SAl87pVfYsSTKqehFIkxC\nfBwPfXU4ByqrufulRbRJiuPLI3qGHUuimE6vFIlASQlxPHbliZzatxP/8bdPmFmwLexIEsVU9CIR\nKiUxninfyGNIj3QmPzufj9buDDuSRKl6i97Mss1slpkVmNkSM7s1GB9uZrPNbIGZ5ZvZyDrr3GVm\nhWa23MzObc4fQCSWtUtO4I/fPJmsjDZc9+RHLNu6N+xIEoUaskdfBXzX3QcDo4DJZjYYuA+4x92H\nA/8VfE4wbxIwBJgAPGZm8c0RXqQ16NQumT9dN5I2SfF844m5bNhZGnYkiTL1Fr27b3H3+cF0CbAU\nyAIcSA8Waw9sDqYnAs+5e7m7rwEKgZGIyFHr2aEtf77uFMoqq7nmyY/YU1oZdiSJIo06Rm9mOcAI\nYA5wG/ALM9sA3A/cFSyWBWyos9rGYExEjsGArmlM+UYe63eUcsOf8ymv0g3HpWEaXPRm1g54AbjN\n3fcCNwG3u3s2cDvwRGO+sZndEBzbzy8uLm7MqiKt1qi+nfjF5cOYs2Yndz7/Ce4ediSJAg0qejNL\npLbkn3H3acHw1cDB6b/x2eGZTUB2ndV7BmOf4+5T3D3P3fMyMzOPJrtIqzRxeBZ3ThjIyws2c/9b\ny8OOI1GgIWfdGLV760vd/cE6szYDZwbT44CDF9SeDkwys2Qz6wPkAnObLrKI3HRmP64Y2YtHZ61i\n2vyNYceRCNeQd8aOBq4CFpnZgmDsB8C/Aw+bWQJQBtwA4O5LzGwqUEDtGTuT3V0HE0WakJnx3xOH\nsG7Hfr7/wiJ6dWxLXk7HsGNJhLJIOMaXl5fn+fn5YccQiTq7Syu45NF/UlJWxUuTR5PdsW3YkaQF\nmdk8d8+rbzm9M1YkimW0TeKJb55MRXUN1z+Vz77yqrAjSQRS0YtEuX6Z7XjsyhNZWVTCd6cuoKYm\n/L/SJbKo6EViwJjcTH5w/nG8uWQbj84qDDuORBgVvUiMuO70PlwyvAcPzlzB35fpapfyGRW9SIww\nM3522TCG9Ejn1r8sYHXxvrAjSYRQ0YvEkJTEeH53VR6JCXHc+PQ8Siv04qyo6EViTlZGG359xQgK\ni/bxg2mLdJkEUdGLxKLR/Ttzx/gBvLRgM0/PWR92HAmZil4kRn37rP6MHZjJT/6vgIUbdocdR0Kk\noheJUXFxxkNfHU5mWjLffmY+u0srwo4kIVHRi8SwjLZJPHbliRSVlOmyxq2Yil4kxp2QncH3Jgzi\nrYJtPPXB2rDjSAhU9CKtwHWn9+HsQV34n9eWsXjTnrDjSAtT0Yu0AmbGLy4/gY6pSXzn2fm6+Fkr\no6IXaSU6pibxqytGsH5nKf/vpcVhx5EWpKIXaUVG9unIzeNyefHjTUxfuDnsONJCVPQirczN4/oz\nolcGd7+4iE27D4QdR1qAil6klUmIj+Phr46gpsa5/a8LqNb162Oeil6kFerVqS33TBzK3DU7+e0/\nVoUdR5qZil6klbrsxCwuGNadh2asYMlmnXIZy1T0Iq2UmfHTiUPpkJrEHX9dSHlVddiRpJnUW/Rm\nlm1ms8yswMyWmNmtdebdbGbLgvH76ozfZWaFZrbczM5trvAicmw6pCZx32XDWL6thIdmrAw7jjST\nhAYsUwV8193nm1kaMM/MZgBdgYnACe5ebmZdAMxsMDAJGAL0AGaa2QB31+6CSAQaO6gLk07OZsq7\nqxg/uAsn9e4YdiRpYvXu0bv7FnefH0yXAEuBLOAm4GfuXh7MKwpWmQg85+7l7r4GKARGNkd4EWka\nP7xwMD0y2nDH1IW6K1UMatQxejPLAUYAc4ABwBgzm2Nm/zCzk4PFsoANdVbbGIwd+rVuMLN8M8sv\nLi4+muwi0kTaJSdw/+UnsG5HKfe9sTzsONLEGlz0ZtYOeAG4zd33UnvYpyMwCvhPYKqZWUO/nrtP\ncfc8d8/LzMxsZGwRaWqj+nbi6lN789SHa/lo7c6w40gTalDRm1kitSX/jLtPC4Y3AtO81lygBugM\nbAKy66zeMxgTkQh354RB9Gjfhu89/wlllXpZLVY05KwbA54Alrr7g3VmvQSMDZYZACQB24HpwCQz\nSzazPkAuMLepg4tI00tNTuDnlw1j9fb9PDRzRdhxpIk0ZI9+NHAVMM7MFgSP84E/AH3NbDHwHHB1\nsHe/BJgKFABvAJN1xo1I9Dg9tzOTTs7m8XdX616zMcIi4dZieXl5np+fH3YMEQnsLavknAffpX2b\nRF655XQS4/XeykhkZvPcPa++5fSvJyL/Ij0lkZ9cMpTl20qY8u7qsOPIMVLRi8gXGj+4K+cN7cbD\nb69k7fb9YceRY6CiF5HD+vHFQ0iOj+PulxYRCYd55eio6EXksLqmp/C98wbxz8IdTJuvs6SjlYpe\nRI7oayN7cVLvDvz01QJ27q8IO44cBRW9iBxRXJzxv5ceT0lZFT97fWnYceQoqOhFpF4DuqZx3Zg+\nTM3fSL4ujxB1VPQi0iC3jMulR/sUfvjSYqqqa8KOI42goheRBklNTuBHFw9h2dYSnvxgbdhxpBFU\n9CLSYOcM7sq4QV14aMYKtuw5EHYcaSAVvYg0mJnx44uGUFXj/PRVvTAbLVT0ItIovTq15cYz+/Hq\nJ1v4cNWOsONIA6joRaTRbjqrH1kZbbjn/5bohdkooKIXkUZLSYzn/114HMu2lvDMnPVhx5F6qOhF\n5KicO6Qbo/t34oG3lrNjX3nYceQIVPQiclQOvjC7v6Ka+9/S3agimYpeRI5abtc0rj41h+c+Ws+S\nzXvCjiOHoaIXkWNy65dyyWiTyE9eKdCljCOUil5Ejkn7NoncPn4As1fv5K2CbWHHkS+goheRY/a1\nkb3I7dKO/31tKRVVOt0y0tRb9GaWbWazzKzAzJaY2a2HzP+umbmZda4zdpeZFZrZcjM7tzmCi0jk\nSIiP4+4LjmPtjlL+9OHasOPIIRqyR18FfNfdBwOjgMlmNhhqnwSAc4BPT6QN5k0ChgATgMfMLL6p\ng4tIZDlrYBfOHJDJw2+v1A1KIky9Re/uW9x9fjBdAiwFsoLZDwF3AnVfgZkIPOfu5e6+BigERjZp\nahGJSD+84DhKK6p5eKZOt4wkjTpGb2Y5wAhgjplNBDa5+8JDFssCNtT5fCOfPTGISAzL7ZrGpJOz\neWbOetZs3x92HAk0uOjNrB3wAnAbtYdzfgD819F+YzO7wczyzSy/uLj4aL+MiESYW7+US1JCHPe9\nsSzsKBJoUNGbWSK1Jf+Mu08D+gF9gIVmthboCcw3s27AJiC7zuo9g7HPcfcp7p7n7nmZmZnH9lOI\nSMTokpbCt87ox+uLtzJv3a6w4wgNO+vGgCeApe7+IIC7L3L3Lu6e4+451B6eOdHdtwLTgUlmlmxm\nfYBcYG6z/QQiEnGuH9OHzLRk/ue1pXoTVQRoyB79aOAqYJyZLQge5x9uYXdfAkwFCoA3gMnuXt0k\naUUkKqQmJ3DH+AHMW7eLN5foTVRhs0h4ts3Ly/P8/PywY4hIE6qqruG8h9+jusZ58/YzSIzX+zOb\nmpnNc/e8+pbTlheRZpEQH8edEwaxevt+np+3Mew4rZqKXkSazZeO68JJvTvwy5krKKvUEdywqOhF\npNmYGd+bMIhte8t58oO1YcdptVT0ItKsRvbpyNiBmTw2q5A9pZVhx2mVVPQi0uz+89xB7C2r4nfv\nrgo7SqukoheRZje4RzoTh/fgD/9cQ9HesrDjtDoqehFpEXeMH0BVtfPorMKwo7Q6KnoRaRG9O6Vy\neV42z85dz8ZdpWHHaVVU9CLSYm45uz9mxq/f1l59S1LRi0iL6d6+DVee0ovn52/UZYxbkIpeRFrU\nTWf1Iyk+TjcnaUEqehFpUV3SUrj6tBxeXriZ5VtLwo7TKqjoRaTFfeuMvqQmJfDQDO3VtwQVvYi0\nuA6pSVw7Ooc3lmxlyeY9YceJeSp6EQnFdaf3JS0lgYdnrgw7SsxT0YtIKNq3TeTa0X14q2Abizdp\nr745qehFJDTXnt6ndq/+be3VNycVvYiEpn2bRK4/vS8ztFffrFT0IhKqa07PIT0lgV/qvPpmo6IX\nkVClpyTy72P6MnNpEYs2aq++OajoRSR0V4+u3av/1d91rL451Fv0ZpZtZrPMrMDMlpjZrcH4L8xs\nmZl9YmYvmllGnXXuMrNCM1tuZuc25w8gItEvPSWRa0/vw4yCbTqvvhk0ZI++Cviuuw8GRgGTzWww\nMAMY6u7DgBXAXQDBvEnAEGAC8JiZxTdHeBGJHdec1oe05AQe+buubNnU6i16d9/i7vOD6RJgKZDl\n7m+5e1Ww2GygZzA9EXjO3cvdfQ1QCIxs+ugiEkvat03kmtE5vL54q66B08QadYzezHKAEcCcQ2Zd\nC7weTGcBG+rM2xiMiYgc0bWn9yE1KZ5f61h9k2pw0ZtZO+AF4DZ331tn/G5qD+8805hvbGY3mFm+\nmeUXFxc3ZlURiVEZbZO4+rQcXl20hcIi7dU3lQYVvZklUlvyz7j7tDrj3wQuBK50dw+GNwHZdVbv\nGYx9jrtPcfc8d8/LzMw8yvgiEmuuH9OXNonxOlbfhBpy1o0BTwBL3f3BOuMTgDuBi9297g0gpwOT\nzCzZzPoAucDcpo0tIrGqY2oSXx/Vm+kLN7Nuh+5C1RQaskc/GrgKGGdmC4LH+cAjQBowIxj7LYC7\nLwGmAgXAG8Bkd69unvgiEouuH9OHhPg4fvPOqrCjxISE+hZw9/cB+4JZrx1hnXuBe48hl4i0Yl3S\nUrji5Gyenbuem8/OJSujTdiRopreGSsiEemGM/sB8Lt/aK/+WKnoRSQiZWW04bITe/LcRxso2lsW\ndpyopqIXkYh101n9qK5xHn9vddhRopqKXkQiVu9OqUw8oQdPz17Pzv0VYceJWip6EYlo3x7bj7Kq\nav74zzVhR4laKnoRiWj9u6QxYUg3nvxgLXvLKsOOE5VU9CIS8SaP7U9JWRV//nBd2FGikopeRCLe\n0Kz2jB2Yye/fW01pRVX9K8jnqOhFJCp8Z1wuu0oreXbO+rCjRB0VvYhEhZN6d+DUvp2Y8u5qyip1\nVZXGUNGLSNS4eVx/ikrK+du8jWFHiSoqehGJGqf268SJvTL47TurqKyuCTtO1FDRi0jUMDNuHpfL\npt0HeHH+v9zmQg5DRS8iUeWsgZkMzUrn0XcKqdJefYOo6EUkqpgZ3xmby7odpbzyyZaw40QFFb2I\nRJ1zBndlYNc0HplVSE2N179CK6eiF5GoExdnTB7Xn8KifbyxZGvYcSKeil5EotIFx3enb+dUfvX2\nSu3V10NFLyJRKT7OuPns/izbWsKb2qs/IhW9iESti4b1oG/nVH45U3v1R6KiF5GolRAfxy1n57J8\nW4mO1R9BvUVvZtlmNsvMCsxsiZndGox3NLMZZrYy+Nihzjp3mVmhmS03s3Ob8wcQkdbtohN60C8z\nlYe1V39YDdmjrwK+6+6DgVHAZDMbDHwfeNvdc4G3g88J5k0ChgATgMfMLL45wouIxMfZp3v1ry3W\nefVfpN6id/ct7j4/mC4BlgJZwETgqWCxp4BLgumJwHPuXu7ua4BCYGRTBxcROejCYT3o36Wd9uoP\no1HH6M0sBxgBzAG6uvvBp8+tQNdgOgvYUGe1jcHYoV/rBjPLN7P84uLiRsYWEflMfJxx69m5rCza\nx0sLdA2cQzW46M2sHfACcJu77607z90daNTTqLtPcfc8d8/LzMxszKoiIv/iguO7MzQrnQfeWqHr\n1R+iQUVvZonUlvwz7j4tGN5mZt2D+d2BomB8E5BdZ/WewZiISLOJizN+cN5xbNp9gD99uDbsOBGl\nIWfdGPAEsNTdH6wzazpwdTB9NfBynfFJZpZsZn2AXGBu00UWEflip/XvzFkDM3nk74XsLq0IO07E\naMge/WjgKmCcmS0IHucDPwPGm9lK4EvB57j7EmAqUAC8AUx2d/0dJSIt4vvnDaKkvIpHZxWGHSVi\nJNS3gLu/D9hhZp99mHXuBe49hlwiIkdlULd0LjuxJ099sI5vnJpDdse2YUcKnd4ZKyIx547xAzCD\nn7xSQO25Iq2bil5EYk6PjDbcMX4AbxVs043EUdGLSIy6fkxfRvXtyD3Tl7Bux/6w44RKRS8iMSk+\nznjgK8OJizNu/+uCVn1/WRW9iMSsrIw2/PSSocxfv5vH3lkVdpzQqOhFJKZNHJ7FJcN78MuZK3h2\nzvqw44Si3tMrRUSi3f9cejy7D1TygxcXsXN/OZPH9qf2vaCtg/boRSTmtU1K4PFv5PHlEVnc/9YK\n7vm/glZ1lUvt0YtIq5AYH8cDl59Ap9Qkfv/+GtbvLOWBy0+gQ2pS2NGanfboRaTViIsz7r7gOH4y\ncQjvr9zOBb96j3nrdoUdq9mp6EWkVTEzrjo1hxduOo2E+Di++rsP+c07q2L69EsVvYi0Ssf3bM8r\nt5zOOUO68vM3lnHpbz5g6Za99a8YhVT0ItJqpack8ujXTuSRr41g8+4DXPTr97n/zeUxd+MSFb2I\ntGpmxoXDejDj9jO5eHgPHplVyNj732Ha/I0xc2aOil5EBOiQmsSDXxnOX28YRed2ydwxdSEXP/o+\n76/cHvWwn0gWAAAHEklEQVRXwFTRi4jUcUrfTrw8eTS//Opwdu6r4OtPzOHLj33AzIJtUVv4FgnB\n8/LyPD8/P+wYIiKfU15VzfPzNvKbd1axcdcBBnVL4+rTcpg4vAdtk8J/G5KZzXP3vHqXU9GLiBxZ\nZXUN0xds5vH3VrNsawlpyQlcdlJPLs/ryeDu6aFdTkFFLyLSxNydeet28fTsdby2aCsV1TX0zUzl\nomE9uGBYd3K7tGvR0lfRi4g0o137K3h98Vb+b+FmZq/ZgTv0aJ/CmNxMxgzoTF7vjnRrn9KsGZqs\n6M3sD8CFQJG7Dw3GhgO/BVKAKuDb7j43mHcXcB1QDdzi7m/WF0JFLyLRrGhvGTOXFvHeymLeL9xO\nSVkVAF3TkxnWM4PB3dPJ6dyWXh1T6dWxLR3aJpIQf+znwjRl0Z8B7AP+VKfo3wIecvfXzex84E53\nP8vMBgN/AUYCPYCZwAB3P+K7D1T0IhIrqqprWLRpDws27OaTjXtYuGE3a3bs59CqTUtJoEPbJM4d\n0pW7Lxh8VN+roUVf78vG7v6umeUcOgykB9Ptgc3B9ETgOXcvB9aYWSG1pf9hA3OLiES1hPg4RvTq\nwIheHT4dK6+qZsPOA6zfuZ8NOw+wq7SC3aWV7C6toFv7Ns2f6SjXuw1408zup/Zc/NOC8Sxgdp3l\nNgZjIiKtVnJCPP27tKN/l3ahfP+jPUh0E3C7u2cDtwNPNPYLmNkNZpZvZvnFxcVHGUNEROpztEV/\nNTAtmP4btYdnADYB2XWW6xmM/Qt3n+Luee6el5mZeZQxRESkPkdb9JuBM4PpccDKYHo6MMnMks2s\nD5ALzD22iCIicizqPUZvZn8BzgI6m9lG4EfAvwMPm1kCUAbcAODuS8xsKlBA7WmXk+s740ZERJpX\nQ866ueIws046zPL3AvceSygREWk6unqliEiMU9GLiMQ4Fb2ISIyLiIuamVkxsC7sHIfRGdgedogG\nUtbmES1ZoyUnKGtT6e3u9Z6fHhFFH8nMLL8h15KIBMraPKIla7TkBGVtaTp0IyIS41T0IiIxTkVf\nvylhB2gEZW0e0ZI1WnKCsrYoHaMXEYlx2qMXEYlxKvrDMLO/mtmC4LHWzBYE4zlmdqDOvN9GQNYf\nm9mmOpnOrzPvLjMrNLPlZnZumDmDPL8ws2Vm9omZvWhmGcF4JG7XCcF2KzSz74edpy4zyzazWWZW\nYGZLzOzWYPywvwthCv4PLQoy5QdjHc1shpmtDD52qO/rNHPGgXW22wIz22tmt0XqNm0MHbppADN7\nANjj7v8d3G3rlYO3VYwEZvZjYJ+733/I+FHd2rE5mdk5wN/dvcrMfg7g7t+LtO1qZvHACmA8tTfQ\n+Qi4wt0LQg0WMLPuQHd3n29macA84BLgK3zB70LYzGwtkOfu2+uM3QfsdPefBU+kHdz9e2FlrCv4\n998EnAJcQwRu08bQHn09zMyo/c/zl7CzHIVPb+3o7muAg7d2DI27v+XuVcGns6m9Z0EkGgkUuvtq\nd68AnqN2e0YEd9/i7vOD6RJgKdF3N7eJwFPB9FPUPlFFirOBVe4eqW/kbBQVff3GANvcfWWdsT7B\nn3D/MLMxYQU7xM3B4ZA/1PkTOAvYUGeZSLu147XA63U+j6TtGunb7lPBX0MjgDnB0Bf9LoTNgZlm\nNs/MbgjGurr7lmB6K9A1nGhfaBKf37mLxG3aYK266M1sppkt/oJH3T23K/j8P/gWoJe7DwfuAJ41\ns3SaWT1ZfwP0BYYH+R5o7jzHkPXgMndTe8+CZ4KhULZrtDOzdsALwG3uvpcI+12o4/Tg3/Y8YLKZ\nnVF3ptceQ46I48hmlgRcTO3d8yByt2mDHe3NwWOCu3/pSPOt9sYql1Ln2vvuXg6UB9PzzGwVMADI\nb8ao9WY9yMweB14JPm3wrR2bUgO26zeBC4Gzg//goW3XIwhl2zWGmSVSW/LPuPs0AHffVmd+3d+F\nULn7puBjkZm9SO2hsW1m1t3dtwSvORSFGvIz5wHzD27LSN2mjdGq9+gb4EvAMnffeHDAzDKDF2ow\ns77U3i5xdUj5DmbqXufTLwOLg+mIu7WjmU0A7gQudvfSOuORtl0/AnLNrE+whzeJ2u0ZEYLXjp4A\nlrr7g3XGD/e7EBozSw1eMMbMUoFzqM01ndr7TxN8fDmchP/ic3/FR+I2baxWvUffAIcepwM4A/hv\nM6sEaoAb3X1niyf7vPvMbDi1f/quBb4FEXtrx0eAZGBGbVcx291vJMK2a3BW0HeAN4F44A/uviSs\nPF9gNHAVsMiCU3+BHwBXfNHvQsi6Ai8G/94JwLPu/oaZfQRMNbPrqL167VdCzAh8+kQ0ns9vty/8\n/xVNdHqliEiM06EbEZEYp6IXEYlxKnoRkRinohcRiXEqehGRGKeiFxGJcSp6EZEYp6IXEYlx/x/0\n+uarxRNqbAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(model.lat, model.Ts)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Integrating for 365 steps, 365.2422 days, or 1 years.\n", "Total elapsed time is 1.99867375676 years.\n" ] } ], "source": [ "model.integrate_years(1)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclWX6x/HPxSKoIC6gsikouOCGikualmbpVJNNTWmL\n1dRki5U1Tc1YTbM2zVRT85tf05Rt02IupZmVv/ZsVRQVU1wSFQTcUBQRZD3X7w+OEzUqBwWecw7X\n+/Xy5eE+zwNfHjjXebif+7lvUVWMMcb4rwCnAxhjjGlaVuiNMcbPWaE3xhg/Z4XeGGP8nBV6Y4zx\nc1bojTHGz1mhN8YYP2eF3hhj/JwVemOM8XNBTgcAiIyM1ISEBKdjGGOMT1m9evV+VY2qbzuvKPQJ\nCQlkZGQ4HcMYY3yKiOR6sp113RhjjJ+zQm+MMX7OCr0xxvg5K/TGGOPnrNAbY4yfs0JvjDF+zgq9\nMcb4Oa8YR2+M0yqqa8grKmNfSQUHjlRSVFrJkYpqXC6lRhVVCAsJIjw0iPDQYDq3CyG+Qxs6h4cQ\nECBOxzfmpKzQmxan+GgVa3ceZE3uQTbsOsy2wiPkFZXhOoXlk1sFBdC9Yxv6x0YwIDaCgXERDIiL\nICQosPGDG3OKrNAbv1fjUjLzDvLxpn18snkfW/aWoAqBAUJy5zD6x0YwOTWWHpFt6dIulE5hrejY\nthVhIUEEBgiBUnvGXlpZTUl5NcVHq9hzuJz8ojLyDh5l274jfJW9nzfXFgAQGhzAyB6dGJMcxbje\nUfSICnPy2zcGUT2F05hGlpaWpjYFgmlMqkpm3iEWrsln6fo9FJVWEhQgDEvoyOikTgzp3oFBce1p\nG9J45zp7D5ezLu8QX287wOdbC9leWApASnQ7LkqN4cKB0cR1aNNoX88YEVmtqmn1bldfoReRUOBz\nIITavwDeUNXfikhHYD6QAOQAl6vqQfc+s4AbgBrgDlV9/2Rfwwq9aSzFZVXMW7WT+Rl5bC8sJTQ4\ngHNTunJeShfG9ooionVws2XJP1jGB1l7WbJuF5l5hwAYkxzJNWckML5PZwKtb9+cpsYs9AK0VdUj\nIhIMfAnMBC4BilT1LyLya6CDqv5KRFKAucBwIAb4COilqjUn+hpW6M3pytlfyotf7WBBRj5Hq2oY\nltCBnw6N4/wB0YSHNl9xP5G8ojIWrSlg7sqd7DlcTmz71lw3KoGrRnajTSvrQTWnptEK/Q8+aRtq\nC/0twMvA2aq6W0SigWWq2tt9No+qPuze533gd6q6/ESf1wq9OVU5+0v5n4+3sjizgKAAYXJqLNeP\nTiQlpp3T0Y6rqsbFhxv38tLXOaTvKKJj21bcOKYH15zRvVG7kUzL4Gmh9+g3S0QCgdVAEvBPVU0X\nkS6qutu9yR6gi/txLLCizu757jZjGs3u4qP84+OtLMjIJzhQmD6mBzecmUjndqFORzup4MAAzh8Q\nzfkDolmdW8Q/Ps7mr+9tZvbn27hzQi+uHNGN4EC7vcU0Lo8KvbvbJVVE2gNvikj/HzyvItKgq7oi\nMh2YDtCtW7eG7GpasIrqGp77YgdPfpJNjUuZNrI7t57d0+sL/PEM7d6Rl64fTmbeIR59fzO/XZLF\ny8tzuP+Cvozr3RkR68M3jaNBfyuq6iER+RSYBOwVkeg6XTf73JsVAPF1dotzt/3wc80GZkNt182p\nhDcty6eb9/H7t7PIOVDGpH5duf+CvsR39P1RLKnx7Xn1hhF8vGkff166iev/ncH4Pp3508X9iWnf\n2ul4xg/U+zeiiES5z+QRkdbAucBmYAlwrXuza4G33I+XAFNFJEREEoFkYGVjBzctx8HSSmbOW8vP\n/r2KwADhlRuG8/S0oX5R5I8RESakdOG9O8fywAV9Wb7tAOc+/hkvL8/BdSp3chlThydn9NHAS+5+\n+gBggaq+IyLLgQUicgOQC1wOoKpZIrIA2AhUAzNONuLGmJP5IGsP9725gUNlldw5IZlbz06iVZD/\n9mG3Cgrg52N6MLFfV+57cz0PvpXFksxdPDEl1a/e2EzzshumjFcqq6zmwbeyeGN1PinR7XjsskFe\nO5Kmqagqb64t4LdLslCFP13cn4sH27gG851GHXVjTHPavOcwt722lm2FR7h9fBJ3nJPcIkeiiAiX\nDIljeGJH7pyXyZ3zM1m2ZR9/vLi/V9wbYHxHy3v1GK82f9VOJj/5FcVHq3j1hhHcfV7vFlnk64rr\n0IZ500dy14ReLFm3i4v/+RXbCo84Hcv4kJb9CjJeo6rGxW8Wb+BXC9czLKEjS+8Yw+ikSKdjeY2g\nwABmTkjm1Z+P4FBZFZOf/IoPsvY4Hcv4CCv0xnFFpZVMez6dV1bkctNZPXjp+uFEhYc4HcsrjeoZ\nydu3n0mPqLZMf2U1T3z4Ld5wnc14Nyv0xlHZ+0qY/M8vWbPzEE9MGcSsH/W1yb7qEdO+NQtuOoOf\nDo3jfz7eyt0L1lFZ7XI6lvFidjHWOCYjp4gbXsogODCA+dNHMrhbB6cj+YzQ4EAe/elAEjq14bEP\nvmV3cTlPTxvarLNzGt9hZ/TGER9k7eGq59Lp2LYVb946yor8KRARbhufzBNTBpGRW8RlT3/N7uKj\nTscyXsgKvWl281bu5OZXV9Onazhv3HyG3Qh0mn4yOI6Xrh/OrkPlXPb0cnYeKHM6kvEyVuhNs3rp\n6xx+vWg9Y5KjmDt9JJ3C7KJrYxjVM5LXbhzBkYpqLnvma7L3lTgdyXgRK/Sm2Tz3xXZ+uySL81K6\n8Ow1abbgRiMbGNeeedNHUuOCy59ZQdauYqcjGS9hhd40i38t28af3t3E+QO68s+rhvj1fDVO6tO1\nHQtuGkloUABXP5fO5j2HnY5kvIC92kyTe+6L7fz1vc1cNCiGf0wd3OLvdG1qPaLCeO3GkbRyF/vs\nfXYXbUtnrzjTpOau3Mmf3t3EBQOiefzyQQRZkW8WCZFtmfPzkQBc9dwKcg+UOpzIOMledabJLFm3\ni/veXM/ZvaN4YkqqFflmltQ5jDk/H0lltYsrn023oZctmL3yTJP4ZPNefjE/k+EJHXn66qHWJ++Q\n3l3DeeWGERQfreK6F1ZRfLTK6UjGAfbqM41uXd4hZsxZS9/odjx3bRqhwYFOR2rR+sdG8PTVQ9m+\n/wjTX86gvMrWAWpprNCbRpVXVMYNL60iMrwVL1w3zOZN9xJnJkfy2GWDSN9RxC8WZFJjyxO2KJ6s\nGRsvIp+KyEYRyRKRme72QSKyXETWi8jbItKuzj6zRCRbRLaIyMSm/AaM9zhUVsm1L66k2qX8+2c2\nA6W3mZway/3n92Xp+j08vHST03FMM/LkjpVq4G5VXSMi4cBqEfkQeA74pap+JiLXA/cAvxGRFGAq\n0A+IAT4SkV62bqx/q6iuYfrLq8k/eJQ5Px9Bz6gwpyOZ47hxbA/yD5bx3Jc7SO4SxpRh3ZyOZJpB\nvWf0qrpbVde4H5cAm4BYoBfwuXuzD4FL3Y8nA/NUtUJVdwDZwPDGDm68h6ry4OIsVuYU8bfLBjEs\noaPTkcxJ/ObCFMYkR/LA4g2kbz/gdBzTDBrURy8iCcBgIB3IoraoA1wGxLsfxwJ5dXbLd7f98HNN\nF5EMEckoLCxsWGrjVV5ensv8jDxuH5/EjwfFOB3H1CMoMIAnrxhCfIc23PzqapsErQXwuNCLSBiw\nELhTVQ8D1wO3ishqIByobMgXVtXZqpqmqmlRUVEN2dV4ka+z9/OHdzYyoW8X7prQy+k4xkMRbYJ5\n7to0alzKz19eRWlFtdORTBPyqNCLSDC1RX6Oqi4CUNXNqnqeqg4F5gLb3JsX8N3ZPUCcu834mbyi\nMm59bQ09ItvyxJRBBNjKUD6lR1QY/7xqCFv3HWHWovW2JKEf82TUjQDPA5tU9fE67Z3d/wcADwBP\nu59aAkwVkRARSQSSgZWNHdw4q7yqhptfXY3LpTx7TZoNo/RRY5KjuPvcXixZt4uXl+c6Hcc0EU9G\n3YwGpgHrRSTT3XYfkCwiM9wfLwJeBFDVLBFZAGykdsTODBtx43/++M5GsnYd5rlr0kiIbOt0HHMa\nbj07ibU7D/GndzfSPzaCod1ttS9/I97w51paWppmZGQ4HcN46K3MAmbOy+Sms3ow60d9nY5jGkFx\nWRU/fvJLKqtdvHPHmUTagjA+QURWq2pafdvZnbGmQbL3lTBr0XqGJXTgl+f1djqOaSQRbYL519VD\nKCqr5Jevr8Nld876FSv0xmPlVTXcOmcNrYMD+d8rhti88n6mX0wED1zQl2VbCnnx6xyn45hGZK9U\n47GHl27i271HeHxKKl0jQp2OY5rAtJHdmdC3C3/5v01sKLClCP2FFXrjkU827+Wl5bnccGYiZ/Wy\n+x78lYjw6E8H0qltCHfMXWvj6/2EFXpTr8KSCu55/Rv6dA3nnonWL+/vOrRtxRNTUtlxoJQ/vL3R\n6TimEVihNyelqtzzxjqOVFTzv1cMtrnlW4gzenbilrN6Mj8jj4827nU6jjlNVujNSb2avpNlWwq5\n/4K+JHcJdzqOaUYzJyTTp2s4v160noOlDZrhxHgZK/TmhPKKynh46SbGJEcybWR3p+OYZhYSFMjj\nl6dSfLSSB97a4HQccxqs0Jvjcrlqu2wCRPjLpQOpnQnDtDQpMe24c0Iv3v1mN2+v2+V0HHOKrNCb\n43o1PZcV24t44IK+xLZv7XQc46CbxvZgUHx7fvPWBvaVlDsdx5wCK/Tmv+w8UMbDSzcztlcUU4bF\n17+D8WtBgQH87bJBlFXU8PslNgrHF1mhN9+jqvxq4TcEBQh/vXSAddkYAJI6h3HHOUm8u343H9oo\nHJ9jhd58zxur81m+/QC/Pr8P0RHWZWO+M31sT/p0Dec3izdQUl7ldBzTAFbozX8cOFLBQ0s3kda9\nA1fYotHmB1oFBfCXSweyt6ScR97b4nQc0wBW6M1/PPTuJkorqnn4kgG2WpQ5rtT49vxsVCKvrMhl\nVU6R03GMh6zQGwC+3LqfRWsLuOWsnnZjlDmpu8/rRWz71jzw5gaqalxOxzEe8GQpwXgR+VRENopI\nlojMdLenisgKEckUkQwRGV5nn1kiki0iW0RkYlN+A+b0lVfVcP/i9fSIbMut45KcjmO8XNuQIH77\n4xS27C3hJZvO2Cd4ckZfDdytqinASGCGiKQAjwC/V9VU4EH3x7ifmwr0AyYBT4mITZDixZ75bDu5\nB8r408X9bS4b45FzU7owrncUf/9oK3sP29h6b1dvoVfV3aq6xv24BNgExAIKtHNvFgEcu21uMjBP\nVStUdQeQDQzHeKW8ojKeWpbNhQOjGZUU6XQc4yNEhN9d1I/KGhcPvbvJ6TimHg3qoxeRBGAwkA7c\nCTwqInnAY8As92axQF6d3fLdbcYL/endjQSIcP8FtvaraZjundpyy1k9WbJuF19v2+90HHMSHhd6\nEQkDFgJ3quph4BbgLlWNB+4Cnm/IFxaR6e6+/YzCwsKG7GoayWffFvJ+1l5uPyfJxsybU3LL2T2J\n79iaB9/KsguzXsyjQi8iwdQW+TmqusjdfC1w7PHrfNc9UwDUvW8+zt32Pao6W1XTVDUtKspWLGpu\nldUufr8ki8TIttxwZqLTcYyPCg0O5MEL+5G97whzVuQ6HcecgCejboTas/VNqvp4nad2AWe5H48H\ntrofLwGmikiIiCQCycDKxotsGsOLX+1g+/5SfvvjFEKC7AKsOXUT+nbmzKRI/v7xVg6V2bz13siT\nM/rRwDRgvHsoZaaInA/cCPxNRNYBfwamA6hqFrAA2Ai8B8xQ1ZomSW9Oyf4jFTz5STbn9OnM2b07\nOx3H+DgR4YEL+3L4aBX/8/HW+ncwzS6ovg1U9UvgRLdJDj3BPg8BD51GLtOE/v7Rt5RV1TDrfLsA\naxpHn67tmDq8G68sz+WqEd1J6hzmdCRTh90Z28Js3VvC3JV5XD2im70YTaP6xbm9aB0cyJ+X2nBL\nb2OFvoX589JNtGkVyMwJvZyOYvxMZFgIt41P4pPN+/hiq42k8yZW6FuQL7YW8umWQm4fn0THtq2c\njmP80HWjE4jv2JqHl27G5VKn4xg3K/QtRI1LeejdTcR3bM21oxKcjmP8VEhQIHef25uNuw/z9je2\nxqy3sELfQryVWcDmPSXcO7GPDac0TeqiQTH0jW7HYx9sobLabqLyBlboW4CK6hoe//Bb+se244IB\n0U7HMX4uIED49Y/6kFd0lNfS7SYqb2CFvgWYm76T/INHuXdiH1tQxDSLscmRjOrZiX98km3LDnoB\nK/R+7khFNf/7STYje3RkTLLNTmmah4jwq0l9KCqt5Nkvdjgdp8WzQu/nXvhyBwdKK7l3Uh9qZ7Mw\npnkMim/PBQOief6L7RSV2tQITrJC78eKSiuZ/fl2zkvpwpBuHZyOY1qgu85Npqyqhmc+3+Z0lBbN\nCr0fe+azbZRWVvPLib2djmJaqKTO4UweFMPLX+dSWFLhdJwWywq9n9p/pIKXl+dy0aAYetli38ZB\nMyf0orLGxb+W2Vm9U6zQ+6lnPttGRXUNd5yT7HQU08IlRrblJ4NjeTU919aXdYgVej9UWFLBKyty\nmZwaS88om7jMOG/mOcm4XMo/P812OkqLZIXeDz3z2TYqq13cPj7J6SjGABDfsQ2XpcUzb2UeBYeO\nOh2nxbFC72f2lZTzanouFw+OpYedzRsvctv4JFyqzP7M+uqbmxV6P/P0su1U1Sh3jLe+eeNdYtu3\n5tIhccxdlce+Euurb06erBkbLyKfishGEckSkZnu9vl1lhbMEZHMOvvMEpFsEdkiIhOb8hsw39l/\npILXVuZycWosCZFtnY5jzH+55eyeVNe4eM7ulm1W9S4lCFQDd6vqGhEJB1aLyIeqOuXYBiLyN6DY\n/TgFmAr0A2KAj0Skl60b2/Re+HIHFdUubh3X0+koxhxXQmRbLhoUw6srcrn5rJ62LkIzqfeMXlV3\nq+oa9+MSYBMQe+x5qb2v/nJgrrtpMjBPVStUdQeQDQxv7ODm+4qPVvHK8lzO7x9tI22MV5sxLomy\nyhpe/MrO6ptLg/roRSQBGAyk12keA+xV1WPLv8cCeXWez6fOG0OdzzVdRDJEJKOw0JYdO12vLM+h\npKLazuaN10vuEs6P+nfl31/lUHzUZrZsDh4XehEJAxYCd6rq4TpPXcF3Z/MeU9XZqpqmqmlRUVEN\n3d3UUVZZzQtf5TCudxT9YiKcjmNMvWaMS6KkoppXluc4HaVF8KjQi0gwtUV+jqouqtMeBFwCzK+z\neQEQX+fjOHebaSJzV+ZRVFrJbTZu3viI/rERjOsdxYtf5VBeZZfvmpono24EeB7YpKqP/+DpCcBm\nVc2v07YEmCoiISKSCCQDKxsrsPm+iuoanv18OyMSOzK0e0en4xjjsZvO6smB0kreWJ1f/8bmtHhy\nRj8amAaMrzOc8nz3c1P5QbeNqmYBC4CNwHvADBtx03TeWruLPYfLmTHOzuaNbxmR2JFB8e159ovt\n1LjU6Th+rd7hlar6JXDcFStU9boTtD8EPHRayUy9XC5l9hfbSYluZ6tHGZ8jItw8tge3zFnD+1l7\nON/WM24ydmesD1v27T6y9x1h+tgetnqU8Unn9etKQqc2PPPZNlTtrL6pWKH3YbM/305MRCgXDLQz\nIeObAgOEG8f2YF1+MSu2Fzkdx29ZofdR3+QfYsX2Iq4/M5HgQPsxGt916ZA4IsNa2XKDTcgqhI96\n5vPthIcEMWVYfP0bG+PFQoMDuW5UAsu2FPLt3hKn4/glK/Q+KK+ojP9bv5srR3YjPDTY6TjGnLar\nRnQnJCjApkVoIlbofdDzX+4gMED42ahEp6MY0yg6tG3FJUPiWLSmgKLSSqfj+B0r9D7mcHkVr2fk\nceHAGLpGhDodx5hGc/3oBCqqXbyWnut0FL9jhd7HLFiVR2llDdePtrN541+Su4QztlcULy/PpbLa\n5XQcv2KF3ofUuJSXlueQ1r0DA+Js8jLjf244M5F9JRW8u36X01H8ihV6H/Lxpr3kFR3l+jPtbN74\np7HJkSR1DuP5L3fYDVSNyAq9D3nhqx3Etm/NeSldnI5iTJMQEa4fnciGgsOs3GE3UDUWK/Q+YuOu\nw6zYXsS0M7oTZDdIGT/2k8GxtG8TzEvLc5yO4jesYviIF7/aQWhwAFPtBinj51q3CmRKWjzvZ+1l\nd/FRp+P4BSv0PuDAkQreWreLS4fE0b6NLaZs/N/VI7vjUmVu+k6no/gFK/Q+YEFGPpXVLq4dleB0\nFGOaRXzHNpzTpzOvrdxJRbUtZ3G6rNB7uRqX8uqKXEYkdqRXl3Cn4xjTbKadkcD+I5W8t2GP01F8\nnidLCcaLyKcislFEskRkZp3nbheRze72R+q0zxKRbBHZIiITmyp8S7Bsyz4KDh3lmjMSnI5iTLMa\nkxRJYmRbXvo6x+koPq/eFaaAauBuVV0jIuHAahH5EOgCTAYGqWqFiHQGEJEUapcY7AfEAB+JSC9b\nTvDUvLw8ly7tQjivnw2pNC1LQIAwbWR3/vDORjYUFNM/1m4SPFX1ntGr6m5VXeN+XAJsAmKBW4C/\nqGqF+7l97l0mA/NUtUJVdwDZwPCmCO/vcg+U8tm3hVwxvJvNOW9apEuHxtE6OJCXl+c4HcWnNah6\niEgCMBhIB3oBY0QkXUQ+E5Fh7s1igbw6u+W720wDvboil6AA4Yrh3ZyOYowjIloH85MhsbyVuYvi\nsiqn4/gsjwu9iIQBC4E7VfUwtd0+HYGRwD3AAmnAwqUiMl1EMkQko7CwsIGx/d/RyhoWZOQzsV9X\nurSzWSpNy3X1iO5UVLtYuCbf6Sg+y6NCLyLB1Bb5Oaq6yN2cDyzSWisBFxAJFAB17+qJc7d9j6rO\nVtU0VU2Lioo6ne/BL739zS6Kj1Yx7YzuTkcxxlEpMe1IjW/PnPRcm//mFHky6kaA54FNqvp4nacW\nA+Pc2/QCWgH7gSXAVBEJEZFEIBlY2djB/d1r6TtJ6hzGiMSOTkcxxnFXjejGtsJSm//mFHlyRj8a\nmAaMF5FM97/zgReAHiKyAZgHXOs+u88CFgAbgfeAGTbipmE27jpMZt4hrhzejQb0hhnjty4cGEO7\n0CDm2J2yp6Te4ZWq+iVwompz9Qn2eQh46DRytWivrcwlJCiAS4bYNWxjoHb+m0uGxPFa+k4OHKmg\nU1iI05F8io3Z8zJlldUsXruLCwZE27w2xtRx1YhuVNa4eGO1XZRtKCv0Xubtdbs4UlHNlSNsSKUx\ndSV3CWd4YkdeW7kTl8suyjaEFXov81r6TpI7hzG0ewenoxjjda4a0Y3cA2V8tW2/01F8ihV6L7Kh\noJh1+cVcOcIuwhpzPJP6d6VDm2Dmrcqrf2PzH1bovcjclTtrL8IOjnM6ijFeKSSo9qLsB1l7OHCk\nwuk4PsMKvZcoq6zmrcxdXDAwmog2wU7HMcZrTR0WT1WN8uba/7oP05yAFXov8e43uzlSUW3z2hhT\nj+Qu4Qzt3oG5K3fanbIeskLvJeavyqNHVFvS7CKsMfWaMiyebYWlZOQedDqKT7BC7wWy9x0hI/cg\nU9Li7SKsMR64cGA0YSFBzFtpF2U9YYXeCyzIyCMoQLhkiF2ENcYTbVoFcVFqDO+ur538z5ycFXqH\nVVa7WLg6nwl9uxAVbrd1G+OpK4Z1o7zKxZJ1u5yO4vWs0Dvsk817OVBayZRh8fVvbIz5jwFxEfSL\nace8lTbRWX2s0Dts3qo8urYLZWwvm5PfmIaaMiyerF2H2VBQ7HQUr2aF3kG7Dh3ls28LuTwtjsAA\nuwhrTENNHhRLq6AAXs+wi7InY4XeQQtX56MKl6VZt40xpyKiTTCT+nVlceYuyqts2YsTsULvEJdL\neX11PqOTOhHfsY3TcYzxWVOGxVN8tIr3s/Y4HcVrWaF3SPqOInYWlXG5nc0bc1rO6NGJ+I6tWWDd\nNyfkyZqx8SLyqYhsFJEsEZnpbv+diBT8YHnBY/vMEpFsEdkiIhOb8hvwVa9n5BEeGsTEfl2djmKM\nTwsIEC4bGs9X2QfIKypzOo5X8uSMvhq4W1VTgJHADBFJcT/3hKqmuv8tBXA/NxXoB0wCnhKRwCbI\n7rMOl1exdMNuJqfGEBpsh8aY03Xp0DhE4HVbfeq46i30qrpbVde4H5cAm4CTLWY6GZinqhWqugPI\nBoY3Rlh/8c663ZRXuazbxphGEtu+NWOSo3gjI48aW33qvzSoj15EEoDBQLq76XYR+UZEXhCRY7Nx\nxQJ1O8vyOfkbQ4uzICOPPl3DGRAb4XQUY/zGlLR4dhWX88XWQqejeB2PC72IhAELgTtV9TDwL6AH\nkArsBv7WkC8sItNFJENEMgoLW84P5tu9JWTmHeIym8DMmEY1IaUzHdoE20XZ4/Co0ItIMLVFfo6q\nLgJQ1b2qWqOqLuBZvuueKQDq9knEudu+R1Vnq2qaqqZFRbWcu0IXrMojOFC4ODXG6SjG+JWQoEB+\nMjiODzfutdWnfsCTUTcCPA9sUtXH67RH19nsJ8AG9+MlwFQRCRGRRCAZWNl4kX1XZbWLN9cWcE6f\nLnQKswnMjGlsU2z1qeMK8mCb0cA0YL2IZLrb7gOuEJFUQIEc4CYAVc0SkQXARmpH7MxQVbtlDZvA\nzJim1rtrOKnx7Zm/Ko8bzky07lG3egu9qn4JHO9oLT3JPg8BD51GLr+0ICOfLu1CGJMc6XQUY/zW\nlGHxzFq0nrV5hxjSzVZsA7szttnsKS5n2ZZ9/HRoHEGBdtiNaSoXDoymdXAgC1bZRdljrOI0k4Vr\n8nEpXDbUum2MaUrhocFcODCat9ftorSi2uk4XsEKfTNQVV7PyGNEYkcSIts6HccYvzdlWDyllTW8\n842tPgVW6JtF+o4icg7YBGbGNJeh3TuQ1DmM12zxcMAKfbNYkJFHWEgQ5w+Irn9jY8xpExGuHtGN\ndXmH+Cb/kNNxHGeFvokdLq9i6frd/HhQDK1b2QRmxjSXS4bG0To4kFdX5DodxXFW6JvY4rUFlFe5\nmGpj541pVu1Cg7l4cCxvZe6iuKzK6TiOskLfhFSVV5bnMiA2gkHx7Z2OY0yLM21kdyqqXby+umX3\n1Vuhb0LYfhakAAAPMklEQVQrdxSxdd8Rpo3s7nQUY1qklJh2pHXvwKsrcnG14OmLrdA3oVfTd9Iu\nNIgfD7IJzIxxyrQzupNzoIwvs/c7HcUxVuibSGFJBe9t2M2lQ+PsIqwxDprUvyuRYa14pQVflLVC\n30QWZORRVaNcbd02xjgqJCiQKcPi+XjTXnL2lzodxxFW6JtAjUt5LX0no3p2omdUmNNxjGnxrh2V\nQHBgAP9ats3pKI6wQt8Elm3ZR8Gho3YR1hgv0Tk8lCuGd2PhmnwKDh11Ok6zs0LfBJ77Ygdd2oUw\nIaWL01GMMW7Tx/ZABJ75rOWd1Vuhb2Srcw+yfPsBbhzTg2CbjtgYrxHTvjU/HRrHvFV57Dtc7nSc\nZuXJUoLxIvKpiGwUkSwRmfmD5+8WERWRyDpts0QkW0S2iMjEpgjurf75aTYd2gRz5YhuTkcxxvzA\nLWclUeNSZn++3ekozcqTU85q4G5VTQFGAjNEJAVq3wSA84CdxzZ2PzcV6AdMAp4SkRYxvjBrVzGf\nbN7H9aMTadPKk1UajTHNqVunNkxOjWFO+s4WtYB4vYVeVXer6hr34xJgExDrfvoJ4F5q1409ZjIw\nT1UrVHUHkA0Mb9TUXuqpT7cRHhLENaMSnI5ijDmBW89Oory6pkWd1TeoE1lEEoDBQLqITAYKVHXd\nDzaLBepOLJHPd28Mfit73xGWbtjNNaO6E9E62Ok4xpgTSOocxiWD43jx65wWMwLH40IvImHAQuBO\nartz7gMePNUvLCLTRSRDRDIKCwtP9dN4jaeWZRMaFMj1oxOdjmKMqccvzusFwOMffOtwkubhUaEX\nkWBqi/wcVV0E9AQSgXUikgPEAWtEpCtQANSdkzfO3fY9qjpbVdNUNS0qKur0vguHbS88wluZu7hi\neDc6hYU4HccYU4/Y9q25blQCi9bms2n3YafjNDlPRt0I8DywSVUfB1DV9araWVUTVDWB2u6ZIaq6\nB1gCTBWREBFJBJKBlU32HXiBxz7YQmhQALeO6+l0FGOMh249uyfhIUH89b3NTkdpcp6c0Y8GpgHj\nRSTT/e/8E22sqlnAAmAj8B4wQ1VrGiWtF1q78yBL1+/hxrE9iLSzeWN8Rvs2rZgxLollWwr5ept/\nz2wpqs7P0ZyWlqYZGRlOx2gwVWXq7BVsKzzCsnvGERZiQyqN8SXlVTWMf2wZncJCWDxjNIEB4nSk\nBhGR1aqaVt92duvmaVj2bSHpO4q445xkK/LG+KDQ4EDundSH9QXFzF/lv6tQWaE/RTUu5a//t5nu\nndowdZjdBWuMr5qcGsPwxI488v5mikornY7TJKzQn6JFa/LZvKeEX57Xm1ZBdhiN8VUiwh8n96ek\nvJpH3/fPC7NWoU5B8dEq/vreZlLj23PBgGin4xhjTlPvruH8bFQC81blsXbnQafjNDor9KfgiQ+/\n5UBpJX+c3J8AH7t4Y4w5vpkTkokKC+HBt7Ko8bOFxK3QN9Cm3Yd5eXkOVw7vxoC4CKfjGGMaSXho\nMPdf0Jf1BcW89HWO03EalRX6BlBVHnxrAxGtg7lnYm+n4xhjGtlFg2IY36czj7y/mR1+tL6sFfoG\nWJxZwKqcg9w7qQ/t27RyOo4xppGJCH/+yQCCAwO49411uPykC8cKvYcOllby0LubGRQXwZS0+Pp3\nMMb4pK4Rofz2x/1YlXOQF/2kC8cKvYd+/3YWh8oqefiSgXYB1hg/d+mQWMb36cyjftKFY4XeAx9k\n7WFx5i5uG59ESkw7p+MYY5pY3S6cu+ZnUlXjcjrSabFCX49DZZXcv3gDfaPbcevZSU7HMcY0k64R\noTx8yQAy8w7x6PtbnI5zWqzQ1+MPb2/kYGklj1020O6ANaaFuXBgDFeP7Mbsz7fz8aa9Tsc5ZVa5\nTuK9DbtZtLaAW8cl0S/Gxswb0xI9cEEKKdHtuPv1dezy0aUHrdCfQF5RGfe88Q2D4iK4bZx12RjT\nUoUGB/LPq4ZQVe3i9rlrqaz2vf56K/THUVnt4ra5awF48soh1mVjTAuXGNmWv1w6kNW5B3lg8Xq8\nYR2PhrBJ1I/jkfc2sy7vEE9fPYT4jm2cjmOM8QI/HhTD1r0l/OOTbBIi2/rU4AxP1oyNF5FPRWSj\niGSJyEx3+x9F5Bv30oIfiEhMnX1miUi2iGwRkYlN+Q00to827uW5L3dw7RndmdTfZqY0xnznrnN7\ncdGgGB55bwtL1+92Oo7HPOmTqAbuVtUUYCQwQ0RSgEdVdaCqpgLvAA8CuJ+bCvQDJgFPiUhgk6Rv\nZFv2lHDX/Ez6x7Zj1vl9nY5jjPEyIsIjPx1IWvcO3DU/k9W5vjGlcb2FXlV3q+oa9+MSYBMQq6qH\n62zWFjjWaTUZmKeqFaq6A8gGhjdu7MZXWFLB9f9eRetWgTx7TRqhwT7x3mSMaWahwYE8M20o0RGh\nXPfiSjLzDjkdqV4NusooIgnAYCDd/fFDIpIHXIX7jB6IBeouvpjvbvNa5VU1TH8lgwOlFTx/7TCi\nI1o7HckY48U6hYUw58aRdGjTimnPp3t9sfe40ItIGLAQuPPY2byq3q+q8cAc4LaGfGERmS4iGSKS\nUVhY2JBdG5XLpfzy9XVk5h3i71MG2xzzxhiPxLZvzdzpvlHsPSr0IhJMbZGfo6qLjrPJHOBS9+MC\noO70jnHutu9R1dmqmqaqaVFRUQ1L3UhcLmXWovW8881ufj2pD5P6d3UkhzHGN9Ut9lc/l+61d896\nMupGgOeBTar6eJ325DqbTQaOraq7BJgqIiEikggkAysbL3LjcLmU+95cz/yMPG4fn8T0sT2cjmSM\n8UGx7Vsz/6aRJES24ecvZ/CvZdu8bpy9J+PoRwPTgPUikuluuw+4QUR6Ay4gF7gZQFWzRGQBsJHa\nETszVLWm0ZOfBpdLuX/xeuatyuO2cUn84txe1L6fGWNMw0VHtOb1m0Zxzxvr+Ot7m9m85zB/uWQg\nrVt5x6AO8YZ3nrS0NM3IyGiWr1VeVcOvF37D4sxdzBjXk1+e19uKvDGmUagqTy3bxqPvbyG+Y2v+\ndPEAzurVdF3TIrJaVdPq265F3du/93A5U2avYHHmLu6Z2NuKvDGmUYkIM8YlMX/6SIIDA7j2hZXc\nMXct+0rKnc3VUs7o1+UdYvorGZSUV/PElFQm9rMLr8aYplNRXcO/lm3jqU+3IQKTU2O4dlRCo86E\n6+kZvd8X+vKqGp78JJtnPt9Gl3ahPHdtGn262ipRxpjmsb3wCM99uYNFa/Ipr3KR1r0DZyZHkhrf\nntT49rRv0+qUP7cVeuDr7P3c9+Z6cg6UccmQWH5zQQod2p76QTXGmFNVXFbFgow8Fq7JZ8veEo6V\n3kuGxPL45amn9Dk9LfR+N3tljUv5ZPM+Xvo6hy+z95PQqQ1zfj6C0UmRTkczxrRgEW2CuXFsD24c\n24OS8irW5xezNu8Qse2b/k58vyj0xWVVZOYfYnXuQd5cm09e0VGiI0K5d1Jvrh+daPPWGGO8Snho\nMKOSIhnVTCegPl3o1+cXM3P+WrYXlgIgAsO6d2TWj/pyXkoXggJb1KAiY4w5Lp8u9F3ahdAjMoxL\nh8QxOL49A+IiCA8NdjqWMcZ4FZ8u9J3do2iMMcacmPVtGGOMn7NCb4wxfs4KvTHG+Dkr9MYY4+es\n0BtjjJ+zQm+MMX7OCr0xxvg5K/TGGOPnvGL2ShEppHY5Qm8UCex3OoSHLGvT8JWsvpITLGtj6a6q\n9S5h5RWF3puJSIYn04B6A8vaNHwlq6/kBMva3Kzrxhhj/JwVemOM8XNW6Os32+kADWBZm4avZPWV\nnGBZm5X10RtjjJ+zM3pjjPFzVuhPQETmi0im+1+OiGS62xNE5Gid5572gqy/E5GCOpnOr/PcLBHJ\nFpEtIjLRyZzuPI+KyGYR+UZE3hSR9u52bzyuk9zHLVtEfu10nrpEJF5EPhWRjSKSJSIz3e0n/F1w\nkvs1tN6dKcPd1lFEPhSRre7/OzicsXed45YpIodF5E5vPaYNYV03HhCRvwHFqvoHEUkA3lHV/s6m\n+o6I/A44oqqP/aA9BZgLDAdigI+AXqpa0+whv8t0HvCJqlaLyF8BVPVX3nZcRSQQ+BY4F8gHVgFX\nqOpGR4O5iUg0EK2qa0QkHFgNXAxcznF+F5wmIjlAmqrur9P2CFCkqn9xv5F2UNVfOZWxLvfPvwAY\nAfwMLzymDWFn9PUQEaH2xTPX6SynYDIwT1UrVHUHkE1t0XeMqn6gqtXuD1cAcU7mOYnhQLaqblfV\nSmAetcfTK6jqblVd435cAmwCYp1N1WCTgZfcj1+i9o3KW5wDbFNVb72Rs0Gs0NdvDLBXVbfWaUt0\n/wn3mYiMcSrYD9zu7g55oc6fwLFAXp1t8vGuYnA98H91Pvam4+rtx+4/3H8NDQbS3U3H+11wmgIf\nichqEZnubuuiqrvdj/cAXZyJdlxT+f7JnTceU4+16EIvIh+JyIbj/Kt75nYF3/+B7wa6qWoq8Avg\nNRFp53DWfwE9gFR3vr81dZ7TyHpsm/uBamCOu8mR4+rrRCQMWAjcqaqH8bLfhTrOdP9sfwTMEJGx\ndZ/U2j5kr+hHFpFWwEXA6+4mbz2mHvPpxcFPl6pOONnzIhIEXAIMrbNPBVDhfrxaRLYBvYCMJoxa\nb9ZjRORZ4B33hwVAfJ2n49xtTcqD43odcCFwjvsF7thxPQlHjl1DiEgwtUV+jqouAlDVvXWer/u7\n4ChVLXD/v09E3qS2a2yviESr6m73NYd9job8zo+ANceOpbce04Zo0Wf0HpgAbFbV/GMNIhLlvlCD\niPQAkoHtDuU7lim6zoc/ATa4Hy8BpopIiIgkUpt1ZXPnq0tEJgH3Ahepalmddm87rquAZBFJdJ/h\nTaX2eHoF97Wj54FNqvp4nfYT/S44RkTaui8YIyJtgfOozbUEuNa92bXAW84k/C/f+yveG49pQ7Xo\nM3oP/LCfDmAs8AcRqQJcwM2qWtTsyb7vERFJpfZP3xzgJgBVzRKRBcBGartJZjg54sbtSSAE+LC2\nVrFCVW/Gy46re1TQbcD7QCDwgqpmOZXnOEYD04D14h76C9wHXHG83wWHdQHedP+8g4DXVPU9EVkF\nLBCRG6idvfZyBzMC/3kjOpfvH7fjvr58iQ2vNMYYP2ddN8YY4+es0BtjjJ+zQm+MMX7OCr0xxvg5\nK/TGGOPnrNAbY4yfs0JvjDF+zgq9Mcb4uf8H/oo1Kk+YB0IAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(model.lat, model.timeave['Ts'])" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def plot_temp_section(model, timeave=True):\n", " fig = plt.figure()\n", " ax = fig.add_subplot(111)\n", " if timeave:\n", " field = model.timeave['Tatm'].transpose()\n", " else:\n", " field = model.Tatm.transpose()\n", " cax = ax.contourf(model.lat, model.lev, field)\n", " ax.invert_yaxis()\n", " ax.set_xlim(-90,90)\n", " ax.set_xticks([-90, -60, -30, 0, 30, 60, 90])\n", " fig.colorbar(cax)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD8CAYAAABekO4JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X/0HXV95/HnywChyg+hiYgJIYFNZIFdQVKWyhF/IMKx\nng1rlQ1n66bVLYulCq5bD1C3bu3SQ11/1G5XOVlB07MUlhKq1B9oZKnoOfwwiUEICU0CIsEAATRk\nW0lIeO8f8/mamy/f7/3x/d6585mZ1+Oc7/nOnTv3zufeO/O6n3nP3BlFBGZmlq+XVd0AMzPrzkFt\nZpY5B7WZWeYc1GZmmXNQm5llzkFtZpY5B7WZ2TRIOkbSHZIelLRe0qVp/CmS7pa0TtJqSaen8fMl\n/SKNXyfpmp7z8HHUZmZTJ+lo4OiIWCvpUGANcD7w58BnI+Kbkt4BfDQi3ixpPvC1iDi533kcUEK7\nzcxaIyK2AdvS8E5JG4A5QACHpckOB3461Xlk0aOeNWtWvLBjuFWYOPigoT7fZPYerPKeezQvYWji\noOqXpX5od3mf2bDN2F3icz8/ms9Lzw/vRSx83TzWrFnzdETMns7zvPHNB8fPnn2xr2nX3//CeuD5\njlHLI2L5RNOm3vKdwMkUYf0tQBRl5jdExKNpmvXAJmAH8LGI+F63NmTRo54/fz6zH/9XQ3u+3SfM\nHdpz9bLj+JmlPffOY+sRKLvmlZgmJZn5k3p8Cx76aHlheviWXaU993gHbdw6lOf55ur/iaRHp/s8\nP3v2RVZ+fVZf054wb9vzEbG413SSDgFWApdFxHOS/hvw4YhYKekC4FrgbRS973kR8Yyk04CvSDop\nIp6b7Lm9M3Ea2h7Su+btrmVIQ33aXuZyUObyO94oO09VkHQgRUhfHxG3pNHLgLHhvwFOB4iIXRHx\nTBpeA2wBFnV7/sYFddMXiFzUIeT60ZTXUQdNXTcliaK3vCEiPtNx10+BN6Xht1KUOpA0W9KMNHwc\nsBB4uNs8sih9DEtTFoSce9NNDLax15RrOWTnsSq1BGLTdibwXuB+SevSuCuB3wU+J+kAihr3Rem+\ns4BPSHoBeBG4OCKe7TaDxgT1qEN6lJuNuWhiSHfaNW93tmFdlh3HzxxprXr3CXOHVq/ORUR8n2KH\n4UROm2D6lRRlkr41rvRRd7n2ppse0mNyrV3nulxMRVO2fEepEUHtD75cOQZX2dr4mkfJ6+xgah/U\nVXzgZZU9cus15dq7HJXcXntZy0dVZTyHdf9qHdT+oMuTW0hVxe9DubwO96e2Qd20Dzin3rTDaX85\nvR85LSfD0rR1uQy1DOoqP9imH+2RUyjlpOnvS9XL9e4T5jqwu6hdUPvDLE/Tw2i6cnl/mtirHuP1\ne2K1OY66yR9gDiteLiGUuzYeaz1qY+t60463no5a9KhzCemqNw/L4pAeTFPfr9yWb5dD9sm6R92G\nD6nq3nRTQ6dsVfes2/Sz8jbkQC/ZBbU/FKuLqsPa2iOb0kfumzllbBa6N11/Vb6HZSw/uZU/rJBN\nUNtoOaTN6sNB3UIO6eHy+2llc1D3oUllD4dKOap6X13+aAcHtdmQ+EvQyuKgroB70zZMVe+UtvI5\nqHtoymagQ3o0mvI+N2W5bwoHdQs0JTzqwu93u0g6RtIdkh6UtF7SpWn8/5G0Lv39uON6iki6QtJm\nSQ9JOrfXPLL7wUvTeTO1HUb9Y5g2/VIxQ3uAj0TEWkmHAmskrYqIfzs2gaRPAzvS8InAUuAk4DXA\ndyQtioi9k83APeqGc+/OrFwRsS0i1qbhncAGYM7Y/ZIEXADckEYtAW6MiF0R8QiwGTi92zwc1F3U\nvU7nkK7WqN//YW+t1X35r4Kk+cCpwD0do98IPBkRm9LtOcBjHfdvpSPYJ+LSxwi57NE+Ph9Inn62\n9+Xc/Nzr+5z667Mkre4YsTwilo+fStIhwErgsoh4ruOuC9nXm54SB3VDuTdtNjRPR8TibhNIOpAi\npK+PiFs6xh8AvAs4rWPyx4FjOm7PTeMm5dLHJIa92TfK3rRDOi+j/Dxc/hi9VIO+FtgQEZ8Zd/fb\ngI0R0XkVhFuBpZJmSloALATu7TYP96jNzKbnTOC9wP0dh+BdGRHfoDi6Y7+yR0Ssl3QT8CDFESOX\ndDviAxzUjePedJ5cq26uiPg+MOGmTET89iTjrwKu6nceLn1MoM5lD8vXqL5EXf5oHgd1g7g3bdZM\nDmqzEfKXqU2Fg7pkoyp7OACsk8sfzeKgHqeOC6RDul78edmgegZ1lzNDHSlplaRN6f8RHY8Z6MxQ\nZmY2uX561GNnhjoROAO4JJ396XLg9ohYCNyebo8/M9R5wOclzSij8bkbRdnDvbN6GsXn5qONmqNn\nUHc5M9QSYEWabAVwfhoe+MxQuahj2cNsVLx+VGegGvW4M0MdFRHb0l1PAEel4YHPDGVT4950vfnz\ns371HdRdzgxFRAQw0FnLJV0kabWk1du3bx/koWbWJx/90Qx9BfUkZ4Z6UtLR6f6jgafS+L7ODBUR\nyyNicUQsnj179lTbPzR1+zWie2PN4M/R+tHPUR+TnRnqVmBZGl4GfLVj/EBnhjIzs8n106MeOzPU\nWzsu1PgO4GrgHEmbKE7ldzUUZ4YCxs4MdRt9nBnKBuNeWLPU7fN0+WP0ep49r9uZoYCzJ3nMQGeG\nqlrdyh5mg/CFb+vPv0ysmbr1vqw//lytG5+P2io3f+7Ujvr58dbqd0K31Y7jZ3L4ll1VN6M1Wh/U\nLnuM3lSDudvzNCG0y7y4gMsf9db6oK6TOm8eDyuc+3n+JoS2WSfXqK1U8+duLz2kc5jnsNTpy9hH\nf4xOq4O6TgtanVZgyCMsc2hDTlyWK0eXM4z+V0mPjzusGUnzJf2iY/w1vebh0scQeUUo5BaOY+1x\nSWT4vFMR2HeG0bWSDgXWSFqV7vtsRHxqgsdsiYhT+p1Ba3vU7k0PX+492Jzb1qkun7cVupxhdGjc\no7ahqEsIundtAM/tOZhVT5zQ59RfnyVpdceI5RGxfKIpx51h9Ezgg5L+PbCaotf9szTpAknrgB3A\nxyLie91a0Noe9bC1teyRey96Mrm3uaxedRnLaZ22Tqfo6bETyKW/yUJ6/BlGvwAcB5wCbAM+nSbd\nBsxLpY//BPy1pMO6NaCVQV2nBSvnzeDcw66Xurff8jHRGUYj4smI2BsRLwL/i3QBlXRRlWfS8Bpg\nC7Co2/O3Mqht+poSck15HVadyc4wOnYa6OTfAA+k8bPHLk8o6TiKM4w+3G0erlFnLNfedNPCLde6\ndZm/VBy2lh/9MXaG0ftT3RngSuBCSadQXFTlx8B/TPedBXxC0gvAi8DFEfFstxm0LqjLKHu0qT7d\ntJDuNH/u9uzCugz+OflwdTnD6DcmmX4lRZmkby59WN+aHNJjcnuNuW5VTaRO+37qplVBXacFKbcV\nNLcAK1ObXqvVQ6uC2qamjcHV9NfcpnJdEziop6mMBT6n3nTTA6sOcloeeqnTVmudtCaovQANru0h\n3fbXb/loTVDbYBxSBb8Pg3OnaPhaEdR1WnBy2Mx1OO0vh/ejjOXCder6aEVQl6WJC3oOoZQjvy+D\nqVPnqA4c1GZ9qjqsc9jasmo0Pqjr9M1e9YpYdRCZ2cQaH9TWH4d0f5r2PpVZvqtTJyl3jQ7qMheU\nJtanrT9VhnXVW11WjUYHdZ1UuQI2rZdo+XCvejgaG9ReQPrjkJ4av282So0NarOyVRXWw976KruM\n507T9DUyqMteMIa9YFdV9nCv0KweGhnU1ptDejj8PvbHverpaVxQe4GwUasirH30R7s0LqjrpooV\nzr1Aq0JTO1GSjpF0h6QHJa2XdOm4+z8iKSTN6hh3haTNkh6SdG6veTQqqEexINT9+GmHdDnq/r6O\narluaFjvAT4SEScCZwCXSDoRihAH3g78ZGzidN9S4CTgPODzY1cln0yjgtrMbNQiYltErE3DO4EN\nwJx092eBj1JciXzMEuDGiNgVEY8Am4HTu82jMVchr+M39ajLHnXv9eVu1Fcx3zVvNzN/ctDI5jcs\nO46fyeFbdlXaht27Dxjks5olaXXH7eURsXyiCSXNB04F7pG0BHg8Iu6T9ttimQPc3XF7K/uCfUJ9\n96glzZD0Q0lfS7ePlLRK0qb0/4iOaQeqv5g1hb8MG+npiFjc8TdZSB8CrAQuoyiHXAn80TAaMEjp\n41KKLv2Yy4HbI2IhcHu6PaX6y3SNqjdd5/q0A8R6GeXyXcct4G4kHUgR0tdHxC3A8cAC4D5JPwbm\nAmslvRp4HDim4+Fz07hJ9RXUkuYCvwF8sWP0EmBFGl4BnN8xfqD6Sxv58KrmGuWXYp2Xo6aEtYq6\nxrXAhoj4DEBE3B8Rr4qI+RExn6K88fqIeAK4FVgqaaakBcBC4N5u8+i3R/3nFAXxFzvGHRUR29Lw\nE8BRaXgO8FjHdD3rL9PRlA+7TO5Nm5XqTOC9wFslrUt/75hs4ohYD9wEPAjcBlwSEXu7zaDnzkRJ\n7wSeiog1kt48yYxDUkx0X5fnvQi4CGDevHkcfuggjzbL26h3LNZVDjsWpysivg90rRulXnXn7auA\nq/qdRz896jOBf53qLDdSfGv8b+BJSUcDpP9Ppen7qr9ExPKx4vzs2VNboN2b7s296eYbZvmjiv0w\nXo976xnUEXFFRMxN3whLgf8bEb9FUWdZliZbBnw1DQ9cf5mKUX+4w1yA61xXtP75S9KGZTo/eLka\nOEfSJuBt6faU6i9WDgeF1YV71d0N9IOXiPh74O/T8DPA2ZNMN1D9ZVD+UK0uXKvuXxPq1WWp3U/I\n6x7Soyp7uDfdLk0pp9V9/S5LrYK6qg+xzj90serV7Uuz6uXdYf1StQlqf3j9q1swmI234/iZXuc7\n1CKo/YFZ3Y3iy7Mp5Y9OXvcLjTl7Xh2MYkVyb9qaxmGdeY/amz/WJHX6Eq26Tm37yzaocwnoOi2w\ndQoCM+tfVqWPXMLZrK7qejEB6y6bHnXTQ7rs+rR70/Xgz8mmIpugNjOziTmozUasLr3qOu2faToH\ndRd1WVDrsuLbaDTxeOq2c1CPgFccM5sOB3XNuTddT/7cbBAOajOzaZB0jKQ7JD0oab2kS9P4/y5p\no6QfSfpbSa9M4+dL+kXH9RWv6TUPB/Uk6lKftvoqs1c9rHKb14O+7AE+EhEnAmcAl0g6EVgFnBwR\n/xL4B+CKjsdsiYhT0t/FvWbgoC5ZmfVpbz6bVS8itkXE2jS8E9gAzImIb0fEnjTZ3RTXj50SB7WZ\nWXezJK3u+LtosgklzQdOBe4Zd9f7gG923F6Qyh7flfTGXg3I6ifk1j/3ppvBl+qqhnZrkJ/aPx0R\ni3s+p3QIsBK4LCKe6xj/hxTlkevTqG3AvIh4RtJpwFckndT5mPEc1JaNc169sec0q544YQQtaYZh\nnfdj57Hi0EdjCC1qLkkHUoT09RFxS8f43wbeCZwdEQEQEbuAXWl4jaQtwCJg9WTP76CewLB2oPj4\n6e76CeZej2lCcLtXXW+SBFwLbIiIz3SMPw/4KPCmiPinjvGzgWcjYq+k44CFwMPd5uGgrqG6lz2m\nEtD9PFcTQttq6UzgvcD9ktalcVcCfwHMBFYVWc7d6QiPs4BPSHoBeBG4OCKe7TYDB7WNzDADutvz\nO7BtlCLi+8BEm+HfmGT6lRRlkr45qK10ZQf0ZPOrU2C7/GHd+PC8kpRVn65T2eOcV28ceUiPn3/b\n+YcvzeCgHscL5HDkEpJVf1mYDYOD2oYux2DMsU3j1WlryUbLQV0jua/Iufdec26bWTcOahuKuoRg\nXdo5TK5T15+DuoN/6DI1dQu/nNub+1aTVcNBXRO5rsA5h143dW23tZOD2qas7mFX9/ZbeziobUqa\nEnI5vo4ytp7aVo5rGgf1kJWxQuRW9sgx3Kajaa+nTN6hWA0HdeIFsD9NDbWmvi5rBge1WZJTWOe2\nFWXV6iuoJb1S0s3pirobJP26pCMlrZK0Kf0/omP6KyRtlvSQpHPLa37z5bTC5hRkZm3Sb4/6c8Bt\nEXEC8DqKizdeDtweEQuB29Nt0tV3lwInAecBn5c0Y9gNt9FqS0g3+XX6hy/11TOoJR1OcaLrawEi\nYndE/BxYAqxIk60Azk/DS4AbI2JXRDwCbAZOH3bDh8k/dOmuyeE1kVxeb05bU1atfnrUC4DtwJck\n/VDSFyW9AjgqIralaZ4AjkrDc4DHOh6/NY2zAXlFrU4uYW0G/QX1AcDrgS9ExKnAP5LKHGPSRRsH\nuvqlpIvGLr++fbsDKVcOLLPq9RPUW4GtEXFPun0zRXA/KelogPT/qXT/48AxHY+fm8btJyKWR8Ti\niFg8e7avbJGjtod0219/N65T7yPpGEl3SHpQ0npJl6bx70m3X5S0eNxjBjrgomdQR8QTwGOSXptG\nnQ08CNwKLEvjlgFfTcO3AkslzZS0gOIKu/f28XrNslN1WA+7/NXU/SgV2wN8JCJOBM4ALkkHVTwA\nvAu4s3PiqRxw0e81Ez8IXC/pIIrLmv8ORcjfJOn9wKPABQARsV7STRRhvge4JCL29jmfkct1R2LV\n9emqA8qsLtK+um1peKekDcCciFgFkK5A3umXB1wAj0gaO+Dirsnm0VdQR8Q6YPEEd509yfRXAVf1\n89yWH4f0/s559cZaXSjXhm6WpNUdt5dHxPKJJpQ0HzgVuGei+5M5wN0dt3secOGrkJv1ocqwzvUK\n5TuPFYc+OtAxBNmYsZtB2v50REzUUd2PpEOAlcBlEfHcdNo3nn9CnqEqyx7uTZsNTtKBFCF9fUTc\n0mPyvg646NTqoPae6/05pLtryvvjHYrDpaIIfS2wISI+08dDBj7gwqWPIfCCb9ZqZwLvBe6XtC6N\nuxKYCfwPYDbwdUnrIuLcqRxw4aA2oDm9xbJVVat2nTpfEfF9YLLN87+d5DEDHXDR6tJHjqo+LM96\n85eajVprg9r16X0cPGZ5a21Qm01H3b/cvF+lXhzU0zTMBb6KskfdA6dNci2Leeu0fA5qsynyl5yN\nSiuD2j2AgoPGrB5aGdRmwzLqLzuXP9rJQZ2JUa+A7k2b1YeDehq859ygvl96Xn7ro3VB7U20+gaL\nWVu1LqjNyjDKLz/XqdvHQZ2BUa547k2b1Y+D2mxI/CVoZWlVULd908xBYuN5h2I9tCqoh8kLuFXJ\ndep2cVBXLNcVzqbGWy1WhtYEddu/6R0gZvXVmqA2G5W2fym2vVNUBgd1C7Q9OMzKJOk6SU9JeqBj\n3Osk3SXpfkl/J+mwNH6+pF9IWpf+rulnHg5qsxKM4stxWPs3vGN82r4MnDdu3BeByyPiX1BcN/EP\nOu7bEhGnpL+L+5lBK4J62Jtiw1qwR7Ej0b1ps3JFxJ3As+NGLwLuTMOrgN+czjxaEdRmNloNq1PP\nkrS64++iPh6zHliSht8DHNNx34JU9viupDf204ADBmywmfXpnFdvZNUTJ1TdDJvAjOeDw7fs6nfy\npyNi8YCzeB/wF5L+C3ArMLYZvg2YFxHPSDoN+IqkkyLiuW5P5h51g7ns0Xw+Dj9PEbExIt4eEacB\nNwBb0vhdEfFMGl6Txi/q9XyND+pcN8G8glnT5brujYKkV6X/LwM+BlyTbs+WNCMNHwcsBB7u9XyN\nD+q2cm86D3X5HHzkx9RJugG4C3itpK2S3g9cKOkfgI3AT4EvpcnPAn4kaR1wM3BxRIzfEfkSrlEP\nyAu0mXWKiAsnuetzE0y7Elg56Dwa3aNu86aX5aMuveoyeB0cjkYHdVu1ORjayPs7ms9BXQGvWGY2\nCAe12Qh4K8emo6+glvRhSeslPSDpBkkHSzpS0ipJm9L/Izqmv0LSZkkPSTq3vOZPrq21MQeCTVVZ\nO8rbui4OU8+gljQH+BCwOCJOBmYAS4HLgdsjYiFwe7qNpBPT/SdRnKjk82PHDdadj/iwXLmc1mz9\nlj4OAH5F0gHAyymOC1wCrEj3rwDOT8NLgBvTL3AeATYDpw+vyfXmFaq9vLVjU9UzqCPiceBTwE8o\nfqe+IyK+DRwVEdvSZE8AR6XhOcBjHU+xNY0bmbZuajkILFdtXSeHpZ/SxxEUveQFwGuAV0j6rc5p\nIiKAGGTGki4aOxvV9u3uZZqZTaaf0sfbgEciYntEvADcArwBeFLS0QDp/1Np+sfZ/5R+c9O4/UTE\n8ohYHBGLZ8+ePZ3XYFYb3uqxqegnqH8CnCHp5ZIEnA1soDh137I0zTLgq2n4VmCppJmSFlCcdOTe\n4TZ7cm3dxHIA2DD2f5S5w7yt6+Yw9DzXR0TcI+lmYC2wB/ghsBw4BLgpnYDkUeCCNP16STcBD6bp\nL4mIvSW1f2SGsQB7R6KZTUVfJ2WKiI8DHx83ehdF73qi6a8Crppe08yayRcUsEE16peJbd20ctnD\n6qKt6+h0NSqozcyayEFtVoGytoLqsB/EverBNSaoc//wy1qBXPawYfOpEvLTmKAukxdcM6uSL8Vl\nWXj3YWv7nvbm515fYktGp81Hf+w8Vhz66EA/Zs6WpOuAdwJPpRPXIekUigvaHkxxmPLvRcS96b4r\ngPcDe4EPRcS3es2jEUGde9mjLHUvewwSzpM9rimhbbX2ZeAvgb/qGPdJ4I8j4puS3pFuv3nc2UVf\nA3xH0qJevzVx6cNG7t2HrZ1ySJf5XE1Rhx2K0JwOVkTcCYy/kngAh6XhwynOOApTPLtoI3rUVg9l\nBurYc7uHbZm4DPiWpE9RdIjfkMbPAe7umK6vs4vWPqjr8K1clx5OmUbV661bYLe5Tl0lPb+bgzZu\n7XfyWZJWd9xeHhHLezzmA8CHI2KlpAuAaylOcDclLn3UVJ3q01WUJlwOmZ5RHelUh44W8PTYmT7T\nX6+QhuJEdbek4b9hX3mjr7OLjueg7sGH5k1d1fVjh7VV6KfAm9LwW4FNaXhKZxetdVDX5Nu4lXIJ\nyVza0U2dto7KUPf1WNINwF3AayVtTWcU/V3g05LuA/4UuAiKs4sCY2cXvY0+zy5a+xp1G+W+YucW\nju8+bG1tatbDMn/udn681RfkGIWIuHCSu06bZPqBzy5a2x51Xb6F27YjMbeQHpNru6xQl/W5KrUN\nastP7mGYe/vMJuOgtqGoSwjm2s4cy1mj3pHuXvXkahnUbf5Ac1yhcw2/ydStvWa1DOpR8aF5zdWG\nsK7j/pE2d8K6qV1Q1+mDrOOKMqg6B15ubc9xa6kKdVrHR6V2QW35yC3ozJqqVkHd9m/anHpcTQnp\npryOpmn7uj5erYLarAwO6zw5rPepTVD7Q8uHg608OW01QfU71L3eF2oT1G2Xywrc1JBu6utqwg5t\nh3VNgrqKD2q6PYkmrCBt09SwboKdx6rVgZ19ULf5w8mNg8ysGtkHteWhLSGdw+vMpcxl+cg6qN2b\nLnjFHa0cwtqsU7ZB7ZDOh4Or3ao+8sMyDWqHtFWtSV9O3rFdf1kFdVP27DZpxWhSYNWJy13WKZug\nzimgvaln4C8py0c2QW0Tq7Jn5aAy603SdZKekvTAuPEflLRR0npJn0zj5kv6haR16e+afubhi9ua\nddHGC+PawL4M/CXwV2MjJL0FWAK8LiJ2SXpVx/RbIuKUQWbgHrVNyL1ps/5ExJ3As+NGfwC4OiJ2\npWmems48FBHTefxQSNoJPFR1OwY0C3i66kYMqG5trlt7wW0ehddGxKHTeQJJt1G87n4cDDzfcXt5\nRCwf93zzga9FxMnp9jrgq8B56bH/OSJ+kKZbD2wCdgAfi4jv9WpALqWPhyJicdWNGISk1W5zuerW\nXnCbR0HS6uk+R0ScN4y2dHEAcCRwBvBrwE2SjgO2AfMi4hlJpwFfkXRSRDzX7clc+jAzG76twC1R\nuBd4EZgVEbsi4hmAiFgDbAEW9XoyB7WZ2fB9BXgLgKRFwEHA05JmS5qRxh8HLAQe7vVkuZQ+lvee\nJDtuc/nq1l5wm0chq/ZKugF4MzBL0lbg48B1wHXpkL3dwLKICElnAZ+Q9AJFL/viiBi/I/Kl88hh\nZ6KZmU3OpQ8zs8w5qM3MMldpUEt6naS7JN0v6e8kHdZx3xWSNkt6SNK5VbZzvIl+GprGZ9dmSX8i\n6Ufp56rflvSajvuya+8YSeeldm2WdHnV7RlP0sGS7pV0X1oO/jiNP1LSKkmb0v8jqm5rJ0mvlHRz\nWn43SPr1nNss6VJJD6T3+LI0Ltv2liYiKvsDfgC8KQ2/D/iTNHwicB8wE1hAcQjLjCrb2tHmtwDf\nAWam26/Kuc3AYR3DHwKuybm9qW0zUnuOo9hbfh9wYtXtGtdGAYek4QOBeyiOmf0kcHkafznwZ1W3\ndVy7VwD/IQ0fBLwy1zYDJwMPAC+nOPDhO8A/y7W9Zf5VXfpYBNyZhlcBv5mGlwA3RnHM4SPAZuD0\nCto3kcl+Gpplm2P/A+lfAYztPc6yvcnpwOaIeDgidgM3UrQ3G1H4f+nmgekvKNq5Io1fAZxfQfMm\nJOlw4CzgWoCI2B0RPyffNv9z4J6I+KeI2AN8F3gX+ba3NFUH9Xr2rYDvAY5Jw3OAxzqm25rG5WAR\n8EZJ90j6rqRfS+OzbbOkqyQ9Bvw74I/S6GzbS95t+yVJM9JPhZ8CVkXEPcBREbEtTfIEcFRlDXyp\nBcB24EuSfijpi5JeQb5tfoBiXftVSS8H3kGREbm2tzSlB7Wk76Qa0/i/JRTljt+TtAY4lOJ4w8r1\naHPnT0P/gOKnoZWeTLtHe4mIP4yIY4Drgd+vsq1NEhF7ozgL2lzgdEknj7s/2LcFk4MDgNcDX4iI\nU4F/pCgd/FJObY6IDcCfAd8GbgPWAXvHTZNNe8tU+g9eIuJtPSZ5O/zy1zu/kcY9zr7eNRQrwuPD\nb93EurVZ0gdIPw0F7pX0IsXJXSprcx/v8ZjrgW9QHJBf6XvcQ85te4mI+LmkOyhOwPOkpKMjYpuk\noyl627nYCmxNPX+AmymCOts2R8S1pFKNpD+leA3ZtrcsVR/18ar0/2XAx4Cxk2jfCiyVNFPSAoqf\nWd5bTStfYsKfhpJpmyUt7Li5BBi7EkGW7U1+ACyUtEDSQcBSivZmQ8VPgV+Zhn8FOIfivb0VWJYm\nW0ZxBrVX0exvAAAAz0lEQVQsRMQTwGOSXptGnQ08SMZt7siIeRT16b8m4/aWpeqfkF8o6ZI0fAvw\nJYCIWC/pJoqFaA9wSUTsneQ5Rm3Cn4YCubb56rRivgg8ClwMeb/HEbFH0u8D36I4AuS6iFhfcbPG\nOxpYoeK8DS8DboqIr0m6i6Ic9n6K9/uCKhs5gQ8C16cvwIeB3yG1P9M2r5T0q8ALFMvozyVdTb7t\nLYV/Qm5mlrmqj/owM7MeHNRmZplzUJuZZc5BbWaWOQe1mVnmHNRmZplzUJuZZe7/A+Nu1iwCPDF7\nAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_temp_section(model)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [], "source": [ "model2 = climlab.RadiativeConvectiveModel(num_lev=30, num_lat=90)\n", "insolation = climlab.radiation.DailyInsolation(domains=model2.Ts.domain)\n", "model2.add_subprocess('insolation', insolation)\n", "model2.subprocess.SW.flux_from_space = insolation.insolation" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Integrating for 365 steps, 365.2422 days, or 1 years.\n", "Total elapsed time is 0.999336878378 years.\n" ] } ], "source": [ "model2.integrate_years(1)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Integrating for 365 steps, 365.2422 days, or 1 years.\n", "Total elapsed time is 1.99867375676 years.\n" ] } ], "source": [ "model2.integrate_years(1)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD8CAYAAABekO4JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXvwHlWZ5z/fXORigsAkRkhCJTgJGtw1SKR0KVFBJcVM\nTRinZEPNsJnRHRaXUXDdmSGOO67OZorxwqxbu8pmBc3WMrAZgsC4iAZkdKiCYBKDkAQmCRlNQq4g\ntwmEXJ79o88LnTe/9/Z7+3K6+/lUvfX2e97T3U+fPufbTz/d5xyZGY7jOE68jCnbAMdxHKc7LtSO\n4ziR40LtOI4TOS7UjuM4keNC7TiOEzku1I7jOJHjQu04jjMEko6X9IikRyWtl/TFkH6qpJWSNoXv\nU1LrLJa0WdKTki7uuQ9/j9pxHGf0SBLwRjN7SdJ44EHgGuCjwLNmdr2k64BTzOxPJc0BbgXOA04H\n7gNmm9nhTvtwj9pxHGcILOGl8HN8+BiwAFgW0pcBl4blBcBtZnbAzLYCm0lEuyPjMrd6FEyaNMkO\nPp/9NcOOG5/5Nts5clx+17rD+ZufKUfeULYFvRnzatkWDMbYg/lte8yBI/ltPIUOZHcQs955BmvW\nrNlnZpOH2c4FHzjefvVsf8f/+GMH1wOvpJKWmtnSdB5JY4E1wK8D/8PMVkmaYmY7Q5ZdwJSwPBV4\nOLX69pDWkSiEesaMGUze9u5Mt3norV2POzNenHlCbtt+aWo1bnj2TyumwWfJidurUbYTduRXthO3\nvpzbttOM27Ijs219f/U3kfSLYbfzq2ePcMc9k/rKO3v6zlfMbF63PCFsMVfSycB3Jb2j7X+TNOo4\nczVqa6Q0XaT3TztSSZGG6tieZz3Is/6mKcppigEzew54AJgP7JZ0GkD43hOy7QCmp1abFtI6Er8a\njIImVYyyqILI9UNdjiN26twmJU0OnjSSTgA+DDwB3A0sCtkWAXeF5buBhZKOkzQTmAU80m0fUYQ+\nsqQOFSJmb7qOwtY6pljDIS9NHZNrCMQZmtOAZSFOPQZYbmbfk/QQsFzSJ4BfAJcBmNl6ScuBDcAh\n4Opub3xAzYS6SJEu6rYxJuoo0mn2TzsSrVjnxYszTygsVn3orVMzjVfHgpn9HDhnhPRngIs6rLME\nWNLvPppVKytArN503UW6Rayx61jrxaDU4Y63DOpx9vEKkCcxClfeNPGYi8Lb6uDUQqiLPvFNCXvE\n6l0WRWzHnpdXXUZ9drEejMoLdZ1OeEy3t7GJVFl4OeRHndpu3sSjDKPAT3Q+uDgdjZdHfngb7o/K\nCnVZJziv28RYvGkXpZGJpVzqFP5o4WLdmzjUYUD8xOZDLGIUK14++eFtujuVE+o6ntAYvGkXof6I\noZxiqC95cOitU2vZvrOgUme87JNY17c9YhCfKlHX8oqlfpfdzmOkEkJd5ytt2d5RXUUnb8out7Lr\nTd7Uuc2Phmi7kPtJcmKniV3Oi8Z1ICEaofYTUjxle4V1wMXaKQKvYX2SR/yuzNtXF+nqk0f9iSVO\n7RyNC3UDcZHOFi9PJ29cqEuiLG/aRSUfyirXuj9UdBL8LPeB3w46/VCXi6DX98GQNF3SA5I2SFov\n6ZqQPlfSw5LWSVot6byQPkPSyyF9naQbe+0jmoeJTv7URUgcJzIOAZ81s7WSJgJrJK0Evgx80cy+\nL+mS8PsDYZ0tZja33x24R10CZdyuukgXQxnl7OGPcjGznWa2Niy/CGwEpgIGnBSyvQl4erT78DPc\ngzrcBrpIF0sdyrsO9b4MJM0gmZZrFXAt8BVJ24CvAotTWWeGsMePJb2v13Y99OE4NcAnwB2M548c\nzz0vzekz985JklanEpaa2dL2XJImACuAa83sBUn/BfiMma2QdBlwE/AhYCdwhpk9I+lc4E5JZ5vZ\nC50scKEumKJvU+vg3VUR7whTK/aZ2bxuGSSNJxHpW8zsjpC8CLgmLP8t8C0AMzsAHAjLayRtAWYD\nq+mA16Qa4yJdLl7+zUCSSLzljWZ2Q+qvp4H3h+ULgU0h/2RJY8PymcAs4Klu+3CPugtZx+n8oY+T\nJ1mHP16ceQITt76c2fZqzPnAFcBjktaFtM8Bfwh8XdI44BXgyvDfBcCXJB0EjgBXmdmz3XbgQl1T\n3JuLAw+B1B8zexBQh7/PHSH/CpIwSd94DXKcnPGLpjMsLtQdqHLYw4WhuWRdz/w1vThwoa4ZLtJx\n4ufFGQYX6hFwL8JxXsfbQ/m4UBdAUWEP99ripqjz428X1Q8/o2249+DkiV9MndHgQl0TXACcPHEH\nplxcqHPGb0Oddoq4qHq9qxc9z2aXQbFPlbRS0qbwfUpqncWSNkt6UtLFeR5AllTVa3Bv2imCqraP\nOtDPZbc1KPYc4D3A1ZLmANcB95vZLOD+8Jvw30LgbGA+8I1Wv/aYqWoldJGuJn7enEHoKdRdBsVe\nACwL2ZYBl4blBcBtZnbAzLYCm4Hzsja8Cvjtp1MmPkt5fRjoTLYNij3FzHaGv3YBU8LyVGBbarXt\nIS1aqlr53CurNlU9f1VtL1Wmb6FuHxQ7/Z+ZGcm0M30j6cow4ePqvXv3DrKq4zhOo+hLqDsMir1b\n0mnh/9OAPSF9BzA9tfq0kHYUZrbUzOaZ2bzJkyeP1v6hycs7yDvsUVVvzDmavM9jXvXQvepi6eet\nj06DYt9NMoMB4fuuVPpCScdJmkkyKPYj2ZmcHV7ZHMepAv1cbluDYl8YJmNcF6Y+vx74sKRNJPOA\nXQ9gZuuB5cAG4F7gajM7nIv1jlMDqnp35I5OcfScOKDHoNgXdVhnCbBkCLtyJ89K5mEPJybynPjW\nZ4FJ+poA/5vkhQojmfz265L+L3BWyHYy8JyZzQ3rLAY+ARwGPm1mP+i2j0bO8OKegBMbPhNMpWn1\nNVkraSKwRtJKM/vXrQySvgY8H5bTfU1OB+6TNLtb5KGRQp0n7k0PzrjT949qvUNPn5ixJfXFver8\nCK8p7wzLL0pq9TXZAK8957uMZIJbSPU1AbZKavU1eajTPhon1O5Nl89ohbnbduog2lX2qqsm1i8c\nOp4f7Xtbn7nvnyRpdSphqZktHSlnW1+TFu8DdpvZpvB7KvBw6v+efU0aJdRVF+kqe9NZiXM/26+D\naFeRqon1AOwzs3m9MnXpa3I5cOswBjRKqPPGu4wfS94C3W2fLthHk2f4o+l06GuCpHHARzl6NvK+\n+pqkaYyyuDddLONO31+KSMdmw6BU7Ty3U/V2Nhq69DWB5NXlJ8xseypt4L4mjRDqIiqPe9OvE5s4\nVlGw86KIetpAse7U1wSStzuOCnuMpq9J7UMfdag0VfGyYhfDcafvr0Q4pMoPFVvUOF59DN36mpjZ\n73dIH6ivSbVrQyS4Nx2/SLdw79qpIrVWmDp407FTVeGL3eY876KKciy8/WVHbYW6LpUk5rBH7GLX\ni6rbXwXq0g7LppZCXWTlaGrYoy4iV5fjGJQi662L9fDUTmXqVCli9abrJm6xhm9iPf+joU7tsgxq\nJdRFV4YmetMxClpW1PnYYsDFevTURmnqVgli9KaaIGSxHWMdHiqmqVs7LYpaCLWf/PyJTcDypEnH\nWgbeXgen8kJd1knP0xuJzZtuonDFdMx186ohabcu2P1TaaH2E50/MQmWUz+8DfdHZYW6zBPcFG+6\n6SId0/HHVC+yxsW6N5UTar9lKoaYRKpMmlAOMby95O26O+WfoT5pwomMxWtqgjgNQizlEUv9yJMm\ntPPRUAmhjunExeB9OMUTi1jnRWz1uiXYMbX9Mol2mNOmnaBYvKW6C1LVqcMQqIPSNC0YiWjOePoK\nGuuJic3ryBoX6e54+TgjIWm6pAckbZC0XtI1If0/S9rRPpmApBmSXk6l39hrH9F61E0iBm/aRag/\nYph8IC+v2udUHDWHgM+a2VpJE4E1klaG//7azL46wjpbzGxuvzuot4voODngFzUnjZntNLO1YflF\nYCMwNct9uEfdJ3mFPdybdkaDe9XD8crB8WzcNaXf7JMkrU79XmpmS0fKKGkGcA6wimQuxU9J+jfA\nahKv+1ch60xJ64Dngc+b2T90M8A96objIj06vNwaxT4zm5f6dBLpCcAK4FozewH4JnAmMBfYCXwt\nZN0JnBFCH/8B+BtJJ3UzwIW6D+rqTbvYDEfZ5Vd2/XFeR9J4EpG+xczuADCz3WZ22MyOAP8LOC+k\nHzCzZ8LyGmALMLvb9l2oG0rZIlMX6liOdX+7KWskCbgJ2GhmN6TST0tl+23g8ZA+WdLYsHwmMAt4\nqts+PEZdEu4NOVnQxPeqI+R84ArgsRB3BvgccLmkuYAB/wT8u/DfBcCXJB0EjgBXmdmz3XbgQt2D\nOnoXdfQCyySGV/aypikPFbPAzB4ENMJf93TIv4IkTNI39VOhClCmN+0inQ9llqvfndUfF+oG4SKd\nL16+Tl64UHchj7BHWd6Pi0gxlFXOedSrOob9qoqfiQbgIu041aZvoZY0VtLPJH0v/D5V0kpJm8L3\nKam8iyVtlvSkpIvzMDxv6uJNu0gXj5e5kzWDqNE1JH3YW1wH3G9ms4D7w28kzQEWAmcD84FvtN4Z\ndJymUIZYe/ijvvR1FiRNA34D+FYqeQGwLCwvAy5Npd8Wet9sBTYTeuQ0Gfemm4eXv5MV/V4u/yvw\nJyQvZ7eYYmY7w/IuoDXCyVRgWyrfdjIeSSpv6uBFuEjEQdHnwb3qetLzDEj6TWBP6JM+ImZmJL1v\n+kbSlZJWS1q9d+/eQVZ1euAiHRd+Ppxh6edSeT7wW5L+CbgNuFDS/wF2t/qyh+89If8OYHpq/Wkh\n7SjMbGlrNKrJkycPcQjxU2TYw0XB8Q4w9aOnUJvZYjObZmYzSB4S/sjMfg+4G1gUsi0C7grLdwML\nJR0naSbJgCOPZG55TvhtnpMHVb+Aersol2FK/3rgw5I2AR8KvzGz9cByYANwL3C1mR0e1tCq4t60\n06LI8+Nedb0YaFAmM/t74O/D8jPARR3yLQGWDGlb4VTZa3CRrgZVHsDJB2oqj+oqUwUoyqtxkXac\neuNC7TgFU9SF1cMf9cGFOlDVsId709Wkquetqu0kTyRNl/SApA2S1ku6pu3/z0oySZNSaQMNs+ET\nB+REEd5MVRu7Uxw+A0whHCKZYXytpInAGkkrzWyDpOnAR4BftjK3DbNxOnCfpNndXrrwM4h7CU45\nVPVC6+3laMxsp5mtDcsvkoyJ1OqN/dckvbrTHQIHHmbDPeoccG/a6ZcqvwVSZezgmEHKfZKk1anf\nS81s6UgZJc0AzgFWSVoA7DCzR5P5b19jKvBw6nfPYTZcqCuIi3S9yFus8wh/NOxVvX1mNq9XJkkT\nSOZCvJYkHPI5krDH0DT+HsZv4xzHGRZJ40lE+hYzuwN4KzATeDQMvzENWCvpLfQ5zEYaV6mMyTvs\n4d50Pcn7vPqrevmhJK5xE7DRzG4AMLPHzOzNZjYjDL+xHXiXme1iFMNsNFqoq+ZNu0g7MVG19pMj\n5wNXkAxYty58LumUeTTDbHiM2imct79ld+bb3LhrSu9MkeMPFquJmT0IqEeeGW2/Bxpmo7FCXbU5\nEavsTechzL32UVXhzlOs/aFidWmsUDv5UoQ497v/qoq247Rwoc4I96bLF+dOVE203at22mmkUPtD\nkGyJVaBHomVrFQTbcVo0UqirRMzedJUEup3YBbtqDxbdq86Xxgl1lR4ixirSVRbodmIW7LzE2gdq\nqh6NE2pn9NRJoNuJWbCrgnvV+dGoy2qVYtOxedN1Fuk0sR1nbPXAKYfqKFekNKFrbmzilTdvf8vu\n2h9zXvW2Ss5QlWhMqVapAsXiRTVBsLoRy7HHUh+c8qiOejmFEotIlU3TL1ajoUpOUVVoRInmVXHy\nuH2MwXtyYTqWssskj3rRhLBdXWiEUDv94d5jd7xs+se96mypfWlWqcKU6U27CPVHmeUUw92WUw7V\nUbHIqNNto4v0YNSpvPKsx1VykmLHSzISyvKW6iQ6RVJWublXHR+Spkt6QNIGSeslXRPSvyLpCUk/\nl/RdSSeH9BmSXk5NMnBjr33UWqj9it4dF+nh8PLrTUPa4CHgs2Y2B3gPcLWkOcBK4B1m9i+BfwQW\np9bZYmZzw+eqXjuobSlWqYKU4SW5yGRDGeWYdX2pUxivDMxsp5mtDcsvAhuBqWb2QzM7FLI9TDKJ\n7aiojppFRNUrtot0tnh5dqdKTlMHJklanfpc2SmjpBnAOcCqtr8+Dnw/9XtmCHv8WNL7ehlQy0GZ\nalAxcsNFJR/e/pbdhQ7oVLVhUGNjzKsMMoLgPjOb1yuTpAnACuBaM3shlf5nJOGRW0LSTuAMM3tG\n0rnAnZLOTq9zjL39WurkQ5FhDxfpfPHy7UzdnSdJ40lE+hYzuyOV/vvAbwK/a2YGYGYHzOyZsLwG\n2ALM7rb92pVe3hWi6mEPJ1+qKtZF1Ou6irUkATcBG83shlT6fOBPgN8ys/2p9MmSxoblM4FZwFPd\n9lHPkqsI7k3Xk6LK2l/Vi4bzgSuAC1Ov3F0C/HdgIrCy7TW8C4CfS1oH3A5cZWbPdttBrWLUdb1i\nD4uLdPEUHbOuCnWcXMDMHgQ0wl/3dMi/giRM0jeubAOQ5e1hUd6Qi3S9ybIeFRXWc4dqcPoqMUkn\nS7o99LLZKOm9kk6VtFLSpvB9Sir/YkmbJT0p6eL8zH8dP/nH4iJdLl7+Tlb0q25fB+41s7cB7yR5\nofs64H4zmwXcH34TeuQsBM4G5gPfaAXOHadpuFiPjDtWg9GztCS9iST4fROAmb1qZs8BC4BlIdsy\n4NKwvAC4LbyCshXYDJyXteFpqnbSiwh7uEDEQ97noorhD6heuy2TfkpqJrAX+Lakn0n6lqQ3AlPM\nbGfIswtoPTmZCmxLrb89pOVCUSe7Sq/luUg7Tr3oR+XGAe8Cvmlm5wD/TAhztAgvctsgO5Z0ZatL\n5t69ewdZ1XEqR5W86iJxr7o/+iml7cB2M2v1Xb+dRLh3SzoNIHzvCf/vAKan1p8W0o7CzJaa2Twz\nmzd58uRRGV/Fk5x3g3JvOl783IxMFdtx0fQsITPbBWyTdFZIugjYANwNLAppi4C7wvLdwEJJx0ma\nSdLr5pFMrcZP7ki4EDhZUEaYz9tzd/rt8PIp4BZJbyDp6vgHJCK/XNIngF8AlwGY2XpJy0nE/BBw\ntZkdztLook9qVhW3qrenTnbk2RGm6gM11bEzTFb0JdRmtg4YafSoizrkXwIsGcIuZ0Dcm64O3mux\nMy7WI1O5+w2/RToWF2mnRR3u2ryNH0ulSqSME+hhDycPYr+4lv066ktTx7hgp6jMoEx+0kYm9gbf\njQsnPZHJdn60722ZbMeJDw+FJFRCqF2k60FWwtxtu1US7bxi1VV/qNiOt/8KCHUdTlJeYY8qeNN5\niXM/+6uSaMfI/mlHBpmuysmRaM9CDDGqsuN03YhdpC+c9EThIh2jDb2I/Tw6vZE0XdIDkjZIWi/p\nmpD+sfD7iKR5besMNMJodB512eLsDEeMwtiyKVYPO48QSN3CH5FzCPisma2VNBFYI2kl8DjwUeB/\npjO3jTB6OnCfpNnd+ptEI9R1Feg8wh4xemExCnQ7sQu2U03C4HQ7w/KLkjYCU81sJUAypeJRvDbC\nKLBVUmuE0Yc67aOe6ugUShVEOk2MIZEYL74Qd/ivQCa1BpALnys7ZZQ0AzgHWNUpD6MYYTQajzo2\nYq2gMTXo2MRuUC6c9EStvWsPf3Rm7EEGee1vn5mN1DP7KCRNIJkL8Voze2EY+9pxjzpH6tzJpeoi\n3SIm7zqmi7AzGJLGk4j0LWZ2R4/sfY0wmsaFukLE0pBjEbYsqeMxOcWgJAh9E7DRzG7oY5WBRxh1\noXb6JibvMw9iOLZYLsZpYg0DRsT5wBXAhZLWhc8lkn5b0nbgvcD/k/QDSEYYBVojjN5LHyOMeox6\nBLKomFmHPcpuwDGIWBHULW7tcer8MbMHgWNe7Qh8t8M6A40w6h6105OmiHSLso+37IuyEx8u1BWg\nzIZbtmiVRd3DPE61cKF2OuJCVY8yyCIM53HqcnGhbiPG+HQZ1EGgsqKMsvDwh5PGhTpyymiwLtKO\nExcu1M5RuEiPTNW96jrc5TUZF+qMybJBFO1Nu0h3p+nl43Hq8nChTtHkith0EeqXosvJY9UOuFBH\nizfQePGLmlM0LtSOC88oqGKZ+Wt61cWFOkOq+MCmioLTNPzuynGhDsTkKRTVMF2kh8PLzykKF2rH\nGYKixNq96mbjQh0Z7k1XjyqVpcepq4kLdUZUKT5dJWFxHMeFGnAPwRmeIi5+Hv6IE0k3S9oj6fFU\n2jslPSTpMUl/J+mkkD5D0supCQZu7GcfLtQRUURDdG86P7xsG8t3gPltad8CrjOzf0EyecAfp/7b\nYmZzw+eqfnbgQt0gXEgc8Dh11pjZT4Bn25JnAz8JyyuB3xlmHy7UGVCl+LSTL3lfDD38UQqTJK1O\nfa7sY531wIKw/DGOnnV8Zgh7/FjS+/oxoPFzJsbiGeTdAN2bLo66zbtYR8YcOMLErS/3m32fmc0b\ncBcfB/6bpP9EMuv4qyF9J3CGmT0j6VzgTklnm9kLXe0dcOdOBXGRrhexeNWxODkxYmZPmNlHzOxc\n4FZgS0g/YGbPhOU1IX12r+25UDtODsR+cfRwXb5IenP4HgN8Hrgx/J4saWxYPhOYBTzVa3t9CbWk\nz0haL+lxSbdKOl7SqZJWStoUvk9J5V8sabOkJyVdPPhhFkMs027l6SHFLhiOU3Uk3Qo8BJwlabuk\nTwCXS/pH4AngaeDbIfsFwM8lrQNuB64ys/YHkcfQM0YtaSrwaWCOmb0saTmwEJgD3G9m10u6DrgO\n+FNJc8L/ZwOnA/dJmm1mhwc6esepOHnGqt/+lt1s3DUll207g2Fml3f46+sj5F0BrBh0H/2GPsYB\nJ0gaB5xIcoVYACwL/y8DLg3LC4DbQixmK7AZOG9Qw5zhcW/ayRuPUxdDT6E2sx3AV4FfkjyxfN7M\nfghMMbOdIdsuoHV5nwpsS21ie0hzRiCWB0NOPsR8sfQ4dXXoKdQh9rwAmEkSynijpN9L5zEzA2yQ\nHUu6svVe4t69ewdZNRNiiU/nRcwC0TT8XDjD0k/o40PAVjPba2YHgTuAfwXslnQaQPjeE/Lv4OiX\nu6eFtKMws6VmNs/M5k2ePHmYY3DacGFoBrHcjXn4I3/6EepfAu+RdKIkARcBG0le4l4U8iwC7grL\ndwMLJR0naSbJ6yePZGt2PYiloTn54xdPZxh6vvVhZqsk3Q6sBQ4BPwOWAhOA5eFVlF8Al4X868Ob\nIRtC/qv9jY/icEFwBmHc6fs59PSJZZvh9KCvLuRm9gXgC23JB0i865HyLwGWDGdafvitmlMGebyu\n56/pNQPvmThKhn2QmEfYw71ppyzc+ckXF2rHKRC/mDqjwYW6JrgANBd/KF1/GjfMaQy3aN6wOnPJ\nhA1d/7/npTkFWdIcsnqguH/aEU7c7r5fHjROqLMg5o4uVaKXKPe7TtXE28erdgbFhboGVCnsMRpx\n7nebVRNsx+mXRgl1DGGPppKHQHfbR+yinbVX7a/p1ZtGCXUMZB2fjt2bLkKgu+03dsGOBY9Tx42X\nqJMLl0zYUJpIt9sRK7FfZJ3+kHSzpD2SHk+lzZX0cJjEdrWk81L/DTyxigv1gMT0IDHWhh6bOMZy\n0cgbf5uoNL4DzG9L+zLwRTObC/x5+E3bxCrzgW+0pubqRmOE2uPT+RO7IMZoW6wX22FoWlszs58A\n7dNpGXBSWH4TyWQrMMqJVRoj1DFQZ48nRhEciarY6VSea4GvSNpGMvHK4pA+qolV/GFiRYnJE6ua\n+PmDxpFp0kh6OnCQcVuOGSa/E5MkrU79XmpmS3us80ngM2a2QtJlwE0kY/uPCveonaGomkinicX2\nLC+6sdy11Sz8sa81yUn49BJpSMbovyMs/y2vhzf6mlilnUYIdVaVZpgHiVk2oFi86ViEbhjqcAxO\nlDwNvD8sXwhsCsujmlilEULtZE+dBC6GY4nl4usMjqRbgYeAsyRtD5Op/CHwNUmPAn8JXAnJxCpA\na2KVe+lzYhWPUTsDE4OwZc0lEzZ4zNoZFWZ2eYe/zu2Qf+CJVWrvUdcsVla651VHkW5Rl2MbJsyW\nZT+BurW9Mqm9UMdALA94hqUuQtaNMo+x7IuwEy8u1H0SQ4/EMhtyE0S6RZOO1akGLtROT1y4nNHi\n4Y9sqLVQeyUZnqaKdFnHndVdU13CbU5CrYW6Tnj8sniaepFy4sOFOmeq7Nm4UDWzDGJ4HuMcjQu1\nMyJNFKhOFF0Wdbt78hDk8NRWqLOsHGV7GEU3XBfpelDluznnaGor1I6TJX7xcsrEhTpHqujRuCB1\npsiy8fCHk6aWQl2nSlFkg3WRdlqUHe5zjqaWQu04eeEXM6cMXKh70BTPwgWof4oqqyzupmIKv9Xp\nTrdoXKhzIosGUlTYw0XaceKmdkLtV22nCPzi5hRJ7YTaGQwXnLjxtz/iR9LNkvZIerwt/VOSnpC0\nXtKXQ9oMSS9LWhc+N/azDxfqSKlbA60jVbnIjTYM15TnMxnwHWB+OkHSB4EFwDvN7Gzgq6m/t5jZ\n3PC5qp8d1Eqo63i1zpOqCI3jxIyZ/QR4ti35k8D1ZnYg5NkzzD5kZsOsnwmSXgSeLNuOAZkE7Cvb\niAGpms1Vsxfc5iI4y8wmDrMBSfeSHHc/HA+8kvq91MyWtm1vBvA9M3tH+L0OuIvE034F+I9m9tOQ\nbz3JrOTPA583s3/oZUAsk9s+aWbzyjZiECStdpvzpWr2gttcBJJWD7sNM5vfO9dQjANOBd4DvBtY\nLulMYCdwhpk9I+lc4E5JZ5vZC902VqvQh+M4TiRsB+6whEeAI8AkMztgZs8AmNkaYAswu9fGXKgd\nx3Gy507ggwCSZgNvAPZJmixpbEg/E5gFPNVrY7GEPpb2zhIdbnP+VM1ecJuLICp7Jd0KfACYJGk7\n8AXgZuDm8Mreq8AiMzNJFwBfknSQxMu+yszaH0Qeu48YHiY6juM4nfHQh+M4TuS4UDuO40ROqUIt\n6Z2SHpIzd1wgAAADyElEQVT0mKS/k3RS6r/FkjZLelLSxWXa2c5IXUNDenQ2S/oLST8P3VV/KOn0\n1H/R2dtC0vxg12ZJ15VtTzuSjpf0iKRHQz34Ykg/VdJKSZvC9yll25pG0smSbg/1d6Ok98Zss6Rr\nJD0eyvjakBatvblhZqV9gJ8C7w/LHwf+IizPAR4FjgNmkrzCMrZMW1M2fxC4Dzgu/H5zzDYDJ6WW\nPw3cGLO9wbaxwZ4zSZ6WPwrMKduuNhsFTAjL44FVJO/Mfhm4LqRfB/xV2ba22b0M+Ldh+Q3AybHa\nDLwDeBw4keTFh/uAX4/V3jw/ZYc+ZgM/Ccsrgd8JywuA2yx553ArsBk4rwT7RqJT19AobbajX6R/\nI9B6ehylvYHzgM1m9pSZvQrcRmJvNFjCS+Hn+PAxEjuXhfRlwKUlmDcikt4EXADcBGBmr5rZc8Rr\n89uBVWa238wOAT8GPkq89uZG2UK9ntcb4MeA6WF5KrAtlW97SIuB2cD7JK2S9GNJ7w7p0dosaYmk\nbcDvAn8ekqO1l7htew1JY0NX4T3ASjNbBUwxs50hyy5gSmkGHstMYC/wbUk/k/QtSW8kXpsfJ2lr\nvybpROASEo2I1d7cyF2oJd0XYkztnwUk4Y5/L2kNMJHkfcPS6WFzumvoH5N0DVXE9mJmf2Zm04Fb\ngD8q09Y6YWaHzWwuMA04T9I72v43Xr+DiYFxwLuAb5rZOcA/k4QOXiMmm81sI/BXwA+Be4F1wOG2\nPNHYmye5d3gxsw/1yPIReK33zm+EtB287l1D0hB2ZG/dyHSzWdInCV1DgUckHSEZ3KU0m/so4xa3\nAPeQvJBfahn3IGbbjsHMnpP0AMkAPLslnWZmOyWdRuJtx8J2YHvw/AFuJxHqaG02s5sIoRpJf0ly\nDNHamxdlv/Xx5vA9Bvg80BpE+25goaTjJM0k6Wb5SDlWHsOIXUOJ1GZJs1I/FwCtga6jtDfwU2CW\npJmS3gAsJLE3GpR0BT45LJ8AfJikbO8GFoVsi0hGUIsCM9sFbJN0Vki6CNhAxDanNOIMkvj03xCx\nvXlRdhfyyyVdHZbvAL4NYGbrJS0nqUSHgKvN7HCHbRTNiF1DgVhtvj40zCPAL4CrIO4yNrNDkv4I\n+AHJGyA3m9n6ks1q5zRgmZJxG8YAy83se5IeIgmHfYKkvC8r08gR+BRwS7gAPgX8AcH+SG1eIenX\ngIMkdfQ5SdcTr7254F3IHcdxIqfstz4cx3GcHrhQO47jRI4LteM4TuS4UDuO40SOC7XjOE7kuFA7\njuNEjgu14zhO5Px/icB32cuPCqMAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_temp_section(model2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Testing out multi-dimensional Band Models" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Put in some ozone\n", "import netCDF4 as nc\n", "\n", "datapath = \"http://ramadda.atmos.albany.edu:8080/repository/opendap/latest/Top/Users/BrianRose/CESM_runs/\"\n", "endstr = \"/entry.das\"\n", "\n", "ozone = nc.Dataset( datapath + 'som_input/ozone_1.9x2.5_L26_2000clim_c091112.nc' + endstr )\n", "\n", "# Dimensions of the ozone file\n", "lat = ozone.variables['lat'][:]\n", "lon = ozone.variables['lon'][:]\n", "lev = ozone.variables['lev'][:]\n", "\n", "# Taking annual, zonal average of the ozone data\n", "O3_zon = np.mean( ozone.variables['O3'],axis=(0,3) )" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "climlab Process of type . \n", "State variables and domain shapes: \n", " Tatm: (96, 26) \n", " Ts: (96, 1) \n", "The subprocess tree: \n", "top: \n", " LW: \n", " H2O: \n", " convective adjustment: \n", " SW: \n", " insolation: \n", "\n" ] } ], "source": [ "# make a model on the same grid as the ozone\n", "model3 = climlab.BandRCModel(lev=lev, lat=lat)\n", "insolation = climlab.radiation.DailyInsolation(domains=model3.Ts.domain)\n", "model3.add_subprocess('insolation', insolation)\n", "model3.subprocess.SW.flux_from_space = insolation.insolation\n", "print model3" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(96, 26)\n", "[ 3.544638 7.3888135 13.967214 23.944625 37.23029 53.114605\n", " 70.05915 85.439115 100.514695 118.250335 139.115395 163.66207\n", " 192.539935 226.513265 266.481155 313.501265 368.81798 433.895225\n", " 510.455255 600.5242 696.79629 787.70206 867.16076 929.648875\n", " 970.55483 992.5561 ]\n", "[ 3.544638 7.3888135 13.967214 23.944625 37.23029 53.114605\n", " 70.05915 85.439115 100.514695 118.250335 139.115395 163.66207\n", " 192.539935 226.513265 266.481155 313.501265 368.81798 433.895225\n", " 510.455255 600.5242 696.79629 787.70206 867.16076 929.648875\n", " 970.55483 992.5561 ]\n" ] } ], "source": [ "# Set the ozone mixing ratio\n", "O3_trans = np.transpose(O3_zon)\n", "# model and ozone data are on the same grid, after the transpose.\n", "print O3_trans.shape\n", "print lev\n", "print model3.lev\n" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Put in the ozone\n", "model3.absorber_vmr['O3'] = O3_trans" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(96, 26)\n", "(96, 26)\n" ] } ], "source": [ "print model3.absorber_vmr['O3'].shape\n", "print model3.Tatm.shape" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [], "source": [ "model3.step_forward()" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Integrating for 365 steps, 365.2422 days, or 1.0 years.\n", "Total elapsed time is 1.00207478763 years.\n" ] } ], "source": [ "model3.integrate_years(1.)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Integrating for 365 steps, 365.2422 days, or 1.0 years.\n", "Total elapsed time is 2.00141166601 years.\n" ] } ], "source": [ "model3.integrate_years(1.)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD8CAYAAABekO4JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X/sHPV95/HnC//k948aiLENdokJNShAzrFoUJoUcEA0\niqM7HfLpgtxLriipm0IOHQfk1Aj1XDlpRZvTlVZWIWepTpELpvhIQzHUSYUU2zXE/PAParf8Mpgf\nbgIYKP5i874/5rNh+Pq7+53d7+zM5zPzfkhffWdnZ3c/uzvz2vd+duYzMjOcc87F66i6G+Ccc643\nD2rnnIucB7VzzkXOg9o55yLnQe2cc5HzoHbOuch5UDvn3ARImi5pi6THJW2XdOuo62+QZJJm5Obd\nLGmPpKclXTHeY0weRsOdc65FDgKXmtlbkqYAj0j6oZltkjQH+BzwfGdhSQuApcB5wBnAQ5LOMbPD\n3R7AK2rnnJsAy7wVLk4Jf50jCf8YuDF3GWAJcJeZHTSzZ4A9wKJejxFFRT15+rE27fhTBrrt4akl\nNyawqYMdsTl16qHS2nDC5HdLu6+iTp70TuWPmYqfHz6mlsd989D0Uu5nZGTwzV0jKqUNY5k00t/y\n7+zfu9/MTp3IY376s9Pt5z97v9Cy2598bzuQ3xhXmdmq/DKSJgGPAh8F/tTMNktaArxoZo9LH3r9\nZgGbcpf3hnldRRHUx0w5mU+e/9t1N2NMb5w9rfT7PHDW8Fb6vINn9rkFAG+Nv0hrTelz+WnPl1NF\nHDfO9cc/N5xhIE7854NDud+J+vsf3fLcRO/j5z97n3t+MGP8BYFzz9z3rpkt7LVM6La4UNJJwL2S\nPg7cQtbtMWFRBLXeHWHqrr11NwOAkXNnf+hy2SvrG2dPG9qGdaQhfd1whVT3PlcTqrFsozEzs9cl\nbSTr3pgHdKrp2cBjkhYBLwJzcjebHeZ1FUVQxyS/Mo4O7TKM3qCGUbF39AqKqqr6pqsyjPM8mOMh\n6VTgvRDSRwOLgW+b2Wm5ZZ4FFprZfknrge9Luo3sx8T5wJZej+FB3UNnRR1GYHdUGdx5Ew2YJgR9\nXSE7qCq7Ijyk+zITWB36qY8C1prZ/d0WNrPtktYCO4BDwPJee3yAB3UhU3ftHWpY59UV3P1KLeRS\nU2f/sId0f8zsCeCicZaZO+ryCmBF0cfwoC6oyrDOSyW43cTE8sOdh3ScPKj7UFdY53XboD3A0xBL\nII/FQzpeHtR9iiGsx9IrADzEqxNzEPfiIR03D+oBxBrW3XgVXp5Ug7gXD+n4eVAPKLWwHst4odPG\nIG9iEPfiIZ0GD2rXVT+hFXuoty2Ai/CQTocH9QQ0oaouS5EgHGaYexD3x0M6LR7UE+RhXZyHaRw8\npNPjw5yWwFd8lwpfV9PkQV0S3wBc7HwdTZcHdYl8Q3Cx8nUzbR7UzjkXOQ/qknnl4mLj62T6PKid\ncy5yHtTOORc534/a1WKiB7/4PtmuTTyoXSXKPipx9P15cLsm86B2Q1XVGCCdx/HAdk3kfdQl88PJ\nM2+cPa2WgZrqelzXXpKmS9oi6XFJ2yXdGub/oaRdkp6QdK+kk3K3uVnSHklPS7pivMfwoHaliiUo\nY2lHDLx4GLqDwKVmdgFwIXClpIuBDcD5ZvZx4J+AmwEkLQCWAucBVwK3hxPjduVB7UoRazDG2i7X\nHJZ5K1ycEv7MzB40s0Nh/iag84m5BLjLzA6a2TPAHmBRr8fwoC5RGyuXVIIwlXYOSxvXzSpJmiRp\nG/AqsMHMNo9a5MvAD8P0LOCF3HV7w7yu/MdEN5BUQ++Ns6f5D46Onx8+hrvf/ETBpX8wQ9LW3IxV\nZrYqv4SZHQYuDP3Q90o638yeApD0TeAQsGbQ9npQl6RNFUuqId3he4i4Pu03s4VFFjSz1yVtJOt7\nfkrSbwKfBy4zMwuLvQjMyd1sdpjXlXd9uMKa1n3QpOdSRJuKiSpJOrWzR4eko4HFwC5JVwI3Al8w\ns3dyN1kPLJU0TdI8YD6wpddjeEVdgqZvAE0ONK+uXQlmAqvDnhtHAWvN7H5Je4BpwAZJAJvM7Ktm\ntl3SWmAHWZfI8tB10pUH9QQ1OaSbHNCjtaXveuTc2T6aXsnM7AngojHmf7THbVYAK4o+hnd9uCM0\nrYujqLY85yYXF03lFfUENG2Fb0tQ9eJdIS5GXlEPqEkh3dYKupemvx5NWn/bwIN6AE1ZyT2ge2v6\n69OU9bgNvOujT01YuZscPsPg3SGubl5Rt0jTK8Rha+Lr14TCow08qPuQ8krdtICpU9MCO+X1ui3G\nDWpJcyRtlLQjjLV6XZh/iqQNknaH/yfnbtPXWKspSHVlblqoxKRJr2uq63dbFKmoDwE3mNkC4GJg\neRhP9SbgYTObDzwcLg801mrsUl2JmxQksWrSB2Gq63kbjBvUZrbPzB4L0weAnWRD8i0BVofFVgNf\nDNN9j7UasxRX3iaFRyqa8pqnuL63QV991JLmkh0quRk43cz2hateBk4P032PtRqrFFfaJoRFyprw\n+qe43jdd4aCWdBxwD3C9mb2Zvy4M32dj3rD7/V0raaukrSPv/1s/N61EiitrE0KiCZpQXae4/jdZ\noaCWNIUspNeY2bow+xVJM8P1M8nObAAFx1o1s1VmttDMFk496uhB2+9oRjA0kb8nrixF9voQcAew\n08xuy121HlgWppcB9+Xm9zXWakxGzp2dVDXhYRC3lD9EU9oOmq5IRX0JcA1wqaRt4e8qYCWwWNJu\n4PJwGTPbDnTGWn2AAmOtxiK1FTPVAGijVN+r1LaJphr3EHIzewRQl6sv63KbvsZajUFqK2SqG36b\npTrmtY9hXT8/MhEPaVedVLtCUttGmqbVgzKluPKluJG7I6VYXXe2F6+uq9faitpD2tUt1fczxW0n\nda0L6tT26uhIdaN2vaX6vqa4DQ2LpOmStkh6PIyHdGuYX9p4SK0J6lQDGtLdmF0xqb6/KW9TJTsI\nXGpmFwAXAldKupgSx0NqfFCnvjKluhG7/qT8Pqe+jU2UZd4KF6eEP6PE8ZAa+WNiU1aalDfeiThw\nljj+ub5GJGiEFH9gzEvpx8Y3D01nw8vnFlz6BzMkbc3NWGVmq/JLhIr4UeCjwJ+a2WZJvcZD2pS7\n+bjjITUiqJsSzHlNDOkDZ3XbHX+wZZsY5qmHNXx4e0whtAvYb2YLey0QDuq7UNJJwL2Szh91vUka\neIVNLqibGMqjNSWk+wnmMu6/KcHdhLDuaGBo92Rmr0vaSNb3/IqkmWa2b5DxkPKiCGqbPrUVAVxE\nE0J62AE93uM2IbCbFNYdo7fxpgS3pFOB90JIHw0sBr7NB+MhreTI8ZC+L+k24AwKjIcURVC7TMoh\nXVc4jyXflpRDu4lhnTdWcZZoeM8EVod+6qOAtWZ2v6SfAGslfQV4DrgasvGQJHXGQzpEgfGQPKgj\nkWpIxxTQY0m9ym56WI9W6Jv1y8NvRz/M7AmyE6qMnv+vlDQeUuN3z3PDceAsRR/Seam1Ny/VD3FX\nHg/qCKS0IaYceJBu+1NaR1z5PKhrlsoGmGrAdZPic0llXXHl8z7qGqWw4aUYaEWl3n/t2sMr6pp4\nSMcjpW8LKaw3rnwe1O4IKQVXmVJ5zh7W7eNBXYOYN7RUwmpYUvmQinkdcuXzoK5YrBtYKgFVlRRe\ni1jXJVc+D2qXRCjVwV8XFwsP6grFWAF5GPUW+zeNGNcpVz4P6orEuEHFHECxifm1inHdcuXyoG6p\nmIMnVjG/Zh7WzeZBXYHYNqKYAyd2/tq5OnhQD5mHdPPE+hrGtq658nhQt0isAZOiWF9LD+tm8qAe\nopg2mliDJWX+mrqqeFAPiYd0O8T42sa07rlyeFA3XIxB0jQxvsYe1s3iQT0EsWwkMQZIU/lr3V6S\n5kjaKGmHpO2SrgvzL5S0SdI2SVslLcrd5mZJeyQ9LemK8R7Dg7qhPDiqF9trHkvB0AKHgBvMbAFw\nMbBc0gLgO8CtZnYh8HvhMuG6pcB5wJXA7eHEuF15UJcsho0jtsBoE3/t28fM9pnZY2H6ALATmAUY\ncEJY7ETgpTC9BLjLzA6a2TPAHmARPfgZXpwr2YGzFM1ZY9p2FvOiRkYm8+zeU4suPkPS1tzlVWa2\naqwFJc0lOyP5ZuB64O8k/RFZUfypsNgsYFPuZnvDvK48qEvk1bTriCms3YTtN7OF4y0k6TjgHuB6\nM3tT0v8CvmFm90i6GrgDuHyQBhTu+pA0SdJPJd0fLp8iaYOk3eH/ybll++ood+XwkI5LLO9HDAVE\n00maQhbSa8xsXZi9DOhM/zUfdG+8CMzJ3Xx2mNdVP33U15H1vXTcBDxsZvOBh8PlgTrKm6DujSGW\nUOjXwTNHCv25ial7/WwySSKrlnea2W25q14CPhOmLwV2h+n1wFJJ0yTNA+YDW3o9RqGuD0mzgd8A\nVgD/LcxeAnw2TK8GfgT8D3Id5cAzkjod5T8p8lgp8o2guEFDd/Ttpj0/tYzmDJ13gbTCJcA1wJOS\ntoV5twC/BXxX0mTgXeBaADPbLmktsINsj5HlZna41wMU7aP+E+BG4PjcvNPNbF+Yfhk4PUz33VHu\nJib2anoYFXH+PmMP7VjC2n9YHA4zewTothH+uy63WUFW+BYybteHpM8Dr5rZo92WMTMj2xWlMEnX\nhp3At46893Y/N41K3dV0zCFdVbdFCt0jMb9PLn5FKupLgC9IugqYDpwg6S+BVyTNNLN9kmYCr4bl\nC3WUh91bVgGccPzs+ssNV5q6QrPzuLFX2HXyqjpN41bUZnazmc02s7lkPxL+vZl9iaxDfFlYbBlw\nX5juu6M8VV5Nf1gslW0s7RgttvfLpWMiRyauBBZL2k22b+BKyDrKgU5H+QMU6Ch3/Ytto48xGGNs\nUwzvW90FhutfXwe8mNmPyPbuwMz+Fbisy3J9dZSnyFf2TIxhmBdjd0gsPy66dPhYHwmKoSqD+EM6\nL6W2VsELjbR4UA+gzpXcQ3pwMfVdx/I+ujR4ULu+xRJ2g4ql/XWHtVfV6fCgTkjdGzbEE3IT1ZTn\n4drBg7pPba5CmhZuMTyfuj9827w+p8SDOhF1b9AxhNowNPV5uWbxoO5DW6uPpodZ3c+v7g/htq7X\nKfGgTkCdG3LdIVaVtjxPlyYP6oLaWHW0LbzqfL5eVbtePKgjV9cG3LaQ7mhzWLt4eVAX0LZqo60h\n3dHW59+29TwlHtQRq6PCamtIxcKrajcWD2r3Cx7SH/DXwsXEg3ocdX0d9MqqfnWFdZ3vvXd/9E/S\nHEkbJe2QtF3Sdbnrvi5pV5j/ndz8myXtkfS0pCvGe4y+hjl1zeUV5NgOnjkS1RCpLkqHgBvM7DFJ\nxwOPStpAdh7ZJcAFZnZQ0mkAkhaQnYTlPOAM4CFJ5/Qat98r6h7aUk17SPdWx+vjVXU6zGyfmT0W\npg8AO8lO6P01YKWZHQzXdU5XuAS4y8wOmtkzwB5gUa/H8KBuOQ9p58Y1o3Mi7vB3bbcFJc0FLgI2\nA+cAn5a0WdKPJX0yLDYLeCF3s71hXlfe9dFFW6ppV0wdXSB1ngmm6SfB1Yj6eT/3m9nCce9TOg64\nB7jezN6UNBk4BbgY+CSwVtIvD9Jer6hbzKvp/vjr5bqRNIUspNeY2bowey+wzjJbgPeBGcCLwJzc\nzWeHeV15UEfEq+n4VR3W3lcdP0kC7gB2mtltuav+Bvj1sMw5wFRgP7AeWCppmqR5wHxgS6/H8K6P\nMbRhBfXq0LnSXAJcAzwpaVuYdwtwJ3CnpKeAEWCZmRmwXdJaYAfZHiPLe+3xAR7UreQhPTFV91f7\nWcvjZmaPAN2++nypy21WACuKPoZ3fYziPyK6ItryYdeGb5cp8KBumbYETNP4B3m7eVDneDXt+tGW\nDz2vquvnQd0ibQkW55rGg7pmXk2nrcoPP99Vr708qIOmr4heTQ+Pv7Zu2DyonUuIfwNrJw9qmv8j\nold8w9eG17jp3zpj5kHdcG0IkLbxqrp9Wh/UTa+mXXXa8KHoVXU9Wh/UTdaG4HCuDVo91odXB/Wb\nO/u1Qss9u/fUIbekHFWNA+JjVbdLa4O6zpBue7dH0XDudptUQtu5shTq+pB0kqS7w9l0d0r6VUmn\nSNogaXf4f3Ju+b7OsOvKF2O3x9zZrw0U0t3up4z7GoaqXns/AKY9ivZRfxd4wMzOBS4gO3njTcDD\nZjYfeDhcHn2G3SuB2yVNKrvhE+ErWbWGGaptD+s6+XZUnXGDWtKJwK+RncEAMxsxs9fJzqS7Oiy2\nGvhimO77DLttUkUVFEtIVFX1xlxdO1eGIhX1POA14HuSfirpLyQdC5xuZvvCMi8Dp4fpQmfYlXRt\n56y+I++9Pfgz6JNXAdWoIzjbGNZ1/97h21M1igT1ZOATwJ+Z2UXA24Rujo5wepm+foI2s1VmttDM\nFk6dcmw/Nx1YG1aqGKrpOgMzprCO4b1wzVAkqPcCe81sc7h8N1lwvyJpJkD4/2q4vu8z7LZF3dVP\nFWIIyhjaUKW616s2FEC9SJojaaOkHZK2S7pu1PU3SDJJM3Lz+trhYtygNrOXgRckfSzMuozspIzr\ngWVh3jLgvjDd9xl2q9CGlanuCi6mgIylLXW/J64Sh4AbzGwBcDGwPOxUgaQ5wOeA5zsLD7LDRdG9\nPr4OrJH0BHAh8AfASmCxpN3A5eEyZrYd6Jxh9wEKnGHXpS+WYMyLsU1N1YZCqBsz22dmj4XpA2R7\nxXV+l/tj4EY+3DXc9w4XhQ54MbNtwMIxrrqsy/J9nWF32GJYier+ejpMMQfi3Nmv1X6ATBVHK8Zw\npvIGH7E4Q9LW3OVVZrZqrAUlzQUuAjZLWgK8aGaPSx/a/mcBm3KXx9zhIq/xRybGENJVqOsrdswh\n3RFDWLu4TBqhnw+2/WY2VqH6IZKOA+4BrifrDrmFrNtjwnxQJjewFEK6I6W2pqwthdFokqaQhfQa\nM1sHnE22a/Pjkp4l26niMUkfYYAdLhod1LGsNE3s9kgx+OpscxXfeJq4nqVAWb/GHcBOM7sNwMye\nNLPTzGyumc0l6974RNg5o+8dLhob1LGEdBWq7vZIMaQ7Um57Ktq07QWXANcAl0raFv6u6rbwIDtc\nNLKPuoUriutDXX3WVQ2BGoMG/7B4BDN7BOj5dSZU1fnLfe1w0diKOhbD/jrq1bTL8+6PZmpcUHs1\nPTxNCum6nkubDoDxbbE8jQpqXzGGp0kh3dHE5xQb3ybL0ZigjnGFaFq3RxM1Maxj6/6IcdtMTSOC\n2leE4WpimNXJP2Bdv5IPag/p4WpDSLfhOdbNt9OJSTqo2/zme1VWrqaFdWzdH9Du7XWikgzqN86e\nFv2bHuOG0q+mhVdM2vpBG/t2G6vkgtrf6Gq0MaTb+Jzr4Ntw/5IJ6hSq6Kq0tRqrQpVhPez3MeZv\ndb499yfqQ8hTfSNj3kCK8MrSVaVNh5pPRHQVdeeTNtWQHjavpofPP6iq5dv6+KKoqA9Pl79ZkfCQ\nqlabBmrqpbP9e3U9tugqaudi0JQPrNS64bxgG5sHdclS2zDymhJOZfHXox7e/XmkKLo+XDHeP91M\n3v3R3Zhh/aPKm1E7r6gd4NVjN/66uBh4UDvXcCl3x7mMB3WJhrlBDLPbw6vG3qp4fbxbK12S5kja\nKGmHpO2Srgvz/1DSLklPSLpX0km529wsaY+kpyVdMd5jeFA759zEHAJuMLMFwMXAckkLgA3A+Wb2\nceCfgJsBwnVLgfOAK4HbJU3q9QAe1C3n1XQxqb9O3v0xPGa2z8weC9MHgJ3ALDN70MwOhcU2AbPD\n9BLgLjM7aGbPAHuARb0ew4M6Af612LlazZC0Nfd3bbcFJc0FLgI2j7rqy8APw/Qs4IXcdXvDvK58\n97ySpFixpF4lVm3u7Nd4du+pQ7t/302vOpPetX6OgtxvZgvHW0jSccA9wPVm9mZu/jfJukfWDNJW\n8KB2zrkJkzSFLKTXmNm63PzfBD4PXGZmFma/CMzJ3Xx2mNeVd30414eUv4Wk+K0vBZIE3AHsNLPb\ncvOvBG4EvmBm7+Rush5YKmmapHnAfGBLr8fwijpyw+qfTjlwmsy7P5J0CXAN8KSkbWHeLcD/BqYB\nG7IsZ5OZfdXMtktaC+wg6xJZbmaHez2AB3UJvFJpl2H3Vbu0mNkjwFgh8Lc9brMCWFH0Mbzro4W8\nmnYuLR7UEfPd8tppmO+7f/tLkwd1y3g1XQ5/HV2VCgW1pG+EY9ifkvRXkqZLOkXSBkm7w/+Tc8v3\ndRx7yrxCcc4N27hBLWkW8LvAQjM7H5hEdpz6TcDDZjYfeDhcHug4dudS5FW1q0rRro/JwNGSJgPH\nAC+RHa++Oly/GvhimO77OHZ3pGH0U3qwpMP7qV3euEFtZi8CfwQ8D+wD3jCzB4HTzWxfWOxl4PQw\nXeg4dknXdo6dP/Rvb0/gKThXH//wc1Uo0vVxMlmVPA84AzhW0pfyy4RDI22Mm3dlZqvMbKGZLZx8\n9LH93NQ551qlSNfH5cAzZvaamb0HrAM+BbwiaSZA+P9qWL7v49hTNayvkN7t4cB3z3QfKBLUzwMX\nSzomHNN+Gdl4q+uBZWGZZcB9Ybrv49idS5l/CLphG/cQcjPbLOlu4DGy49J/CqwCjgPWSvoK8Bxw\ndVi+7+PYnXPVOnCWOP65vnorXY0KjfVhZt8CvjVq9kGy6nqs5fs6jt0Nl1d8w+fjf7hh8kGZItPW\nfsnFH9nV9boNL59bYUvi4qPpOfCgHlgq+6LGXE33Cuduy7U5tF17+VgfrnKLP7KrcEiPddtYxfyh\n6NLmFbWrTFkh27kfr64nxn9QTIdX1BEpu386pgpvGJVwzNV1mdr6u4X7gAe1G7phBmpsYR3Th6Nr\nDg/qAaTyQ2IMqgjS2MLatYukOZI2StoRhoO+LswvbShoD+qGiqGyqzJAPawH40VHKQ4BN5jZAuBi\nYHkY7rm0oaA9qCPRtH7IOoIzlrAexodk09aPJjGzfWb2WJg+QDbExixKHArag9qVrs7AjCWsXTtJ\nmgtcBGxmgkNB5/nuea5UMQTl4o/sqn3XPT+kPG56d4Spu/YWXXyGpK25y6vMbNUR9ykdB9wDXG9m\nb2Zj2GXMzCQNvC+kB3WfUujTq6t/OoaQ7oghrF1j7Dezhb0WkDSFLKTXmNm6MPsVSTPNbN9Eh4L2\nro8IeP+jK8LXkziF4Z/vAHaa2W25q0obCtqD2pUipmq6I8Y2xSiFb4mRuwS4BrhU0rbwdxWwElgs\naTfZCVhWQjYUNNAZCvoBCgwF7V0fDVNHt0fMgVhnF4j3U7eDmT0CdPu0K2UoaK+onXMuch7UbkJi\nrqY7UmhjUd5P3U4e1H0YRl9eyhteSgFYV1tjOELUpc+DukE8FNyg/AfFuHlQu4GkVE13pNhm58CD\n2rVMHWFd9jedlLvL3GA8qGtU5gZXZbeHV6bOVcuD2rWOf9C41HhQF+Q/tmQ85Jyrnge1a6WqP3BS\n2CPHi5F4eVA3QFUh4NV0PPwHxXbxoK6Jb2j18w8elwoPaleIh9rEpdD94eLkQe1azT+AXAo8qBNX\nRZXmYRYn7z5rDw/qAvzX8GbzD6IP+LoeJw/qGqRUCXmIlcv7qd0gPKidwz+QXNw8qBM27OrMw8u5\nOHhQOxek+MGUUjdaU0m6U9Krkp7KzbtQ0qZwotutkhblrrtZ0h5JT0u6oshjeFC7MaUYWqnwfurG\n+b/AlaPmfQe41cwuBH4vXEbSAmApcF64ze2SJo33AB7UFfMKyLlmMbN/AH42ejZwQpg+EXgpTC8B\n7jKzg2b2DLAHWMQ4ZGYlNXdwkg4AT9fdjj7NAPbX3Yg+pdbm1NoL3uYqfMzMjp/IHUh6gOx5FzEd\neDd3eZWZrRp1f3OB+83s/HD5V4C/A0RWEH/KzJ6T9H+ATWb2l2G5O4AfmtndvRowuWBDh+1pM1tY\ndyP6IWmrt3m4UmsveJurIGnrRO/DzEZ3VZTta8A3zOweSVcDdwCXD3pn3vXhnHPlWwasC9N/zQfd\nGy8Cc3LLzQ7zevKgds658r0EfCZMXwrsDtPrgaWSpkmaB8wHtox3Z7F0fawaf5HoeJuHL7X2gre5\nClG1V9JfAZ8FZkjaC3wL+C3gu5Imk/VvXwtgZtslrQV2AIeA5WZ2eNzHiOHHROecc91514dzzkXO\ng9o55yJXa1BLukDSTyQ9Ken/STohd13fh1lWRdLXJe2StF3Sd3Lzo2uzpN+X9EQ4lPVBSWfkrouu\nvR2Srgzt2iPpprrbM5qk6ZK2SHo8rAe3hvmnSNogaXf4f3Ldbc2TdJKku8P6u1PSr8bcZknXSXoq\nvMbXh3nRtndozKy2P+Afgc+E6S8Dvx+mFwCPA9OAecA/A5PqbGuuzb8OPARMC5dPi7nNwAm56d8F\n/jzm9oa2TQrt+WVgamjngrrbNaqNAo4L01OAzcDFZIcK3xTm3wR8u+62jmr3auC/humpwEmxthk4\nH3gKOIZsx4eHgI/G2t5h/tXd9XEO8A9hegPwH8L0QIdZVuRrwEozOwhgZq+G+VG22czezF08luzQ\nVoi0vcEiYI+Z/YuZjQB3kbU3GpZ5K1ycEv6MrJ2rw/zVwBdraN6YJJ0I/BrZwReY2YiZvU68bf4V\nYLOZvWNmh4AfA/+eeNs7NHUH9XY+2AD/Ix/sCD4LeCG33N4wLwbnAJ+WtFnSjyV9MsyPts2SVkh6\nAfjPZAPEQMTtJe62/YKkSZK2Aa8CG8xsM3C6me0Li7wMnF5bA480D3gN+J6kn0r6C0nHEm+bnyLb\n1n5J0jHAVWQZEWt7h2boQS3podDHNPpvCVl3x29LehQ4HohixKJx2jwZOIXsa+5/B9ZKqvX8ReO0\nFzP7ppnNAdYAv1NnW5vEzA5bNjrabGCRpPNHXW988A0mBpOBTwB/ZmYXAW+TdR38QkxtNrOdwLeB\nB4EHgG3A4VHLRNPeYRr6AS9mNt7x7Z8DkHQO8Bth3kCHWZalV5slfQ1YF1aQLZLeJxvcpbY2F3iN\nO9YAf0u2Q36tr/E4Ym7bEczsdUkbyYatfEXSTDPbJ2kmWbUdi73A3lD5A9xNFtTRttnM7iB01Uj6\nA7LnEG3b9KHvAAABJ0lEQVR7h6XuvT5OC/+PAv4n8OfhqoEOs6zI35D9oNj5cJlKNvJYlG2WND93\ncQnQGWg6yvYG/wjMlzRP0lSy8XvX19ymD5F0qqSTwvTRwGKy13Y92TgPhP/31dPCI5nZy8ALkj4W\nZl1GdoRctG3OZcSZZP3T3yfi9g5L3YeQ/ydJy8P0OuB7MPhhlhW5E7hT2dkcRoBlobqOtc0rw4b5\nPvAc8FWI+zU2s0OSfodsmMhJwJ1mtr3mZo02E1itbND3o4C1Zna/pJ+QdYd9hez1vrrORo7h68Ca\n8AH4L8B/IbQ/0jbfI+mXgPfI1tHXJa0k3vYOhR9C7pxzkat7rw/nnHPj8KB2zrnIeVA751zkPKid\ncy5yHtTOORc5D2rnnIucB7VzzkXu/wPWAnh74MdvuwAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#plt.contour(model3.lat, model3.lev, model3.Tatm.transpose())\n", "plot_temp_section(model3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is now working. Will need to do some model tuning.\n", "\n", "And start to add dynamics!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Adding meridional diffusion!" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "climlab Process of type . \n", "State variables and domain shapes: \n", " Tatm: (90, 30) \n", " Ts: (90, 1) \n", "The subprocess tree: \n", "top: \n", " convective adjustment: \n", " LW: \n", " SW: \n", " insolation: \n", "\n" ] } ], "source": [ "print model2" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": true }, "outputs": [], "source": [ "diffmodel = climlab.process_like(model2)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.46414342629e-07\n" ] } ], "source": [ "# thermal diffusivity in W/m**2/degC\n", "D = 0.05\n", "# meridional diffusivity in 1/s\n", "K = D / diffmodel.Tatm.domain.heat_capacity[0]\n", "print K" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [], "source": [ "d = climlab.dynamics.MeridionalDiffusion(K=K, state={'Tatm': diffmodel.Tatm}, **diffmodel.param)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": true }, "outputs": [], "source": [ "diffmodel.add_subprocess('diffusion', d)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "climlab Process of type . \n", "State variables and domain shapes: \n", " Tatm: (90, 30) \n", " Ts: (90, 1) \n", "The subprocess tree: \n", "top: \n", " convective adjustment: \n", " LW: \n", " diffusion: \n", " SW: \n", " insolation: \n", "\n" ] } ], "source": [ "print diffmodel" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": true }, "outputs": [], "source": [ "diffmodel.step_forward()" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Integrating for 365 steps, 365.2422 days, or 1 years.\n", "Total elapsed time is 3.00074854439 years.\n" ] } ], "source": [ "diffmodel.integrate_years(1)" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Integrating for 365 steps, 365.2422 days, or 1 years.\n", "Total elapsed time is 4.00008542277 years.\n" ] } ], "source": [ "diffmodel.integrate_years(1)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD8CAYAAABekO4JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXvwHlWZ5z/fXORigsAkRkhCJTgJGtw1SKR0KVFBJcVM\nTRinZEPNsJnRHRaXUXDdmSGOO67OZorxwqxbu8pmBc3WMrAZgsC4iAZkdKiCYBKDkAQmCRlNQq4g\ntwmEXJ79o88LnTe/9/Z7+3K6+/lUvfX2e97T3U+fPufbTz/d5xyZGY7jOE68jCnbAMdxHKc7LtSO\n4ziR40LtOI4TOS7UjuM4keNC7TiOEzku1I7jOJHjQu04jjMEko6X9IikRyWtl/TFkH6qpJWSNoXv\nU1LrLJa0WdKTki7uuQ9/j9pxHGf0SBLwRjN7SdJ44EHgGuCjwLNmdr2k64BTzOxPJc0BbgXOA04H\n7gNmm9nhTvtwj9pxHGcILOGl8HN8+BiwAFgW0pcBl4blBcBtZnbAzLYCm0lEuyPjMrd6FEyaNMkO\nPp/9NcOOG5/5Nts5clx+17rD+ZufKUfeULYFvRnzatkWDMbYg/lte8yBI/ltPIUOZHcQs955BmvW\nrNlnZpOH2c4FHzjefvVsf8f/+GMH1wOvpJKWmtnSdB5JY4E1wK8D/8PMVkmaYmY7Q5ZdwJSwPBV4\nOLX69pDWkSiEesaMGUze9u5Mt3norV2POzNenHlCbtt+aWo1bnj2TyumwWfJidurUbYTduRXthO3\nvpzbttOM27Ijs219f/U3kfSLYbfzq2ePcMc9k/rKO3v6zlfMbF63PCFsMVfSycB3Jb2j7X+TNOo4\nczVqa6Q0XaT3TztSSZGG6tieZz3Is/6mKcppigEzew54AJgP7JZ0GkD43hOy7QCmp1abFtI6Er8a\njIImVYyyqILI9UNdjiN26twmJU0OnjSSTgA+DDwB3A0sCtkWAXeF5buBhZKOkzQTmAU80m0fUYQ+\nsqQOFSJmb7qOwtY6pljDIS9NHZNrCMQZmtOAZSFOPQZYbmbfk/QQsFzSJ4BfAJcBmNl6ScuBDcAh\n4Opub3xAzYS6SJEu6rYxJuoo0mn2TzsSrVjnxYszTygsVn3orVMzjVfHgpn9HDhnhPRngIs6rLME\nWNLvPppVKytArN503UW6Rayx61jrxaDU4Y63DOpx9vEKkCcxClfeNPGYi8Lb6uDUQqiLPvFNCXvE\n6l0WRWzHnpdXXUZ9drEejMoLdZ1OeEy3t7GJVFl4OeRHndpu3sSjDKPAT3Q+uDgdjZdHfngb7o/K\nCnVZJziv28RYvGkXpZGJpVzqFP5o4WLdmzjUYUD8xOZDLGIUK14++eFtujuVE+o6ntAYvGkXof6I\noZxiqC95cOitU2vZvrOgUme87JNY17c9YhCfKlHX8oqlfpfdzmOkEkJd5ytt2d5RXUUnb8out7Lr\nTd7Uuc2Phmi7kPtJcmKniV3Oi8Z1ICEaofYTUjxle4V1wMXaKQKvYX2SR/yuzNtXF+nqk0f9iSVO\n7RyNC3UDcZHOFi9PJ29cqEuiLG/aRSUfyirXuj9UdBL8LPeB3w46/VCXi6DX98GQNF3SA5I2SFov\n6ZqQPlfSw5LWSVot6byQPkPSyyF9naQbe+0jmoeJTv7URUgcJzIOAZ81s7WSJgJrJK0Evgx80cy+\nL+mS8PsDYZ0tZja33x24R10CZdyuukgXQxnl7OGPcjGznWa2Niy/CGwEpgIGnBSyvQl4erT78DPc\ngzrcBrpIF0sdyrsO9b4MJM0gmZZrFXAt8BVJ24CvAotTWWeGsMePJb2v13Y99OE4NcAnwB2M548c\nzz0vzekz985JklanEpaa2dL2XJImACuAa83sBUn/BfiMma2QdBlwE/AhYCdwhpk9I+lc4E5JZ5vZ\nC50scKEumKJvU+vg3VUR7whTK/aZ2bxuGSSNJxHpW8zsjpC8CLgmLP8t8C0AMzsAHAjLayRtAWYD\nq+mA16Qa4yJdLl7+zUCSSLzljWZ2Q+qvp4H3h+ULgU0h/2RJY8PymcAs4Klu+3CPugtZx+n8oY+T\nJ1mHP16ceQITt76c2fZqzPnAFcBjktaFtM8Bfwh8XdI44BXgyvDfBcCXJB0EjgBXmdmz3XbgQl1T\n3JuLAw+B1B8zexBQh7/PHSH/CpIwSd94DXKcnPGLpjMsLtQdqHLYw4WhuWRdz/w1vThwoa4ZLtJx\n4ufFGQYX6hFwL8JxXsfbQ/m4UBdAUWEP99ripqjz428X1Q8/o2249+DkiV9MndHgQl0TXACcPHEH\nplxcqHPGb0Oddoq4qHq9qxc9z2aXQbFPlbRS0qbwfUpqncWSNkt6UtLFeR5AllTVa3Bv2imCqraP\nOtDPZbc1KPYc4D3A1ZLmANcB95vZLOD+8Jvw30LgbGA+8I1Wv/aYqWoldJGuJn7enEHoKdRdBsVe\nACwL2ZYBl4blBcBtZnbAzLYCm4Hzsja8Cvjtp1MmPkt5fRjoTLYNij3FzHaGv3YBU8LyVGBbarXt\nIS1aqlr53CurNlU9f1VtL1Wmb6FuHxQ7/Z+ZGcm0M30j6cow4ePqvXv3DrKq4zhOo+hLqDsMir1b\n0mnh/9OAPSF9BzA9tfq0kHYUZrbUzOaZ2bzJkyeP1v6hycs7yDvsUVVvzDmavM9jXvXQvepi6eet\nj06DYt9NMoMB4fuuVPpCScdJmkkyKPYj2ZmcHV7ZHMepAv1cbluDYl8YJmNcF6Y+vx74sKRNJPOA\nXQ9gZuuB5cAG4F7gajM7nIv1jlMDqnp35I5OcfScOKDHoNgXdVhnCbBkCLtyJ89K5mEPJybynPjW\nZ4FJ+poA/5vkhQojmfz265L+L3BWyHYy8JyZzQ3rLAY+ARwGPm1mP+i2j0bO8OKegBMbPhNMpWn1\nNVkraSKwRtJKM/vXrQySvgY8H5bTfU1OB+6TNLtb5KGRQp0n7k0PzrjT949qvUNPn5ixJfXFver8\nCK8p7wzLL0pq9TXZAK8957uMZIJbSPU1AbZKavU1eajTPhon1O5Nl89ohbnbduog2lX2qqsm1i8c\nOp4f7Xtbn7nvnyRpdSphqZktHSlnW1+TFu8DdpvZpvB7KvBw6v+efU0aJdRVF+kqe9NZiXM/26+D\naFeRqon1AOwzs3m9MnXpa3I5cOswBjRKqPPGu4wfS94C3W2fLthHk2f4o+l06GuCpHHARzl6NvK+\n+pqkaYyyuDddLONO31+KSMdmw6BU7Ty3U/V2Nhq69DWB5NXlJ8xseypt4L4mjRDqIiqPe9OvE5s4\nVlGw86KIetpAse7U1wSStzuOCnuMpq9J7UMfdag0VfGyYhfDcafvr0Q4pMoPFVvUOF59DN36mpjZ\n73dIH6ivSbVrQyS4Nx2/SLdw79qpIrVWmDp407FTVeGL3eY876KKciy8/WVHbYW6LpUk5rBH7GLX\ni6rbXwXq0g7LppZCXWTlaGrYoy4iV5fjGJQi662L9fDUTmXqVCli9abrJm6xhm9iPf+joU7tsgxq\nJdRFV4YmetMxClpW1PnYYsDFevTURmnqVgli9KaaIGSxHWMdHiqmqVs7LYpaCLWf/PyJTcDypEnH\nWgbeXgen8kJd1knP0xuJzZtuonDFdMx186ohabcu2P1TaaH2E50/MQmWUz+8DfdHZYW6zBPcFG+6\n6SId0/HHVC+yxsW6N5UTar9lKoaYRKpMmlAOMby95O26O+WfoT5pwomMxWtqgjgNQizlEUv9yJMm\ntPPRUAmhjunExeB9OMUTi1jnRWz1uiXYMbX9Mol2mNOmnaBYvKW6C1LVqcMQqIPSNC0YiWjOePoK\nGuuJic3ryBoX6e54+TgjIWm6pAckbZC0XtI1If0/S9rRPpmApBmSXk6l39hrH9F61E0iBm/aRag/\nYph8IC+v2udUHDWHgM+a2VpJE4E1klaG//7azL46wjpbzGxuvzuot4voODngFzUnjZntNLO1YflF\nYCMwNct9uEfdJ3mFPdybdkaDe9XD8crB8WzcNaXf7JMkrU79XmpmS0fKKGkGcA6wimQuxU9J+jfA\nahKv+1ch60xJ64Dngc+b2T90M8A96objIj06vNwaxT4zm5f6dBLpCcAK4FozewH4JnAmMBfYCXwt\nZN0JnBFCH/8B+BtJJ3UzwIW6D+rqTbvYDEfZ5Vd2/XFeR9J4EpG+xczuADCz3WZ22MyOAP8LOC+k\nHzCzZ8LyGmALMLvb9l2oG0rZIlMX6liOdX+7KWskCbgJ2GhmN6TST0tl+23g8ZA+WdLYsHwmMAt4\nqts+PEZdEu4NOVnQxPeqI+R84ArgsRB3BvgccLmkuYAB/wT8u/DfBcCXJB0EjgBXmdmz3XbgQt2D\nOnoXdfQCyySGV/aypikPFbPAzB4ENMJf93TIv4IkTNI39VOhClCmN+0inQ9llqvfndUfF+oG4SKd\nL16+Tl64UHchj7BHWd6Pi0gxlFXOedSrOob9qoqfiQbgIu041aZvoZY0VtLPJH0v/D5V0kpJm8L3\nKam8iyVtlvSkpIvzMDxv6uJNu0gXj5e5kzWDqNE1JH3YW1wH3G9ms4D7w28kzQEWAmcD84FvtN4Z\ndJymUIZYe/ijvvR1FiRNA34D+FYqeQGwLCwvAy5Npd8Wet9sBTYTeuQ0Gfemm4eXv5MV/V4u/yvw\nJyQvZ7eYYmY7w/IuoDXCyVRgWyrfdjIeSSpv6uBFuEjEQdHnwb3qetLzDEj6TWBP6JM+ImZmJL1v\n+kbSlZJWS1q9d+/eQVZ1euAiHRd+Ppxh6edSeT7wW5L+CbgNuFDS/wF2t/qyh+89If8OYHpq/Wkh\n7SjMbGlrNKrJkycPcQjxU2TYw0XB8Q4w9aOnUJvZYjObZmYzSB4S/sjMfg+4G1gUsi0C7grLdwML\nJR0naSbJgCOPZG55TvhtnpMHVb+Aersol2FK/3rgw5I2AR8KvzGz9cByYANwL3C1mR0e1tCq4t60\n06LI8+Nedb0YaFAmM/t74O/D8jPARR3yLQGWDGlb4VTZa3CRrgZVHsDJB2oqj+oqUwUoyqtxkXac\neuNC7TgFU9SF1cMf9cGFOlDVsId709Wkquetqu0kTyRNl/SApA2S1ku6pu3/z0oySZNSaQMNs+ET\nB+REEd5MVRu7Uxw+A0whHCKZYXytpInAGkkrzWyDpOnAR4BftjK3DbNxOnCfpNndXrrwM4h7CU45\nVPVC6+3laMxsp5mtDcsvkoyJ1OqN/dckvbrTHQIHHmbDPeoccG/a6ZcqvwVSZezgmEHKfZKk1anf\nS81s6UgZJc0AzgFWSVoA7DCzR5P5b19jKvBw6nfPYTZcqCuIi3S9yFus8wh/NOxVvX1mNq9XJkkT\nSOZCvJYkHPI5krDH0DT+HsZv4xzHGRZJ40lE+hYzuwN4KzATeDQMvzENWCvpLfQ5zEYaV6mMyTvs\n4d50Pcn7vPqrevmhJK5xE7DRzG4AMLPHzOzNZjYjDL+xHXiXme1iFMNsNFqoq+ZNu0g7MVG19pMj\n5wNXkAxYty58LumUeTTDbHiM2imct79ld+bb3LhrSu9MkeMPFquJmT0IqEeeGW2/Bxpmo7FCXbU5\nEavsTechzL32UVXhzlOs/aFidWmsUDv5UoQ497v/qoq247Rwoc4I96bLF+dOVE203at22mmkUPtD\nkGyJVaBHomVrFQTbcVo0UqirRMzedJUEup3YBbtqDxbdq86Xxgl1lR4ixirSVRbodmIW7LzE2gdq\nqh6NE2pn9NRJoNuJWbCrgnvV+dGoy2qVYtOxedN1Fuk0sR1nbPXAKYfqKFekNKFrbmzilTdvf8vu\n2h9zXvW2Ss5QlWhMqVapAsXiRTVBsLoRy7HHUh+c8qiOejmFEotIlU3TL1ajoUpOUVVoRInmVXHy\nuH2MwXtyYTqWssskj3rRhLBdXWiEUDv94d5jd7xs+se96mypfWlWqcKU6U27CPVHmeUUw92WUw7V\nUbHIqNNto4v0YNSpvPKsx1VykmLHSzISyvKW6iQ6RVJWublXHR+Spkt6QNIGSeslXRPSvyLpCUk/\nl/RdSSeH9BmSXk5NMnBjr33UWqj9it4dF+nh8PLrTUPa4CHgs2Y2B3gPcLWkOcBK4B1m9i+BfwQW\np9bZYmZzw+eqXjuobSlWqYKU4SW5yGRDGeWYdX2pUxivDMxsp5mtDcsvAhuBqWb2QzM7FLI9TDKJ\n7aiojppFRNUrtot0tnh5dqdKTlMHJklanfpc2SmjpBnAOcCqtr8+Dnw/9XtmCHv8WNL7ehlQy0GZ\nalAxcsNFJR/e/pbdhQ7oVLVhUGNjzKsMMoLgPjOb1yuTpAnACuBaM3shlf5nJOGRW0LSTuAMM3tG\n0rnAnZLOTq9zjL39WurkQ5FhDxfpfPHy7UzdnSdJ40lE+hYzuyOV/vvAbwK/a2YGYGYHzOyZsLwG\n2ALM7rb92pVe3hWi6mEPJ1+qKtZF1Ou6irUkATcBG83shlT6fOBPgN8ys/2p9MmSxoblM4FZwFPd\n9lHPkqsI7k3Xk6LK2l/Vi4bzgSuAC1Ov3F0C/HdgIrCy7TW8C4CfS1oH3A5cZWbPdttBrWLUdb1i\nD4uLdPEUHbOuCnWcXMDMHgQ0wl/3dMi/giRM0jeubAOQ5e1hUd6Qi3S9ybIeFRXWc4dqcPoqMUkn\nS7o99LLZKOm9kk6VtFLSpvB9Sir/YkmbJT0p6eL8zH8dP/nH4iJdLl7+Tlb0q25fB+41s7cB7yR5\nofs64H4zmwXcH34TeuQsBM4G5gPfaAXOHadpuFiPjDtWg9GztCS9iST4fROAmb1qZs8BC4BlIdsy\n4NKwvAC4LbyCshXYDJyXteFpqnbSiwh7uEDEQ97noorhD6heuy2TfkpqJrAX+Lakn0n6lqQ3AlPM\nbGfIswtoPTmZCmxLrb89pOVCUSe7Sq/luUg7Tr3oR+XGAe8Cvmlm5wD/TAhztAgvctsgO5Z0ZatL\n5t69ewdZ1XEqR5W86iJxr7o/+iml7cB2M2v1Xb+dRLh3SzoNIHzvCf/vAKan1p8W0o7CzJaa2Twz\nmzd58uRRGV/Fk5x3g3JvOl783IxMFdtx0fQsITPbBWyTdFZIugjYANwNLAppi4C7wvLdwEJJx0ma\nSdLr5pFMrcZP7ki4EDhZUEaYz9tzd/rt8PIp4BZJbyDp6vgHJCK/XNIngF8AlwGY2XpJy0nE/BBw\ntZkdztLook9qVhW3qrenTnbk2RGm6gM11bEzTFb0JdRmtg4YafSoizrkXwIsGcIuZ0Dcm64O3mux\nMy7WI1O5+w2/RToWF2mnRR3u2ryNH0ulSqSME+hhDycPYr+4lv066ktTx7hgp6jMoEx+0kYm9gbf\njQsnPZHJdn60722ZbMeJDw+FJFRCqF2k60FWwtxtu1US7bxi1VV/qNiOt/8KCHUdTlJeYY8qeNN5\niXM/+6uSaMfI/mlHBpmuysmRaM9CDDGqsuN03YhdpC+c9EThIh2jDb2I/Tw6vZE0XdIDkjZIWi/p\nmpD+sfD7iKR5besMNMJodB512eLsDEeMwtiyKVYPO48QSN3CH5FzCPisma2VNBFYI2kl8DjwUeB/\npjO3jTB6OnCfpNnd+ptEI9R1Feg8wh4xemExCnQ7sQu2U03C4HQ7w/KLkjYCU81sJUAypeJRvDbC\nKLBVUmuE0Yc67aOe6ugUShVEOk2MIZEYL74Qd/ivQCa1BpALnys7ZZQ0AzgHWNUpD6MYYTQajzo2\nYq2gMTXo2MRuUC6c9EStvWsPf3Rm7EEGee1vn5mN1DP7KCRNIJkL8Voze2EY+9pxjzpH6tzJpeoi\n3SIm7zqmi7AzGJLGk4j0LWZ2R4/sfY0wmsaFukLE0pBjEbYsqeMxOcWgJAh9E7DRzG7oY5WBRxh1\noXb6JibvMw9iOLZYLsZpYg0DRsT5wBXAhZLWhc8lkn5b0nbgvcD/k/QDSEYYBVojjN5LHyOMeox6\nBLKomFmHPcpuwDGIWBHULW7tcer8MbMHgWNe7Qh8t8M6A40w6h6105OmiHSLso+37IuyEx8u1BWg\nzIZbtmiVRd3DPE61cKF2OuJCVY8yyCIM53HqcnGhbiPG+HQZ1EGgsqKMsvDwh5PGhTpyymiwLtKO\nExcu1M5RuEiPTNW96jrc5TUZF+qMybJBFO1Nu0h3p+nl43Hq8nChTtHkith0EeqXosvJY9UOuFBH\nizfQePGLmlM0LtSOC88oqGKZ+Wt61cWFOkOq+MCmioLTNPzuynGhDsTkKRTVMF2kh8PLzykKF2rH\nGYKixNq96mbjQh0Z7k1XjyqVpcepq4kLdUZUKT5dJWFxHMeFGnAPwRmeIi5+Hv6IE0k3S9oj6fFU\n2jslPSTpMUl/J+mkkD5D0supCQZu7GcfLtQRUURDdG86P7xsG8t3gPltad8CrjOzf0EyecAfp/7b\nYmZzw+eqfnbgQt0gXEgc8Dh11pjZT4Bn25JnAz8JyyuB3xlmHy7UGVCl+LSTL3lfDD38UQqTJK1O\nfa7sY531wIKw/DGOnnV8Zgh7/FjS+/oxoPFzJsbiGeTdAN2bLo66zbtYR8YcOMLErS/3m32fmc0b\ncBcfB/6bpP9EMuv4qyF9J3CGmT0j6VzgTklnm9kLXe0dcOdOBXGRrhexeNWxODkxYmZPmNlHzOxc\n4FZgS0g/YGbPhOU1IX12r+25UDtODsR+cfRwXb5IenP4HgN8Hrgx/J4saWxYPhOYBTzVa3t9CbWk\nz0haL+lxSbdKOl7SqZJWStoUvk9J5V8sabOkJyVdPPhhFkMs027l6SHFLhiOU3Uk3Qo8BJwlabuk\nTwCXS/pH4AngaeDbIfsFwM8lrQNuB64ys/YHkcfQM0YtaSrwaWCOmb0saTmwEJgD3G9m10u6DrgO\n+FNJc8L/ZwOnA/dJmm1mhwc6esepOHnGqt/+lt1s3DUll207g2Fml3f46+sj5F0BrBh0H/2GPsYB\nJ0gaB5xIcoVYACwL/y8DLg3LC4DbQixmK7AZOG9Qw5zhcW/ayRuPUxdDT6E2sx3AV4FfkjyxfN7M\nfghMMbOdIdsuoHV5nwpsS21ie0hzRiCWB0NOPsR8sfQ4dXXoKdQh9rwAmEkSynijpN9L5zEzA2yQ\nHUu6svVe4t69ewdZNRNiiU/nRcwC0TT8XDjD0k/o40PAVjPba2YHgTuAfwXslnQaQPjeE/Lv4OiX\nu6eFtKMws6VmNs/M5k2ePHmYY3DacGFoBrHcjXn4I3/6EepfAu+RdKIkARcBG0le4l4U8iwC7grL\ndwMLJR0naSbJ6yePZGt2PYiloTn54xdPZxh6vvVhZqsk3Q6sBQ4BPwOWAhOA5eFVlF8Al4X868Ob\nIRtC/qv9jY/icEFwBmHc6fs59PSJZZvh9KCvLuRm9gXgC23JB0i865HyLwGWDGdafvitmlMGebyu\n56/pNQPvmThKhn2QmEfYw71ppyzc+ckXF2rHKRC/mDqjwYW6JrgANBd/KF1/GjfMaQy3aN6wOnPJ\nhA1d/7/npTkFWdIcsnqguH/aEU7c7r5fHjROqLMg5o4uVaKXKPe7TtXE28erdgbFhboGVCnsMRpx\n7nebVRNsx+mXRgl1DGGPppKHQHfbR+yinbVX7a/p1ZtGCXUMZB2fjt2bLkKgu+03dsGOBY9Tx42X\nqJMLl0zYUJpIt9sRK7FfZJ3+kHSzpD2SHk+lzZX0cJjEdrWk81L/DTyxigv1gMT0IDHWhh6bOMZy\n0cgbf5uoNL4DzG9L+zLwRTObC/x5+E3bxCrzgW+0pubqRmOE2uPT+RO7IMZoW6wX22FoWlszs58A\n7dNpGXBSWH4TyWQrMMqJVRoj1DFQZ48nRhEciarY6VSea4GvSNpGMvHK4pA+qolV/GFiRYnJE6ua\n+PmDxpFp0kh6OnCQcVuOGSa/E5MkrU79XmpmS3us80ngM2a2QtJlwE0kY/uPCveonaGomkinicX2\nLC+6sdy11Sz8sa81yUn49BJpSMbovyMs/y2vhzf6mlilnUYIdVaVZpgHiVk2oFi86ViEbhjqcAxO\nlDwNvD8sXwhsCsujmlilEULtZE+dBC6GY4nl4usMjqRbgYeAsyRtD5Op/CHwNUmPAn8JXAnJxCpA\na2KVe+lzYhWPUTsDE4OwZc0lEzZ4zNoZFWZ2eYe/zu2Qf+CJVWrvUdcsVla651VHkW5Rl2MbJsyW\nZT+BurW9Mqm9UMdALA94hqUuQtaNMo+x7IuwEy8u1H0SQ4/EMhtyE0S6RZOO1akGLtROT1y4nNHi\n4Y9sqLVQeyUZnqaKdFnHndVdU13CbU5CrYW6Tnj8sniaepFy4sOFOmeq7Nm4UDWzDGJ4HuMcjQu1\nMyJNFKhOFF0Wdbt78hDk8NRWqLOsHGV7GEU3XBfpelDluznnaGor1I6TJX7xcsrEhTpHqujRuCB1\npsiy8fCHk6aWQl2nSlFkg3WRdlqUHe5zjqaWQu04eeEXM6cMXKh70BTPwgWof4oqqyzupmIKv9Xp\nTrdoXKhzIosGUlTYw0XaceKmdkLtV22nCPzi5hRJ7YTaGQwXnLjxtz/iR9LNkvZIerwt/VOSnpC0\nXtKXQ9oMSS9LWhc+N/azDxfqSKlbA60jVbnIjTYM15TnMxnwHWB+OkHSB4EFwDvN7Gzgq6m/t5jZ\n3PC5qp8d1Eqo63i1zpOqCI3jxIyZ/QR4ti35k8D1ZnYg5NkzzD5kZsOsnwmSXgSeLNuOAZkE7Cvb\niAGpms1Vsxfc5iI4y8wmDrMBSfeSHHc/HA+8kvq91MyWtm1vBvA9M3tH+L0OuIvE034F+I9m9tOQ\nbz3JrOTPA583s3/oZUAsk9s+aWbzyjZiECStdpvzpWr2gttcBJJWD7sNM5vfO9dQjANOBd4DvBtY\nLulMYCdwhpk9I+lc4E5JZ5vZC902VqvQh+M4TiRsB+6whEeAI8AkMztgZs8AmNkaYAswu9fGXKgd\nx3Gy507ggwCSZgNvAPZJmixpbEg/E5gFPNVrY7GEPpb2zhIdbnP+VM1ecJuLICp7Jd0KfACYJGk7\n8AXgZuDm8Mreq8AiMzNJFwBfknSQxMu+yszaH0Qeu48YHiY6juM4nfHQh+M4TuS4UDuO40ROqUIt\n6Z2SHpIzd1wgAAADyElEQVT0mKS/k3RS6r/FkjZLelLSxWXa2c5IXUNDenQ2S/oLST8P3VV/KOn0\n1H/R2dtC0vxg12ZJ15VtTzuSjpf0iKRHQz34Ykg/VdJKSZvC9yll25pG0smSbg/1d6Ok98Zss6Rr\nJD0eyvjakBatvblhZqV9gJ8C7w/LHwf+IizPAR4FjgNmkrzCMrZMW1M2fxC4Dzgu/H5zzDYDJ6WW\nPw3cGLO9wbaxwZ4zSZ6WPwrMKduuNhsFTAjL44FVJO/Mfhm4LqRfB/xV2ba22b0M+Ldh+Q3AybHa\nDLwDeBw4keTFh/uAX4/V3jw/ZYc+ZgM/Ccsrgd8JywuA2yx553ArsBk4rwT7RqJT19AobbajX6R/\nI9B6ehylvYHzgM1m9pSZvQrcRmJvNFjCS+Hn+PAxEjuXhfRlwKUlmDcikt4EXADcBGBmr5rZc8Rr\n89uBVWa238wOAT8GPkq89uZG2UK9ntcb4MeA6WF5KrAtlW97SIuB2cD7JK2S9GNJ7w7p0dosaYmk\nbcDvAn8ekqO1l7htew1JY0NX4T3ASjNbBUwxs50hyy5gSmkGHstMYC/wbUk/k/QtSW8kXpsfJ2lr\nvybpROASEo2I1d7cyF2oJd0XYkztnwUk4Y5/L2kNMJHkfcPS6WFzumvoH5N0DVXE9mJmf2Zm04Fb\ngD8q09Y6YWaHzWwuMA04T9I72v43Xr+DiYFxwLuAb5rZOcA/k4QOXiMmm81sI/BXwA+Be4F1wOG2\nPNHYmye5d3gxsw/1yPIReK33zm+EtB287l1D0hB2ZG/dyHSzWdInCV1DgUckHSEZ3KU0m/so4xa3\nAPeQvJBfahn3IGbbjsHMnpP0AMkAPLslnWZmOyWdRuJtx8J2YHvw/AFuJxHqaG02s5sIoRpJf0ly\nDNHamxdlv/Xx5vA9Bvg80BpE+25goaTjJM0k6Wb5SDlWHsOIXUOJ1GZJs1I/FwCtga6jtDfwU2CW\npJmS3gAsJLE3GpR0BT45LJ8AfJikbO8GFoVsi0hGUIsCM9sFbJN0Vki6CNhAxDanNOIMkvj03xCx\nvXlRdhfyyyVdHZbvAL4NYGbrJS0nqUSHgKvN7HCHbRTNiF1DgVhtvj40zCPAL4CrIO4yNrNDkv4I\n+AHJGyA3m9n6ks1q5zRgmZJxG8YAy83se5IeIgmHfYKkvC8r08gR+BRwS7gAPgX8AcH+SG1eIenX\ngIMkdfQ5SdcTr7254F3IHcdxIqfstz4cx3GcHrhQO47jRI4LteM4TuS4UDuO40SOC7XjOE7kuFA7\njuNEjgu14zhO5Px/icB32cuPCqMAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD8CAYAAABekO4JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHwRJREFUeJzt3X2wXHd93/H3x/JTwDLGkTCyHiKllaCC1pjcuCQeEsCA\nPcBENAmumeI4QY0LEX5ITYllQtIMUccBotRtSpjbGEZMZBzVUkEJBiO7hoxnbBlJEch6cC0QxjKy\nLTWA1WYsIfvbP87v2sdXdx/v7t3zO+fzmtFo9+zZu7+795y3js7d/a0iAjMzq65TRj0AMzNrz6E2\nM6s4h9rMrOIcajOzinOozcwqzqE2M6s4h9rMbBokLZR0r6Q9knZLui4tv0DS/ZJ2SfobSWeX7rNa\n0n5JD0u6tONj+HXUZmb9kzQPmBcROyTNBrYD7wbWAR+OiG9Iej+wJCI+Jmk58AXgIuB84G5gWUQ8\n2+oxfERtZjYNEXEoInaky0eBvcB8YBnwd2m1LcCvpcsrgNsj4lhEHAD2U0S7pVOHMfBezZkzJ37y\nY/+bYWbtLb1gEdu3bz8SEXOn83Xe+KYz44f/8FxX6+7e9ZPdwDOlReMRMT7VupIWAxcCW4HdFFH+\nIvAeYGFabT7wQOluB9OylioR6sWLFzP38X856mGYWcV9Zdt/Q9Kj0/06P/yH59j45TldrfvqRYee\niYixTutJOgvYCFwfEU+n0x3/RdLHgM3A8X7HW4lQm5nlTNJpFJFeHxGbACJiH/D2dPsy4J1p9cd5\n4egaYEFa1pLPN5iZTYMkAbcCeyNibWn5K9LfpwC/D3wm3bQZuELSGZKWAEuBB9s9ho+ozcym52Lg\nSmCXpJ1p2U3AUkmr0vVNwOcAImK3pA3AHuAEsKrdKz7AoTYzm5aIuA9Qi5tvaXGfNcCabh/Dpz7M\nzCrOoTYzqziH2sys4hxqM7OK8y8TbSSOv3rBwL7W6fsODuxrmVWRQ23TNsjoztTjO+6WE4faOhp1\niIeh0/fkkFuVONT2vDoGuV/tngtH3GaaQ91ADvL0TPX8Od42TA51zTnKM8PxtmFyqGvGYa4Ox9sG\nxaHOmKOcn8k/M4fbuuFQZ8Rhrh+H27rhUFec49wsDrdNxaGuGIfZyhxuA4d65Bxm60V5e3G0m8Oh\nHgHH2QbBR9vN4VDPAIfZZoKPtuvLoR4Sx9lGyUfbM0fSQuDzwHlAAOMRcYuk11F8oO2ZFJ+N+DsR\n8WC6z2pgJfAscG1E3NXuMRzqAXGYrcp8tD1UJ4AbImKHpNnAdklbgE8AfxQRX5H0jnT9TZKWA1cA\nrwHOB+6WtKzdB9w61NPgOFuOfLQ9WBFxCDiULh+VtBeYT3F0fXZa7WXAD9LlFcDtEXEMOCBpP3AR\ncH+rx3Coe+AwWx053IMjaTFwIbAVuB64S9KnKD5N6xfTavOBB0p3O5iWteRQt+EwWxM1Idw/fPYl\n3PH067tc+8tzJG0rLRiPiPHJa0k6C9gIXB8RT0v6Y+B3I2KjpMuBW4G39jNeh7rEYTY7WRPC3cGR\niBhrt4Kk0ygivT4iNqXFVwHXpcv/A/jLdPlxYGHp7gvSspYaHWqH2ax3DveLSRLF0fLeiFhbuukH\nwC8DXwfeAjySlm8GbpO0luKXiUuBB9s9RmNC7SibDUerfatBAb8YuBLYJWlnWnYT8NvALZJOBZ4B\nrgaIiN2SNgB7KF4xsqrdKz6ghqF2kM2qoSkBj4j7ALW4+eda3GcNsKbbx8gy1I6xWb663X/rFvTp\nqEyoHV8zK3MTXnDKqAdgZmbtOdRmZhXnUJuZVVzHUEtaKOleSXsk7ZZ0XVp+rqQtkh5Jf7+8dJ/V\nkvZLeljSpcP8BszM6q6bI+qJmaGWA28AVqXZn24E7omIpcA96TqTZoa6DPi0pFnDGLyZWRN0DHVE\nHIqIHenyUWBiZqgVwLq02jrg3eny8zNDRcQBYGJmKDMz60NP56gnzQx1XpreD+AJikmzoYj4Y6W7\ndZwZyszMWus61JNnhirfFhFBMfdq1yRdLWmbpG2HDx/u5a5mZo3SVahbzAz1pKR56fZ5wFNpeVcz\nQ0XEeESMRcTY3Llz+x2/mVntdfOqj1YzQ22mmMaP9PeXSsuvkHSGpCV0MTOUmZm11s1byFvNDHUz\nsEHSSuBR4HLob2YoMzNrrWOoO8wMdUmL+/Q0M5SZmbVWmUmZrHl+/E/OmPbXeNl3jg1gJGbV5lDb\nQA0ivsN8PIfdcuRQW89mOsaD1GrsDrhVmUNtLeUc5F454FZlDrUBzYpyL6Z6Xhxvm2kOdUM5zP2b\n/Nw53M0maSHweYppNAIYj4hbJP018Kq02jnAjyLidek+q4GVwLPAtRFxV7vHcKgbwmEeHoe78SZm\nGN0haTawXdKWiPjXEytI+lPgx+lyeYbR84G7JS1r934Th7rGHOfRKD/vjnb9pcnpDqXLRyVNzDC6\nB55/d/flwFvSXZ6fYRQ4IGlihtH7Wz2GQ10zjnO1+Gi7mp4+cSZbnnh1l2t/eY6kbaUF4xExPtWa\nk2YYnfBG4MmIeCRdnw88ULq94wyjDnXmHOa8+Gg7S0ciYqzTSm1mGH0v8IXpDMChzpDjXA+Odn20\nmGEUSacCvwr8XGn1rmYYLXOoM+E415ujna82M4wCvBXYFxEHS8s2A7dJWkvxy8SOM4w61BXmODeT\no52dKWcYjYg7KV7d8aLTHv3MMOpQV5ADbRMc7eprN8NoRPxmi+U9zTDqUFeE42ydTGwjDnbzONQj\n5DhbP3yU3TwO9Qg40DYojnYzONQzxHG2YfOpkfpyqIfMgbaZ5qPs+nGoh8BxtqpwtOvBoR4Qx9mq\nzqdG8uVQT5MDbbnxUXZ+HOo+OM5WFz7KzoND3SXH2erMR9nV5lB34EBb0zja1eNQT8FxNis42tXg\nUCeOs1l7jvboNDbUDrNZ/xztmdWYUDvMZsMx1b7leA9WLUPtKJuNluM9WNmG2jE2y0u7fdYRb68y\noXZ4zZrL+397p4x6AGZmOZO0UNK9kvZI2i3putJt10jal5Z/orR8taT9kh6WdGmnx6jMEbWZWaZO\nADdExA5Js4HtkrYA5wErgAsi4pikVwBIWk7xobevofgU8rslLWv3Abc+ojYzm4aIOBQRO9Llo8Be\nYD7wQeDmiDiWbnsq3WUFcHtEHIuIA8B+4KJ2j+EjajNrnOPHT+V7B+d2u/ocSdtK18cjYnyqFSUt\nBi4EtgKfBN4oaQ3wDPDhiPgmRcQfKN3tYFrWUtehljQL2AY8HhHvknQu8NfAYuB7wOUR8cO07mpg\nJfAscG1E3NXt45iZVcyRiBjrtJKks4CNwPUR8bSkU4FzgTcAPw9skPSz/QyglyPq6ygO6c9O128E\n7omImyXdmK7/Xj/nX6x+jv6MRvr4sx+NkT6+NYuk0ygivT4iNqXFB4FNERHAg5KeA+YAjwMLS3df\nkJa11FWoJS0A3gmsAf59WrwCeFO6vA74OvB7lM6/AAckTZx/ub+bx7LqGnV8e9HLWB11mw5JAm4F\n9kbE2tJNXwTeDNwraRlwOnAE2AzcJmktxcHsUuDBdo/R7RH1fwY+AswuLTsvIg6ly09Q/IYT+jj/\nYtWRU4wHpdP37JBbBxcDVwK7JO1My24CPgt8VtJDwHHgqnR0vVvSBmAPxStGVnU649Ax1JLeBTwV\nEdslvWmqdSIiJPW0NUu6GrgaYNGiRXR9Wt8GpolR7sdUz5PjbRMi4j6g1c70vhb3WUNxhqIr3RxR\nXwz8iqR3AGcCZ0v6K+BJSfMi4pCkecDES0+6Ov+Sfms6DjA2Nuatfsgc5cFyvG0mdXwddUSsjogF\nEbGY4peE/ysi3kdxnuWqtNpVwJfS5c3AFZLOkLSELs6/2OAd/Rm96I8Nn59zG5bpvI76ZoqXm6wE\nHgUuB4iIns+/2GA4DtUy+efhI27rV0+hjoivU7y6g4j4P8AlLdbr6fyL9cdhzovDbf3yOxMz4zjX\nR/ln6WhbOw51Bhzn+nO0rR2HuqIc5+ZytG0yh7pCHGebzNE2cKhHznG2bjnazeVQj4gDbdPhaDeL\nQz2DHGcbhontysGuL4d6BjjQNhN8lF1fDvWQOM42So52vTjUA+Q4WxX51Ej+HOoBcKAtBz7KzpdD\n3SfH2XLmo+y8ONQ9cqCtTnyUnQeHuguOszWBo11dDnUbDvTwHVt0vO/7nvH90wc4EitztLsnaSHw\neYrPjQ1gPCJukfQfgd8GDqdVb4qIO9N9VgMrgWeBayPirnaP4VBP4jgPznQiPKiv75hPn89nd3QC\nuCEidkiaDWyXtCXd9mcR8anyypKWU3xa1msoPoX8bknL2n3AikON4zwIw45yv1qNywHvnT/4YGoR\ncQg4lC4flbQXmN/mLiuA2yPiGHBA0n7gIuD+VndobKgd5/5VNcq9mPw9ONy9a9DpkTmStpWuj6cP\n5z6JpMXAhcBWig8Gv0bSbwDbKI66f0gR8QdKdztI+7A3J9QOc//qEOZOHO7pye1oW8fVy8/4SESM\ndfya0lnARuD6iHha0l8AH6c4b/1x4E+B9/cz3tqG2mHuXxPC3InDPT1T7X9Vj/d0SDqNItLrI2IT\nQEQ8Wbr9vwN/m64+Diws3X1BWtZSLULtKE+f49xe+flxtPvTaj/NPeCSBNwK7I2ItaXl89L5a4B/\nBTyULm8GbpO0luKXiUuBB9s9RhahdoiHw3Huj6M9WDXYvy8GrgR2SdqZlt0EvFfS6yhOfXwP+HcA\nEbFb0gZgD8UrRla1e8UHVCjUNfhhZcFxHixH2yLiPmCqgN3Z5j5rgDXdPkZlQm3D4zjPDEfbhsWh\nrjEHenQmnnsH2wbBoa4Zx7lafJRtg+BQ14QDXX0+yrZ+OdSZc6Dz46Ns65VDnSkHuh58lG3dcKgz\n40DXk4Nt7TjUGXCcm8PBtqmcMuoBWHuOdDMdW3TcP3t7no+oK8o7qYGPsK3gUFeMA21TcbCbzac+\nKsL/1bVueBtpJh9Rj5h3POuVj66bp6sjaknnSLpD0j5JeyX9gqRzJW2R9Ej6++Wl9VdL2i/pYUmX\nDm/4+fIRtE2Xt6Hm6PbUxy3AVyPi1cAFwF7gRuCeiFgK3JOuT/6E3cuAT0uaNeiB58w7lw2Sg11/\nHUMt6WXAL1F8ggERcTwifkTxSbrr0mrrgHeny89/wm5EHAAmPmG38bxD2TB526qvbs5RLwEOA5+T\ndAGwHbgOOK/0MTNPAOelyz1/wm7deQfq3uIFh1ve9r2Dc2dwJHny+et66ibUpwKvB66JiK2SbiGd\n5pgQESGppw8+k3Q1cDXAokWLOLOXO2fEkS60C/Cgv4aD7mDXTTehPggcjIit6fodFKF+cuLDGyXN\nA55Kt3f1CbsRMQ6MA4yNjcXRPr+BqmpyoAcR5UE/flPj7WAPn6SFwOcpzioEMB4Rt5RuvwH4FDA3\nIo6kZauBlcCzwLURcVe7x+gY6oh4QtJjkl4VEQ8Dl1B8KOMe4Crg5vT3l9Jdev6E3TppYqBHHeZu\nTB5j08J9bNFxx3p4TgA3RMQOSbOB7ZK2RMSeFPG3A9+fWHnSCy7OB+6WtKzdB9x2+zrqa4D1kk4H\nvgv8FsUvIjdIWgk8ClwO/X3Cbl00KdI5xLmdJobbR9fDkX5XdyhdPippL8Xv5fYAfwZ8hBcOZKH0\nggvggKSJF1zc3+oxugp1ROwExqa46ZIW6/f0Cbu5a0qgc49zOxPfm4NtU5gjaVvp+ng6dXsSSYuB\nC4GtklYAj0fEt6QXfUh5zy+48DsTp8GBrp/y91r3aDf5dMis4zD70a5f/3AkIqY6UH0RSWcBG4Hr\nKc4m3ERx2mPaHOo+1T3STYpzK004yvbR9WBIOo0i0usjYpOkf07x0uaJo+kFwA5JF9HlCy7KHOoe\nOdDN04SjbAe7fypKfCuwNyLWAkTELuAVpXW+B4xFxBFJPb/gwqHukgNtUP+jbAe7LxcDVwK7JO1M\ny26KiDunWrmfF1w41F2oc6Qd6P40IdiOdXci4j5AHdZZPOl6Ty+4cKjbcKCtkzoH20fX1eFQT8GB\ntl452DZMDnWJA23T5WDbMDjUONA2eIsXHK5lrMHBHoVGh7rOgQZHetTqfHQNDvZMamSoHWibSQ62\nTVejQu1A2yjV+XQIvHj/crQHqxGhrnugwZHORd2Pric42oNV21A3Ic7gQOeqKcEGR3sQahXqpsR5\ngiOdv7qfDpls8j7qcHcn+1A3Lc7gQNdN02JdNtX+63ifLKtQNzHKkznS9dSkUyGdeD8/WWVC7R9O\new50MzT56NpaO2XUA7DOHOlmWbzgsH/m9iIOdcV5h20u/+xtgkNdUT6qMnCsreBQV5B3TivzP9rm\nUFeMd0hrxdtGcznUFeGjJuuGt5HqkbRQ0r2S9kjaLem6tPzjkr4taaekr0k6v3Sf1ZL2S3pY0qWd\nHqMyL89rsibvfG975b5p3X/LE68e0Ejy4ddcV84J4IaI2CFpNrBd0hbgkxHxMQBJ1wJ/AHxA0nLg\nCuA1FJ9CfrekZe0+4NahHrGmRHq6Qe716zYh4H7NdTVExCHgULp8VNJeYH5E7Cmt9lIg0uUVwO0R\ncQw4IGk/cBFwf6vHcKhHqM6RHlaY+338uobbsZ4RcyRtK10fj4jxqVaUtBi4ENiarq8BfgP4MfDm\ntNp84IHS3Q6mZS051CNSt0iPOsydlMdXt2g71r2b9Uzwsu8c63b1IxEx1mklSWcBG4HrI+JpgIj4\nKPBRSauBDwF/2M94HeoZ5kCPXh2j7ViPlqTTKCK9PiI2TbHKeuBOilA/Diws3bYgLWvJoZ5BdYl0\njnFupU7R9i8ZR0OSgFuBvRGxtrR8aUQ8kq6uACY2ts3AbZLWUvwycSnwYLvHcKhnSB0iXadAT2Xi\n+6tDsB3rGXUxcCWwS9LOtOwmYKWkVwHPAY8CHwCIiN2SNgB7KF4xsqrdKz7AoZ4RuUe67oGerA7B\ndqxnTkTcB2iKm+5sc581wJpuH8OhHrKcI920QE+We7Ad6/pwqIco10g3PdCT5Rxsx7oeHOohcKDr\nKddgO9b581wfA5ZjpN/2yn2OdA9yfK48l0zeugq1pN9Nk408JOkLks6UdK6kLZIeSX+/vLR+TxOO\n1EWOO0KO0amCXP9xy3EbtS5CLWk+cC0wFhGvBWZRTChyI3BPRCwF7knXmTThyGXApyXNGs7wqyO3\nHSDX0FRNjs9hbtuqdX/q41TgpySdCrwE+AHFC7jXpdvXAe9Ol5+fcCQiDgATE47UVm4bfo5xqbIc\n/9HLbZttuo6hjojHgU8B36eYIerHEfE14Lw0axTAE8B56fJ84LHSl+g44UjOctrgcwxKTnJ7bnPa\ndpuum1MfL6c4Sl5C8XbHl0p6X3mdiAhemMKvK5KulrRN0rbDh/PcYHLa0HOLSK5y+8cwp224ybo5\n9fFW4EBEHI6InwCbgF8EnpQ0DyD9/VRav6sJRyJiPCLGImJs7tz8XjqU0waeUzjqIqfnPKdtuam6\nCfX3gTdIekmafOQSYC/FxCJXpXWuAr6ULm8GrpB0hqQldDHhSG5y2bBzO7qrm5yee798r9o6vuEl\nIrZKugPYQTGByN8D48BZwAZJKykmHLk8rd/zhCM5yWVjzikSdZbbm2T85phq6uqdiRHxh5w84fUx\niqPrqdbvacKRHOQSaHCkq+htr9znWFvf/M7ELjjSNgg5/Wxy2uabwKHuIKcNNqcQNFVOP6Octv26\nc6jbyGlDzSkATZfTzyqnfaDOHOoWctlA/cqOPOX0M/MrQkbPoZ5CLhtlTju7nSy3n18u+0UdOdST\n5LIx5raT29Ry+x9RLvvHTJK0UNK9kvakWUavS8s/KWmfpG9L+p+Szindp6cZRh3qJKf/3uW0Y1t3\ncvqZ5rKfzKATwA0RsRx4A7AqzSK6BXhtRPwL4H8Dq6G/GUYdavLa8HLaoa03Of1sczqwGbaIOBQR\nO9LloxTv3J4fEV+LiBNptQcoptOAPmYYbXyoc9rYctqRrT+5/Yxz2n9mgqTFwIXA1kk3vR/4Srrc\n8wyjjf7MxJw2stx2YOtfTu9ihDzfyahnjnP6voPdrj5H0rbS9fGIGD/pa0pnARuB6yPi6dLyj1Kc\nHlnf73gbGeqcAg2OdBPlGGsgu2B36UhEjLVbQdJpFJFeHxGbSst/E3gXcEmaDhq6nGG0rHGnPhxp\ny0WOP/vc9q9BSLOK3grsjYi1peWXAR8BfiUi/rF0l55nGG1UqHPbiHLcUW2wctwGGviLxouBK4G3\nSNqZ/rwD+HNgNrAlLfsMFDOMAhMzjH6VLmYYbcSpjxw3mhx3UBuO3E6DTKj56ZDnRcR9gKa46c42\n9+lphtHah9qRrq5fP3vHQL7OHU+/fiBfp8pyjTU0J9jDVNtQ5xhoqG+kBxXlbr92E+KdGwe7f7UL\nda6BhnpFephh7vXx6xLtnI+qyxzs3tUm1DkHuk5GHeip1CnadYk1vHifdbTbyz7UdQl0zkfTVYxz\nK3WIdp1iPcHRbi/bUNcl0JBvpHMK9FQmxp9jsOsY6wl12rcHJZtQ1/WHl2Okcw/0ZLkGu86xther\nbKjrGuay3CJdt0BPlmOwHetmqEyomxDmspwiXfdAT5ZbsB3r+mvUW8irIpdI//rZOxoX6bKcvvdc\ntinrj0NtU8opUsPU9H+srBoc6hlW9SMfh2lqOTwnVd+2rH8O9Qyq+o6UQ4xGKYd/xKq+jVl/HOoZ\nUuUdKIcAVUnVn6sqb2vWH4d6BlR5x6l6dKqq6v+4VXmbs9451ENW5R2myqHJhZ9DmwkOdUM5MINT\n1eeyygcJ1huHeoiquKNU/b/suarqc1rFbdB651APSRV3kKrGpC6q+vxWcVu03jjUQ1DFHaOqEamb\nqv6PpYrbZF1IWijpXkl7JO2WdF1a/p50/TlJY5Pus1rSfkkPS7q002M41A1QxXDUnZ/zRjkB3BAR\ny4E3AKskLQceAn4V+Lvyyum2K4DXAJcBn5Y0q90DONQDVrUjFwdjdKr23Fdt26yLiDgUETvS5aPA\nXmB+ROyNiIenuMsK4PaIOBYRB4D9wEXtHkMRMehx90zSUWCqb6jK5gBHRj2IHuU25tzGCx7zTHhV\nRMyezheQ9FWK77sbZwLPlK6PR8R4i6+7mOII+rUR8XRa9nXgwxGxLV3/c+CBiPirdP1W4CsRcUer\nAVRlmtOHI2Ks82rVIWmbxzxcuY0XPOaZIGnbdL9GRFw2iLGUSToL2AhcPxHpQfGpDzOzaZJ0GkWk\n10fEpg6rPw4sLF1fkJa15FCbmU2DJAG3AnsjYm0Xd9kMXCHpDElLgKXAg+3uUJVTH1Oe76k4j3n4\nchsveMwzoWrjvRi4EtglaWdadhNwBvBfgbnAlyXtjIhLI2K3pA3AHopXjKyKiGfbPUAlfploZmat\n+dSHmVnFOdRmZhU30lBLukDS/ZJ2SfobSWeXbuvpLZYzSdI1kvalt4d+orS8cmOW9HFJ35a0U9LX\nJJ1fuq1y450g6bI0rv2Sbhz1eCaTdKakByV9K20Hf5SWnytpi6RH0t8vH/VYyySdI+mOtP3ulfQL\nVR6zpOskPZSe4+vTssqOd2giYmR/gG8Cv5wuvx/4eLq8HPgWxcn4JcB3gFmjHGtpzG8G7gbOSNdf\nUeUxA2eXLl8LfKbK401jm5XG87PA6Wmcy0c9rkljFHBWunwasJXi7cOfAG5My28E/mTUY5007nXA\nv02XTwfOqeqYgddSvA37JRQvfLgb+KdVHe8w/4z61McyXngf/Bbg19Llnt9iOYM+CNwcEccAIuKp\ntLySY44Xv/D+pcDEb48rOd7kImB/RHw3Io4Dt1OMtzKi8H/T1dPSn6AY57q0fB3w7hEMb0qSXgb8\nEsVLyYiI4xHxI6o75n8GbI2If4yIE8A3KObOqOp4h2bUod7NCzvge3jhReDzgcdK6x1My6pgGfBG\nSVslfUPSz6fllR2zpDWSHgP+DfAHaXFlx0u1x/Y8SbPSy7GeArZExFbgvIg4lFZ5AjhvZAM82RLg\nMPA5SX8v6S8lvZTqjvkhin3tpyW9BHgHRSOqOt6hGXqoJd2dzjFN/rOC4nTH70jaDswGjg97PN3o\nMOZTgXMp/pv7H4AN6QXvVR0vEfHRiFgIrAc+NMqx1klEPBsRr6N4Z9lFkl476fbghf/BVMGpwOuB\nv4iIC4H/R3Hq4HlVGnNE7AX+BPga8FVgJ/DspHUqM95hGvobXiLirR1WeTuApGXAO9Oynt9iOUjt\nxizpg8CmtIE8KOk5isldRjbmLp7jCeuBO4E/ZMTPcQdVHttJIuJHku6lmLLySUnzIuKQpHkUR9tV\ncRA4mI78Ae6gCHVlxxwRt5JO1Uj6TxTfQ2XHOyyjftXHK9LfpwC/D3wm3dTzWyxn0BcpfqE48Y/L\n6RQzj1VyzJKWlq6uACbmuqzkeJNvAkslLZF0OsXcvZtHPKYXkTRX0jnp8k8Bb6N4bjcDV6XVrgK+\nNJoRniwingAek/SqtOgSinfHVXbMpUYsojg/fRsVHu+wjPot5O+VtCpd3gR8DiD6eIvlDPos8FlJ\nD1GcqrkqHV1Xdcw3px3zOeBR4ANQ7ec4Ik5I+hBwF8UrQD4bEbtHPKzJ5gHrVEz4fgqwISL+VtL9\nFKfDVlI835ePcpBTuAZYn/4B/C7wW6TxV3TMGyX9NPATim30R5JuprrjHQq/hdzMrOJG/aoPMzPr\nwKE2M6s4h9rMrOIcajOzinOozcwqzqE2M6s4h9rMrOL+P0j8MctcfzsKAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_temp_section(model2)\n", "plot_temp_section(diffmodel)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This works as long as K is a constant.\n", "\n", "The diffusion operation is broadcast over all vertical levels without any special code." ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def inferred_heat_transport( energy_in, lat_deg ):\n", " '''Returns the inferred heat transport (in PW) by integrating the net energy imbalance from pole to pole.'''\n", " from scipy import integrate\n", " from climlab import constants as const\n", " lat_rad = np.deg2rad( lat_deg )\n", " return ( 1E-15 * 2 * np.math.pi * const.a**2 * integrate.cumtrapz( np.cos(lat_rad)*energy_in,\n", " x=lat_rad, initial=0. ) )" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VFX+x/H3d9J7gISQkIRA6AQIEKk2EBVsIFZE7L2s\nrvtzrbuuZXctq667tnWtq1iwIWJBVFCUmtBLqCGNhCQEUgjp5/dHwi4qSMokZzLzfT1PHpLJ5M6H\nyeSTm3vPPUeMMSillHIfDtsBlFJKOZcWu1JKuRktdqWUcjNa7Eop5Wa02JVSys1osSullJvRYldK\nKTejxa6UUm5Gi10ppdyMt40HjYiIMAkJCTYeWimlOqy0tLQiY0zkse5npdgTEhJITU218dBKKdVh\niUhmU+6nh2KUUsrNaLErpZSb0WJXSik3o8WulFJuRotdKaXcjBa7Ukq5GS12pZRyM1bGsSul7Kus\nqWPbnnL2lFayp6ySveXVhAf6EBXqT3SYP70igwn204roiPS7ppQH2V9RzTebC1iwaQ/fbyukorru\nqPf18RLGJEZw2sAoTh0YRVSofzsmVa0hNhazTklJMXrlqVLtp/hANf/6bgdvLN1FZU09UaF+TBwQ\nxbjeEcSEB9At1J/OQb6UHKwhv6SS3SUHScvcx/yN+WTurcAhMHVYd247pQ89ugTZ/u94LBFJM8ak\nHPN+WuxKua8DVbX86/udvPpDBgeqazk3uTuXjU1gSPcwHA455tcbY9hWUM7sldm8uSyT2nrD+cNj\nuW1iH2LCA9rhf6AOp8WulIfbkFvCb95Zzc6iA5w5OJrbJ/ahT1RIi7dXUFrJ84t28PbyLPy8HTw0\ndRBTk7sjcuxfEMo5tNiV8lD19YZXfsjg8fnpRAT78fRFyYzu1cVp28/aW8Eds9eQmrmPMwdH8+dz\nkwgP9HXa9tXRNbXY9eSpUm6korqWW95ezbfpBZw+KIrHzhvi9NKN7xLIe9eP4cXvdvD0gq2kZe7j\n5ctTSOoe5tTHUS2n49iVchP7K6qZ8fJyFm0p4MFzBvHipSPabE/ayyHcPL43c24eh0Pgon8tZeGW\ngjZ5LNV8WuxKuYH8kkoueHEpG3NLeX7GcC4fm9Aux76Tuofx8c3j6NEliGveSOWdFVlt/pjq2LTY\nlergcvZVcN4LS8grqeT1q45jUlJ0uz5+VKg/s28Yw/G9I7jno/U8t3B7uz6++iUtdqU6sH0Hqrns\n1RWUVdbwzrWjGZsYYSVHsJ83r1yewtTkGJ6Yv4VXfsiwkkM10JOnSnVQFdW1XPXGSnL2HeStq0cx\nONbuyUtvLwd/u2Ao1XX1PDxvE37eDi4d3cNqJk+lxa5UB1RbV88tb69mbfZ+np8xgpE9O9uOBDSU\n+98vGkZVTRr3z9mAv48X54+ItR3L47T6UIyI+IvIChFZKyIbReRBZwRTSh3dnz7dyLfpBTw0JYlJ\nSd1sx/kJX28Hz80YzvG9I7jrw3X8sK3IdiSP44xj7FXABGPMUCAZmCQio52wXaXUEXyYlsNby7K4\n/sReLnuow9/HixcuHU7vyGBumpXGjsJy25E8SquL3TQ49F3zaXxr/8tZlfIAm/NKuW/Oekb36syd\np/ezHedXhfj78PLlKfh4Obj69ZXsO1BtO5LHcMqoGBHxEpE1QAGwwBiz3BnbVUr9T2llDTe+lUao\nvw//nD4cby/XH9QW1zmQly4bwe79ldw4K43q2nrbkTyCU14Zxpg6Y0wyEAuMFJGkn99HRK4TkVQR\nSS0sLHTGwyrlMYwx/P79dWTvO8hzM4YTGeJnO1KTjejRmcfPH8KyncU8+kW67Tgewam/8o0x+4GF\nwKQjfO4lY0yKMSYlMjLSmQ+rlNubnZrNlxvzuXtSf45LcI0RMM0xdVh3rhibwKs/ZvDlhnzbcdye\nM0bFRIpIeOP7AcCpgP5aVspJsosreOjTTYzp1YWrj+9pO06L3XvGAIbGhnHnB2vJLq6wHcetOWOP\nPRpYKCLrgJU0HGOf54TtKuXx6usNv/9gHSLC4+cPadLiGK7K19vBs5cMR4Cb315FVe3Rl+VTreOM\nUTHrjDHDjDFDjDFJxpiHnBFMKQX/WbqLpTv38oezBhDXOdB2nFaL6xzIExcMZV1OiR5vb0Ouf1pd\nKQ+1s7CcR79MZ3y/SC5MibMdx2lOH9SNK8Ym8NqPu1i8TQdStAUtdqVckDGGez9ej6+Xg0fPG+J2\ny8/dPbk/iZFB3Pn+OkoqamzHcTta7Eq5oE/W7GbZzmLumtyfqFB/23Gczt/Hi6cvSqaovIoH5m6w\nHcftaLEr5WJKDtbwyGebSI4LZ/px8bbjtJkhseHcOqEPc9bs5rN1ebbjuBUtdqVczN/mb6H4QDWP\nTE3q0KNgmuKm8YkMjQ3jvjnrKSirtB3HbWixK+VC1uXs563lmVw2JsEjFof28XLw5IXJVFTV8eDc\nTbbjuA0tdqVcRH294f45G4gM9uN3p/W1Hafd9O4azG9O6c1n6/P4aqNeleoMWuxKuYg5a3JZl1PC\nPWf0J8Tfx3acdnX9SYn07xbCHz7ZQGmljpJpLS12pVzAweo6Hv9yC0Niw5gytLvtOO3Ox8vB4+cP\nobCsir9+rhcutZYWu1Iu4OXFO8kvreT+Mwe6/QnToxkSG87Vx/fknRVZLNu513acDk2LXSnLCsoq\neeG7HUwa1M1l1i615Y5T+xHfOZD7Pl6vc7e3gha7UpY99dVWaurquXtyf9tRrAvw9eLBKYPYUXiA\nfy/eaTtOh6XFrpRF6fmlzE7N5rIxCSREBNmO4xLG9+vKpEHd+Oe323R63xbSYlfKor/N30qQnze3\nTuhtO4pL+ePZA3GI8OCnG21H6ZC02JWyZHXWPr7evIfrTuhFeKCv7TguJSY8gNsn9uHrzQUs2LTH\ndpwOR4tdKUue/GornYN8ubIDr4rUlq4c15O+UcH8ae5GDlbrohzNocWulAVLd+zlh+1F3HRyIsF+\n3rbjuCQfLwcPT0kid/9BXvhuh+04HYoWu1LtzBjD377aQlSoH5eO7mE7jksb1asLZw+N4cXvduiJ\n1GbQYleqnS3aUkha5j5undAHfx8v23Fc3r1n9MdLhEc+00nCmqrVxS4icSKyUEQ2ichGEbnNGcGU\nckfGGJ5asJW4zgFutdxdW4oOC+CWCb2Zv3GPLqXXRM7YY68FfmeMGQiMBm4WkYFO2K5SbmfRlkLW\n55Zwy/je+HrrH8xNdc0JPenRJZAHP91ETZ1ekXosrX5lGWPyjDGrGt8vAzYDnjeLkVLHYIzhH99u\no3t4AOcOi7Udp0Px8/bij2cNZHtBOW8s2WU7jstz6i6DiCQAw4DlztyuUu5gyY69rM7azw0nJ+re\negucMiCKk/pG8sw329hbXmU7jktz2qtLRIKBD4HbjTGlR/j8dSKSKiKphYV6nEx5nn98s42oUD8u\nGKF76y31h7MGUFFdx1MLttqO4tKcUuwi4kNDqc8yxnx0pPsYY14yxqQYY1IiIyOd8bBKdRgrMopZ\nnlHM9Scm6kiYVujdNYSZo3vwzoosNu3+xf6jauSMUTECvAJsNsY81fpISrmff367jYhgX6aPjLcd\npcP77cS+hAX48NC8jRhjbMdxSc7YYx8HzAQmiMiaxrcznLBdpdzC2uz9LN5WxDUn9CLAV/fWWyss\n0Ic7Tu3Lsp3FzNc1Uo+o1dcyG2N+ADxzyRelmuDF73YQ4u+tV5k60fSR8by1LIs/f76Zk/t11cNb\nP6On5pVqQxlFB/hyYz4zR/fQOWGcyNvLwf1nDSC7+CCv/bjLdhyXo8WuVBt66fud+Hg5uHKczuDo\nbCf0iWTigK48++02CsoqbcdxKVrsSrWRgrJKPlyVw/kjYokM8bMdxy3dd+ZAquvqeXK+Dn88nBa7\nUm3k9R93UVNXz7Un9LIdxW31jAji8jEJzE7LZkNuie04LkOLXak2UFZZw5vLMpmc1I2eupZpm7r1\nlD50CvTloXmbdPhjIy12pdrAuyuyKaus5foTE21HcXthAQ3DH1dkFPPFBh3+CFrsSjldTV09r/2Y\nwaienRkaF247jkeYPjKe/t1C+Mvnm6ms0WX0tNiVcrIvNuSzu6RSj623Iy+H8MezB5Kz7yAvL95p\nO451WuxKOZExhlcW76RnRBAT+ne1HcejjE2MYHJSN55buIP8Es8e/qjFrpQTpWXuY21OCVcd3xOH\nQy/Ibm/3njGAOmN47Mt021Gs0mJXyoleXpxBWIAP5w3XtWZsiOscyHUn9OLj1bmkZe6zHccaLXal\nnCRrbwXzN+UzY1Q8gb46fYAtN56cSFSoH3+au5G6es8c/qjFrpSTvLYkA2+HcPnYBNtRPFqQnzf3\nnjGA9bklvLsyy3YcK7TYlXKC0soaZq/M5qwhMUSF+tuO4/HOGRrDqJ6deWL+FvYdqLYdp91psSvl\nBO+n5nCguo6rdLIvlyAiPDQlibLKWh6fv8V2nHanxa5UK9XXG/6zdBcjenRicGyY7TiqUb9uIVwx\nNoF3V2axLme/7TjtSotdqVZatLWAzL0VXKHH1l3O7RP7EBHsxx/mbPCoE6la7Eq10ms/7iIq1I9J\nSd1sR1E/E+Lvw31nDGBtTglvL8+0HafdOKXYReRVESkQkQ3O2J5SHcX2gjIWbyti5uge+HjpfpIr\nmpIcwwl9Injsyy0ec0Wqs16JrwOTnLQtpTqMN5Zk4uvtYPrIeNtR1FGICI9MTaKmrp4H5nrGvqdT\nit0Y8z1Q7IxtKdVRlBys4cNVOZw9JIYuwbpCkivr0SWI2yb2Yf7GPczf6P5T++rfjkq10AdpOVRU\n1+lJ0w7i2hN60b9bCA98spGyyhrbcdpUuxW7iFwnIqkiklpYWNheD6tUm6ivN7y5dBfD48N1iGMH\n4ePl4K/TBrOnrJJHv3DvScLardiNMS8ZY1KMMSmRkZHt9bBKtYnF24vYtbeCy8Yk2I6immFYfCeu\nHteTWcuzWLzNfXcw9VCMUi3w5tJdRAT7MnmwDnHsaP7v9H4kRgbx+w/WUeqmh2ScNdzxHWAp0E9E\nckTkamdsVylXlF1cwTfpBVx8XDx+3l6246hm8vfx4skLkykoq+KhTzfZjtMmnDUqZroxJtoY42OM\niTXGvOKM7SrlimYtz0KAS0bpEMeOKjkunBtPSuSDtBwWbNpjO47T6aEYpZqhsqaO91ZmcerAKGLC\nA2zHUa3wm1P60L9bCPd8tI6CMve6cEmLXalmmLcuj30VNXrS1A34ejv4x/RhlFfV8tv31rjVXDJa\n7Eo1w5vLMkmMDGJsYhfbUZQT9I0K4cFzBvHj9r08v3C77ThOo8WuVBOtzylhbfZ+Zo7ugYguVO0u\nLkyJY2pyDE9/vZVlO/fajuMUWuxKNdFbyzIJ8PFi2ohY21GUE4kIj5w7uGHagXdXU1ReZTtSq2mx\nK9UEJRU1fLI2lynJMYT6+9iOo5ws2M+bZy8Zxv6KGm56axXVtfW2I7WKFrtSTfDhqhwqa+q5dHQP\n21FUGxkUE8bj5w9hxa5i7p+zHmM67slUb9sBlHJ1xhjeWp5Jclw4Sd11Xhh3NiW5O9sLyvnnt9vp\nGxXCNSf0sh2pRXSPXaljWLpjLzsLD+jeuof47cS+TE7qxl8+38zC9ALbcVpEi12pY3hreSZhAT6c\nNSTadhTVDhwO4ckLhzIgOpSbZq0idVfHW2pCi12pX1FQWslXG/dwYUos/j46L4ynCPT15vUrRxId\n5s+Vr61kfU6J7UjNosWu1K94b2U2tfWGS0bpYRhPExnix6xrRxEW6MPMV5ezJb/MdqQm02JX6ijq\n6g3vrMji+N4R9IwIsh1HWRAdFsCsa0bh5+1gxsvLSc8vtR2pSbTYlTqKhekF7C6p5NLROoujJ+vR\nJYhZ14zC2yFc8MJSlmwvsh3pmLTYlTqKWcsz6RrixykDomxHUZb17hrCRzeNJTrcn8tfW8Ena3Jt\nR/pVWuxKHUF2cQWLthZy8XFx+Hjpj4mCmPAA3r9hLMPjO3Hbu2t4esFWautc8wpVfcUqdQTvrmxY\nTOPikXoYRv1PWIAP/7l6JNOGd+eZb7Zx8UvLyC6usB3rF7TYlfqZ6tp63luZzYT+upiG+iU/by+e\nujCZv1+UTHp+GWc8s5g5q3NdagoCLXalfuarTfkUlVczQ0+aql8xdVh3Pv/NCfSJCub299Zw3gtL\nWOkiFzM5azHrSSKyRUS2i8jdztimUrbMWpZFbKcATuwTaTuKcnHxXQKZff0YHp02mNz9B7ngxaVc\n80YqKzKKqbe4IlOrJwETES/gOeBUIAdYKSJzjTHuufy3cmvbC8pZunMvd57eDy+HLqahjs3by8HF\nI+OZktydV3/M4MVFO/h68x5iOwUwNbk7k5K60ScqGD/v9rty2RmzO44EthtjdgKIyLvAFMDpxb42\nez9F5VUMiA4lOsxfV7FRTvfOiiy8HcKFKXG2o6gOJsDXi5vH9+bKcQnM35jPx6t38/yi7Ty7cDve\nDiExMpgB0SFce2IvBsW07Syhzij27kD2YR/nAKN+ficRuQ64DiA+vmXHLmctz2R2ag7QcHZ6YHQo\npw2K4uyhMUQE+7Vom0odUllTx4ercjg9qRuRIfp6Ui0T6OvNucNiOXdYLAWllSzPKCY9v5TNeWWs\nyChm5pi2n55CWnsmV0TOByYZY65p/HgmMMoYc8vRviYlJcWkpqY2+7HKKmvYkl/G5rxSNuWVsTpr\nH+n5ZXg5hJP7RjJjdDzj+3XVPXnVIh+tyuGO2Wt5+9pRjE2MsB1HqV8QkTRjTMqx7ueMPfZc4PC/\nW2Mbb3O6EH8fUhI6k5LQ+b+3bd1TxkercpmzOperXk9lZM/O3HvGAJLjwtsignJjs5Zn0SsiiDG9\nutiOolSrOGNUzEqgj4j0FBFf4GJgrhO22yR9o0K4e3J/Ft81noenJrGzsJypz/3IzW+vorCs4y9K\nq9rH5rxS0jL3ccmoeP2LT3V4rS52Y0wtcAswH9gMzDbGbGztdpvLx8vBzNE9WHTneG47pQ9fb9rD\n5Ge+Z9GWjrkCimpfby/PwtfbwXnDY21HUarVnDKO3RjzuTGmrzEm0RjzZ2dss6WC/bz57al9mXvL\n8XQJ8uOK11by8LxNVNXW2YylXNiBqlo+Xp3LWYOj6RTkazuOUq3mtlee9usWwie3jOPyMT145YcM\nLvn3cvZXVNuOpVzQ3LW7Ka+q5ZJReqWpcg9uW+wA/j5ePDgliWcvGcb6nBLOe2EJOftcb8IeZY8x\nhreWZdK/WwgjenSyHUcpp3DrYj/krCEx/OfqkRSUVXHeC0vYnNcxVkFRbW9tTgkbd5cyQ0+aKjfi\nEcUOMLpXFz64YSyCcOG/lrIht2MtTqvaxqxlmQT6ejF1WHfbUZRyGo8pdmg47v7hTWMJ9ffhsldX\nsL2g4yxOq5yvpKKGT9ftZkpyd0L8fWzHUcppPKrYAbqHNyxO6+UQZry83CUnyVft46PVOVTW1DND\nT5oqN+NxxQ6QEBHEW1ePoqq2nkteXsae0krbkVQ7M8Ywa3kWyXHhJHVv2wmZlGpvHlns0HBY5o0r\nR1JcXs21/0mlskbHuXuS5RnFbC8o17115ZY8ttgBhsaF88zFw1ifW8KdH6xzqaWtVNt6a1kmof7e\nnDUkxnYUpZzOo4sdYOLAKO48vR+frt3N84t22I6j2kFBWSXzN+ZzQUocAb7tt/iBUu3FGbM7dng3\nnpTI1vwynpi/hd5dgzl9UDfbkVQbmr0ym5o6o4dhlNvy+D12ABHh0fOGMDQunN/NXsuuogO2I6k2\nUldveHt5Fsf3jqBXZLDtOEq1CS32Rv4+Xjw/YzheDuHWd1ZTXVtvO5JqA9+mF7C7pJJLR+veunJf\nWuyH6R4ewOPnD2F9bgmPfZluO45qA28tyyQq1I+JA6JsR1GqzWix/8zpg7r9d0bIbzbvsR1HOVHm\n3gN8t7WQ6SPj8fbSl75yX/rqPoJ7zhjAwOhQ/u/9teSX6MVL7uLt5Vl4OYTpI/UwjHJvWuxH4O/j\nxbOXDONgTR33fKTj291BZU0ds1OzOW1gFFGh/rbjKNWmtNiPoldkMHdP6s/CLYW8n5ZjO45qpXnr\n8thXUcPMMT1sR1GqzbWq2EXkAhHZKCL1IpLirFCu4rIxCYzq2ZmHP93E7v0HbcdRLWSM4Y0lu+jT\nNZgxvbrYjqNUm2vtHvsGYBrwvROyuByHQ3ji/KHUGcNdH+ohmY5qTfZ+1ueWcNmYHrqYhvIIrSp2\nY8xmY8wWZ4VxRfFdArnnjAEs3lbEOyuybcdRLfDm0kyC/bw5d3is7ShKtQs9xt4EM0bGMzaxC3/9\nfDMFOsVvh1JUXsW8dXmcN7w7wX46g4byDMcsdhH5WkQ2HOFtSnMeSESuE5FUEUktLCxseWILHA7h\nz+cOpqqungfnbbIdRzXDeyuzqa6rZ+aYBNtRlGo3xyx2Y8xEY0zSEd4+ac4DGWNeMsakGGNSIiMj\nW57Ykp4RQdw6vjefrctjYXqB7TiqCWrr6pm1LJNxvbvQu6vOC6M8hx6KaYbrT0qkd9dg7p+zgYrq\nWttx1DF8vblhXpjLdG9deZjWDnc8V0RygDHAZyIy3zmxXJOvt4O/nDuY3P0HeeabbbbjqGN4fUkG\n3cMDOKV/V9tRlGpXrR0V87ExJtYY42eMiTLGnO6sYK5qZM/OXHxcHC8vzmBLfpntOOooNueVsmxn\nMZeN6aHzwiiPo6/4FrhrUn9C/L15YO4GHdvuol7/cRf+Pg4uOi7OdhSl2p0Wewt0CvLl/07rx7Kd\nxcxbl2c7jvqZ4gPVzFmTy7ThsYQH+tqOo1S702Jvoekj4xkUE8pfPt/MgSo9kepK3lmRRVVtPVeM\nTbAdRSkrtNhbyMshPDRlEHkllTy3cLvtOKpRTV09by3L5PjeEfSNCrEdRykrtNhbYUSPzkwb1p1/\nL95Jhq6T6hLmb8wnr6RS99aVR9Nib6W7J/fHz9uLR/SKVJfw2o+7iO8cyHgd4qg8mBZ7K3UN9eeW\nCb35Jr2A77d2rKkS3M3qrH2kZe7jirEJeDl0FkflubTYneDKcQnEdw7k4XmbqK2rtx3HY738QwYh\n/t5cqEMclYfTYncCP28v7j1jANsKynl7RZbtOB4pu7iCL9bnccmoeJ3FUXk8LXYnOX1QFGN6deGp\nBVvZX1FtO47HeX3JLhwietJUKbTYnUZE+OPZAyk9WKPzyLSz0soa3luZzZlDookOC7AdRynrtNid\naEB0KBcdF8+bSzPZXlBuO47HmL0ym/KqWq45vpftKEq5BC12J/vdaX3x9/Hir59vth3FI9TW1fPa\nj7sY1bMzg2PDbMdRyiVosTtZRLAfN49vGP74w7Yi23Hc3mfr88jdf5BrT9C9daUO0WJvA1eOSyC2\nUwCPfLaJunqd/bGtGGN4YdEO+nQNZoJekKTUf2mxtwF/Hy/umTyA9PwyZqdm247jthZtLSQ9v4zr\nT0rEoRckKfVfWuxt5IzB3TguoRNPfrWFssoa23Hc0ouLdhAd5s85Q2NsR1HKpWixtxER4f4zB1JU\nXs1zC3fYjuN2VmXtY3lGMdec0Atfb30ZK3U4/YloQ0Pjwpk2rDuv/pBBdnGF7Thu5cVFOwgL8OFi\nnT5AqV9o7WLWT4hIuoisE5GPRSTcWcHcxZ2T+uHlEB79It12FLexvaCMrzbt4fKxCQTp9AFK/UJr\n99gXAEnGmCHAVuCe1kdyL9FhAdxwUiKfrc9jRUax7Thu4cXvduLv49DpA5Q6ilYVuzHmK2PMoXXh\nlgGxrY/kfq47sRfRYf48PG8T9Tr8sVWy9lbw8epcpo+Mp3OQrmeq1JE48xj7VcAXR/ukiFwnIqki\nklpY6Fnzlgf4enHXpP6szy3ho9W5tuN0aM8v2o6XQ7jhpETbUZRyWccsdhH5WkQ2HOFtymH3uQ+o\nBWYdbTvGmJeMMSnGmJTIyEjnpO9AzhkaQ3JcOI9/mU65Ln7dIjn7KvggLYfpx8URFepvO45SLuuY\nxW6MmWiMSTrC2ycAInIFcBYwwxijxxmOwuEQHjh7IAVlVbr4dQu9sGgHDhFuOFn31pX6Na0dFTMJ\n+D1wjjFGx/Mdw7D4Tkwb3p1XFmewSxe/bpbd+w8yOzWbC1JidWpepY6htcfYnwVCgAUiskZEXnRC\nJrd296T++HgJj3ymsz82x4vf7cAYuFH31pU6plYNAjbG9HZWEE/RsPh1Hx77Mp3vtxZyYl/PO9/Q\nXHklB3l3ZTbnDY8ltlOg7ThKuTy98tSCq45PIKFLIA/N20SNLn59TP/4ZhvGGG6ZoPsRSjWFFrsF\nft5e3H/mQLYXlPPGkl2247i0jKIDzE7NYcaoHsR11r11pZpCi92SUwZ0ZUL/rjy9YCt7Sittx3FZ\nTy/Yiq+Xg5vG67F1pZpKi90SkYbhjzX1Rk+kHsWm3aXMXbubK8cl0DVEx60r1VRa7Bb16BLETScn\n8una3SzZrsvo/dyTX20h1N+b60/UvXWlmkOL3bIbTkokvnMgf/hkA9W1eiL1kLTMYr5JL+D6kxIJ\nC/SxHUepDkWL3TJ/Hy/+dM5AdhQe4JUfMmzHcQnGNByeigzx48pxCbbjKNXhaLG7gAn9ozhtYBTP\nfLOVrL16Ae/ctbtZnbWfO0/vR6CvzreuVHNpsbuIB6cMwtvh4L456/HkKXcqa+p47It0BsWEcv5w\nnQVaqZbQYncR0WEB/H5SPxZvK+JjD57a99/f72R3SSV/OGsgDofYjqNUh6TF7kIuHdWD4fHhPDxv\nE8UHqm3HaXd7Sit54bsdnD4oitG9utiOo1SHpcXuQhwO4a/ThlBeVcsj8zbZjtPu/jZ/CzV19dwz\neYDtKEp1aFrsLqZftxBuOCmRj1bn8m36Httx2k3qrmLeT8vhynE9SYgIsh1HqQ5Ni90F3TKhN/27\nhXDXh+vZX+H+h2Rq6uq57+MNxIT5c9spfWzHUarD02J3QX7eXvztgqHsO1DNA3M32o7T5l75IYMt\ne8r40zmDCPLT4Y1KtZYWu4tK6h7Gb07pwydrdvPF+jzbcdpMdnEFf/96K6cOjOK0Qd1sx1HKLWix\nu7AbT07nCSsmAAAKUklEQVRkcPcw7puzgcKyKttxnM4YwwNzN+IQ4cFzBtmOo5Tb0GJ3YT5eDp66\ncCjlVbX8/oO11Ne714VL89bl8W16AXec2peYcF3HVClnae1i1g+LyLrG9U6/EpEYZwVTDfpEhXD/\nmQNYuKXQreaSyS+p5P45G0iOC+eKsQm24yjlVlq7x/6EMWaIMSYZmAf80QmZ1M/MHN2DSYO68diX\n6azJ3m87TqsZY7jzg7VU19bz9EXJeHvpH45KOVOrfqKMMaWHfRgEuNexAhchIjx2/hCiQv255e1V\nlByssR2pVd5clsnibUXce+YAeuqYdaWcrtW7SiLyZxHJBmage+xtJizAh39eMoz8kkru/nBdh50o\nbEdhOX/5fDMn9Y3k0lHxtuMo5ZaOWewi8rWIbDjC2xQAY8x9xpg4YBZwy69s5zoRSRWR1MLCQuf9\nDzzI8PhO3D25P19syOfZb7fbjtNslTV13Pbuavx9vHj8/CGI6CRfSrWFY14NYoyZ2MRtzQI+Bx44\nynZeAl4CSElJ6Zi7my7g6uN7sml3KU8u2EqfqBAmJXWMsd/GGO6fs4ENuaW8fFkKUaG6hqlSbaW1\no2IOv/57CpDeujjqWESEv0wbzNC4cO6YvYbNeaXH/iIXMGt5Fh+k5fCbU/owcWCU7ThKubXWHmN/\ntPGwzDrgNOA2J2RSx+Dv48W/Z44gxN+ba95IpajctS9eSsvcx4OfbmR8v0hu17lglGpzrR0Vc54x\nJqlxyOPZxhjPXSGinXUN9eelmSnsPVDFZa+scNmRMnklB7lpVhrRYQH8/aJhuniGUu1ABxB3YEPj\nwnnx0hFsKyjj6tdXUlFdazvSTxQfqGbmKys4UFXHv2aOICzQx3YkpTyCFnsHd3K/rjxz8TBWZe3j\n+jfTqKqtsx0JgPKqWq58bQVZxRW8fHkKA6JDbUdSymNosbuBMwZH8+i0ISzeVsTNs1ZTWWO33Ktq\n67jhzTQ27C7luUuG6zJ3SrUzLXY3ceFxcTw8NYlv0vcw85XllFTYOeZ+oKqW699M44ftRTx23hBO\n1REwSrU7LXY3MnN0D/45fRhrs0u44F9LyCs52K6PX1RexfR/L+P7rYX8ddpgzh8R266Pr5RqoMXu\nZs4aEsPrVx3H7v2VTHt+Cauy9rXL4+4qOsB5Lyxh654yXpqZwvSROl2AUrZosbuhsYkRvHf9aLwc\nwgUvLuW5hdupa8O53L9Yn8fU53+k9GANb187Wi9AUsoyLXY3NSgmjM9vO4HJSd14Yv4WLn15Obn7\nnXtopuRgDXe8t4YbZ60ivnMgH900juHxnZz6GEqp5hMbswSmpKSY1NTUdn9cT2SM4f20HB74ZCN1\nxnDl2ARuPDmR8EDfFm+zrt4wb91uHvsinT1lVdw6oTc3j++Nj86rrlSbEpE0Y0zKse6nS8K7ORHh\nwpQ4xiZ24akFW3lp8U7eWZHFdSf2Ytrw2GYtSVdTV8/Hq3N5YdEOMooO0C8qhBcuHcHQuPA2/B8o\npZpL99g9zOa8Uh77Mp1FWxqmTj4uoRNnDYkhOS6chC5BP7k6tK7eUFBWyQ/bivh+WxE/bCtkX0UN\ng2JCuXVCb04b2E2nCFCqHTV1j12L3UPtKjrAvHW7mbt2N1v3lP/39vBAH0L8vSmpqKGsqpZDL4+I\nYD9O7BPB2UNjOLlfpM6lrpQFWuyqyXYWlrO9oJzMvRVk7D1ARVUt4YG+hAb40CXIl+MSOtO/W4ju\nnStlmR5jV03WKzKYXpHBtmMopZxEhzEopZSb0WJXSik3o8WulFJuRotdKaXcjFOKXUR+JyJGRCKc\nsT2llFIt1+piF5E4Ghayzmp9HKWUUq3ljD32p4HfA+0/IF4ppdQvtKrYRWQKkGuMWeukPEoppVrp\nmBcoicjXQLcjfOo+4F4aDsMck4hcB1zX+GG5iGxpash2FgEU2Q7RRJrV+TpKTtCsbcWVs/Zoyp1a\nPKWAiAwGvgEqGm+KBXYDI40x+S3aqAsQkdSmXLLrCjSr83WUnKBZ20pHyno0LZ5SwBizHuh66GMR\n2QWkGGNc9TedUkp5BB3HrpRSbsZpk4AZYxKctS3LXrIdoBk0q/N1lJygWdtKR8p6RFam7VVKKdV2\n9FCMUkq5GS32RiLynoisaXzbJSJrGm9PEJGDh33uRcs5/yQiuYflOeOwz90jIttFZIuInG4zZ2Oe\nJ0QkXUTWicjHIhLeeLtLPaeHiMikxuduu4jcbTvPISISJyILRWSTiGwUkdsabz/qa8Gmxp+f9Y2Z\nUhtv6ywiC0RkW+O/nVwgZ7/Dnrs1IlIqIre76vPaHHoo5ghE5EmgxBjzkIgkAPOMMUl2UzUQkT8B\n5caYv/3s9oHAO8BIIAb4GuhrjKlr95D/y3Qa8K0xplZEHgMwxtzlas8pgIh4AVuBU4EcYCUw3Riz\nyWowQESigWhjzCoRCQHSgKnAhRzhtWDbkUbIicjjQLEx5tHGX5qdjDF32cr4c43f/1xgFHAlLvi8\nNofusf+MNCzmeSENJdmRTAHeNcZUGWMygO00lLw1xpivjDG1jR8uo+FaB1c1EthujNlpjKkG3qXh\nObXOGJNnjFnV+H4ZsBnobjdVs00B3mh8/w0afjG5klOAHcaYTNtBnEGL/ZdOAPYYY7YddlvPxj/J\nvhORE2wFO8ytjYc3Xj3sT9ruQPZh98nBtX74rwK+OOxjV3tOXf35AxoOYwHDgOWNNx3ptWCbAb4W\nkbTGK84BoowxeY3v5wNRdqId1cX8dGfOFZ/XJvOoYheRr0VkwxHeDt8zm85Pv8F5QLwxJhm4A3hb\nREIt5nwB6AUkN2Z7si2ztDLrofvcB9QCsxpvavfn1B2ISDDwIXC7MaYUF3stHOb4xu/tZOBmETnx\n8E+ahuO/LnMMWER8gXOA9xtvctXntck8ajFrY8zEX/u8iHgD04ARh31NFVDV+H6aiOwA+gKptnIe\nIiL/BuY1fpgLxB326djG29pUE57TK4CzgFMaf6CtPKdNYOX5ayoR8aGh1GcZYz4CMMbsOezzh78W\nrDLG5Db+WyAiH9NwmGuPiEQbY/IazxkUWA35U5OBVYeeT1d9XpvDo/bYm2AikG6MyTl0g4hENp5Y\nQUR6AX2AnZbyHTqRdsi5wIbG9+cCF4uIn4j0pCHnivbOdzgRmUTDlM7nGGMqDrvdpZ7TRiuBPiLS\ns3EP7mIanlPrGs/7vAJsNsY8ddjtR3stWCMiQY0neBGRIBomCdxAw3N5eePdLgc+sZPwiH7yV7or\nPq/N5VF77E3w8+NsACcCD4lIDVAP3GCMKW73ZP/zuIgk0/Cn7C7gegBjzEYRmQ1souGwx802R8Q0\nehbwAxY0dBPLjDE34HrPKY0jd24B5gNewKvGmI02Mx1mHDATWC+Nw3BpmFl1+pFeC5ZFAR83fr+9\ngbeNMV+KyEpgtohcDWTSMEDBusZfPqfy0+fuiD9jHYkOd1RKKTejh2KUUsrNaLErpZSb0WJXSik3\no8WulFJuRotdKaXcjBa7Ukq5GS12pZRyM1rsSinlZv4fUZZANMPXqvAAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot the northward heat transport in this model\n", "Rtoa = np.squeeze(diffmodel.timeave['ASR'] - diffmodel.timeave['OLR'])\n", "plt.plot(diffmodel.lat, inferred_heat_transport(Rtoa, diffmodel.lat))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Band model with diffusion" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": true }, "outputs": [], "source": [ "diffband = climlab.process_like(model3)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "8.92760732994e-07\n" ] } ], "source": [ "# thermal diffusivity in W/m**2/degC\n", "D = 0.05\n", "# meridional diffusivity in 1/s\n", "K = D / diffband.Tatm.domain.heat_capacity[0]\n", "print K" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "climlab Process of type . \n", "State variables and domain shapes: \n", " Tatm: (96, 26) \n", " Ts: (96, 1) \n", "The subprocess tree: \n", "top: \n", " diffusion: \n", " LW: \n", " H2O: \n", " convective adjustment: \n", " SW: \n", " insolation: \n", "\n" ] } ], "source": [ "d = climlab.dynamics.MeridionalDiffusion(K=K, state={'Tatm': diffband.Tatm}, **diffband.param)\n", "diffband.add_subprocess('diffusion', d)\n", "print diffband" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Integrating for 365 steps, 365.2422 days, or 1 years.\n", "Total elapsed time is 3.00074854439 years.\n" ] } ], "source": [ "diffband.integrate_years(1)" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Integrating for 365 steps, 365.2422 days, or 1 years.\n", "Total elapsed time is 4.00008542277 years.\n" ] } ], "source": [ "diffband.integrate_years(1)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD8CAYAAABekO4JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X/sHPV95/HnC//k948aiLENdokJNShAzrFoUJoUcEA0\niqM7HfLpgtxLriipm0IOHQfk1Aj1XDlpRZvTlVZWIWepTpELpvhIQzHUSYUU2zXE/PAParf8Mpgf\nbgIYKP5i874/5rNh+Pq7+53d7+zM5zPzfkhffWdnZ3c/uzvz2vd+duYzMjOcc87F66i6G+Ccc643\nD2rnnIucB7VzzkXOg9o55yLnQe2cc5HzoHbOuch5UDvn3ARImi5pi6THJW2XdOuo62+QZJJm5Obd\nLGmPpKclXTHeY0weRsOdc65FDgKXmtlbkqYAj0j6oZltkjQH+BzwfGdhSQuApcB5wBnAQ5LOMbPD\n3R7AK2rnnJsAy7wVLk4Jf50jCf8YuDF3GWAJcJeZHTSzZ4A9wKJejxFFRT15+rE27fhTBrrt4akl\nNyawqYMdsTl16qHS2nDC5HdLu6+iTp70TuWPmYqfHz6mlsd989D0Uu5nZGTwzV0jKqUNY5k00t/y\n7+zfu9/MTp3IY376s9Pt5z97v9Cy2598bzuQ3xhXmdmq/DKSJgGPAh8F/tTMNktaArxoZo9LH3r9\nZgGbcpf3hnldRRHUx0w5mU+e/9t1N2NMb5w9rfT7PHDW8Fb6vINn9rkFAG+Nv0hrTelz+WnPl1NF\nHDfO9cc/N5xhIE7854NDud+J+vsf3fLcRO/j5z97n3t+MGP8BYFzz9z3rpkt7LVM6La4UNJJwL2S\nPg7cQtbtMWFRBLXeHWHqrr11NwOAkXNnf+hy2SvrG2dPG9qGdaQhfd1whVT3PlcTqrFsozEzs9cl\nbSTr3pgHdKrp2cBjkhYBLwJzcjebHeZ1FUVQxyS/Mo4O7TKM3qCGUbF39AqKqqr6pqsyjPM8mOMh\n6VTgvRDSRwOLgW+b2Wm5ZZ4FFprZfknrge9Luo3sx8T5wJZej+FB3UNnRR1GYHdUGdx5Ew2YJgR9\nXSE7qCq7Ijyk+zITWB36qY8C1prZ/d0WNrPtktYCO4BDwPJee3yAB3UhU3ftHWpY59UV3P1KLeRS\nU2f/sId0f8zsCeCicZaZO+ryCmBF0cfwoC6oyrDOSyW43cTE8sOdh3ScPKj7UFdY53XboD3A0xBL\nII/FQzpeHtR9iiGsx9IrADzEqxNzEPfiIR03D+oBxBrW3XgVXp5Ug7gXD+n4eVAPKLWwHst4odPG\nIG9iEPfiIZ0GD2rXVT+hFXuoty2Ai/CQTocH9QQ0oaouS5EgHGaYexD3x0M6LR7UE+RhXZyHaRw8\npNPjw5yWwFd8lwpfV9PkQV0S3wBc7HwdTZcHdYl8Q3Cx8nUzbR7UzjkXOQ/qknnl4mLj62T6PKid\ncy5yHtTOORc534/a1WKiB7/4PtmuTTyoXSXKPipx9P15cLsm86B2Q1XVGCCdx/HAdk3kfdQl88PJ\nM2+cPa2WgZrqelzXXpKmS9oi6XFJ2yXdGub/oaRdkp6QdK+kk3K3uVnSHklPS7pivMfwoHaliiUo\nY2lHDLx4GLqDwKVmdgFwIXClpIuBDcD5ZvZx4J+AmwEkLQCWAucBVwK3hxPjduVB7UoRazDG2i7X\nHJZ5K1ycEv7MzB40s0Nh/iag84m5BLjLzA6a2TPAHmBRr8fwoC5RGyuXVIIwlXYOSxvXzSpJmiRp\nG/AqsMHMNo9a5MvAD8P0LOCF3HV7w7yu/MdEN5BUQ++Ns6f5D46Onx8+hrvf/ETBpX8wQ9LW3IxV\nZrYqv4SZHQYuDP3Q90o638yeApD0TeAQsGbQ9npQl6RNFUuqId3he4i4Pu03s4VFFjSz1yVtJOt7\nfkrSbwKfBy4zMwuLvQjMyd1sdpjXlXd9uMKa1n3QpOdSRJuKiSpJOrWzR4eko4HFwC5JVwI3Al8w\ns3dyN1kPLJU0TdI8YD6wpddjeEVdgqZvAE0ONK+uXQlmAqvDnhtHAWvN7H5Je4BpwAZJAJvM7Ktm\ntl3SWmAHWZfI8tB10pUH9QQ1OaSbHNCjtaXveuTc2T6aXsnM7AngojHmf7THbVYAK4o+hnd9uCM0\nrYujqLY85yYXF03lFfUENG2Fb0tQ9eJdIS5GXlEPqEkh3dYKupemvx5NWn/bwIN6AE1ZyT2ge2v6\n69OU9bgNvOujT01YuZscPsPg3SGubl5Rt0jTK8Rha+Lr14TCow08qPuQ8krdtICpU9MCO+X1ui3G\nDWpJcyRtlLQjjLV6XZh/iqQNknaH/yfnbtPXWKspSHVlblqoxKRJr2uq63dbFKmoDwE3mNkC4GJg\neRhP9SbgYTObDzwcLg801mrsUl2JmxQksWrSB2Gq63kbjBvUZrbPzB4L0weAnWRD8i0BVofFVgNf\nDNN9j7UasxRX3iaFRyqa8pqnuL63QV991JLmkh0quRk43cz2hateBk4P032PtRqrFFfaJoRFyprw\n+qe43jdd4aCWdBxwD3C9mb2Zvy4M32dj3rD7/V0raaukrSPv/1s/N61EiitrE0KiCZpQXae4/jdZ\noaCWNIUspNeY2bow+xVJM8P1M8nObAAFx1o1s1VmttDMFk496uhB2+9oRjA0kb8nrixF9voQcAew\n08xuy121HlgWppcB9+Xm9zXWakxGzp2dVDXhYRC3lD9EU9oOmq5IRX0JcA1wqaRt4e8qYCWwWNJu\n4PJwGTPbDnTGWn2AAmOtxiK1FTPVAGijVN+r1LaJphr3EHIzewRQl6sv63KbvsZajUFqK2SqG36b\npTrmtY9hXT8/MhEPaVedVLtCUttGmqbVgzKluPKluJG7I6VYXXe2F6+uq9faitpD2tUt1fczxW0n\nda0L6tT26uhIdaN2vaX6vqa4DQ2LpOmStkh6PIyHdGuYX9p4SK0J6lQDGtLdmF0xqb6/KW9TJTsI\nXGpmFwAXAldKupgSx0NqfFCnvjKluhG7/qT8Pqe+jU2UZd4KF6eEP6PE8ZAa+WNiU1aalDfeiThw\nljj+ub5GJGiEFH9gzEvpx8Y3D01nw8vnFlz6BzMkbc3NWGVmq/JLhIr4UeCjwJ+a2WZJvcZD2pS7\n+bjjITUiqJsSzHlNDOkDZ3XbHX+wZZsY5qmHNXx4e0whtAvYb2YLey0QDuq7UNJJwL2Szh91vUka\neIVNLqibGMqjNSWk+wnmMu6/KcHdhLDuaGBo92Rmr0vaSNb3/IqkmWa2b5DxkPKiCGqbPrUVAVxE\nE0J62AE93uM2IbCbFNYdo7fxpgS3pFOB90JIHw0sBr7NB+MhreTI8ZC+L+k24AwKjIcURVC7TMoh\nXVc4jyXflpRDu4lhnTdWcZZoeM8EVod+6qOAtWZ2v6SfAGslfQV4DrgasvGQJHXGQzpEgfGQPKgj\nkWpIxxTQY0m9ym56WI9W6Jv1y8NvRz/M7AmyE6qMnv+vlDQeUuN3z3PDceAsRR/Seam1Ny/VD3FX\nHg/qCKS0IaYceJBu+1NaR1z5PKhrlsoGmGrAdZPic0llXXHl8z7qGqWw4aUYaEWl3n/t2sMr6pp4\nSMcjpW8LKaw3rnwe1O4IKQVXmVJ5zh7W7eNBXYOYN7RUwmpYUvmQinkdcuXzoK5YrBtYKgFVlRRe\ni1jXJVc+D2qXRCjVwV8XFwsP6grFWAF5GPUW+zeNGNcpVz4P6orEuEHFHECxifm1inHdcuXyoG6p\nmIMnVjG/Zh7WzeZBXYHYNqKYAyd2/tq5OnhQD5mHdPPE+hrGtq658nhQt0isAZOiWF9LD+tm8qAe\nopg2mliDJWX+mrqqeFAPiYd0O8T42sa07rlyeFA3XIxB0jQxvsYe1s3iQT0EsWwkMQZIU/lr3V6S\n5kjaKGmHpO2SrgvzL5S0SdI2SVslLcrd5mZJeyQ9LemK8R7Dg7qhPDiqF9trHkvB0AKHgBvMbAFw\nMbBc0gLgO8CtZnYh8HvhMuG6pcB5wJXA7eHEuF15UJcsho0jtsBoE3/t28fM9pnZY2H6ALATmAUY\ncEJY7ETgpTC9BLjLzA6a2TPAHmARPfgZXpwr2YGzFM1ZY9p2FvOiRkYm8+zeU4suPkPS1tzlVWa2\naqwFJc0lOyP5ZuB64O8k/RFZUfypsNgsYFPuZnvDvK48qEvk1bTriCms3YTtN7OF4y0k6TjgHuB6\nM3tT0v8CvmFm90i6GrgDuHyQBhTu+pA0SdJPJd0fLp8iaYOk3eH/ybll++ood+XwkI5LLO9HDAVE\n00maQhbSa8xsXZi9DOhM/zUfdG+8CMzJ3Xx2mNdVP33U15H1vXTcBDxsZvOBh8PlgTrKm6DujSGW\nUOjXwTNHCv25ial7/WwySSKrlnea2W25q14CPhOmLwV2h+n1wFJJ0yTNA+YDW3o9RqGuD0mzgd8A\nVgD/LcxeAnw2TK8GfgT8D3Id5cAzkjod5T8p8lgp8o2guEFDd/Ttpj0/tYzmDJ13gbTCJcA1wJOS\ntoV5twC/BXxX0mTgXeBaADPbLmktsINsj5HlZna41wMU7aP+E+BG4PjcvNPNbF+Yfhk4PUz33VHu\nJib2anoYFXH+PmMP7VjC2n9YHA4zewTothH+uy63WUFW+BYybteHpM8Dr5rZo92WMTMj2xWlMEnX\nhp3At46893Y/N41K3dV0zCFdVbdFCt0jMb9PLn5FKupLgC9IugqYDpwg6S+BVyTNNLN9kmYCr4bl\nC3WUh91bVgGccPzs+ssNV5q6QrPzuLFX2HXyqjpN41bUZnazmc02s7lkPxL+vZl9iaxDfFlYbBlw\nX5juu6M8VV5Nf1gslW0s7RgttvfLpWMiRyauBBZL2k22b+BKyDrKgU5H+QMU6Ch3/Ytto48xGGNs\nUwzvW90FhutfXwe8mNmPyPbuwMz+Fbisy3J9dZSnyFf2TIxhmBdjd0gsPy66dPhYHwmKoSqD+EM6\nL6W2VsELjbR4UA+gzpXcQ3pwMfVdx/I+ujR4ULu+xRJ2g4ql/XWHtVfV6fCgTkjdGzbEE3IT1ZTn\n4drBg7pPba5CmhZuMTyfuj9827w+p8SDOhF1b9AxhNowNPV5uWbxoO5DW6uPpodZ3c+v7g/htq7X\nKfGgTkCdG3LdIVaVtjxPlyYP6oLaWHW0LbzqfL5eVbtePKgjV9cG3LaQ7mhzWLt4eVAX0LZqo60h\n3dHW59+29TwlHtQRq6PCamtIxcKrajcWD2r3Cx7SH/DXwsXEg3ocdX0d9MqqfnWFdZ3vvXd/9E/S\nHEkbJe2QtF3Sdbnrvi5pV5j/ndz8myXtkfS0pCvGe4y+hjl1zeUV5NgOnjkS1RCpLkqHgBvM7DFJ\nxwOPStpAdh7ZJcAFZnZQ0mkAkhaQnYTlPOAM4CFJ5/Qat98r6h7aUk17SPdWx+vjVXU6zGyfmT0W\npg8AO8lO6P01YKWZHQzXdU5XuAS4y8wOmtkzwB5gUa/H8KBuOQ9p58Y1o3Mi7vB3bbcFJc0FLgI2\nA+cAn5a0WdKPJX0yLDYLeCF3s71hXlfe9dFFW6ppV0wdXSB1ngmm6SfB1Yj6eT/3m9nCce9TOg64\nB7jezN6UNBk4BbgY+CSwVtIvD9Jer6hbzKvp/vjr5bqRNIUspNeY2bowey+wzjJbgPeBGcCLwJzc\nzWeHeV15UEfEq+n4VR3W3lcdP0kC7gB2mtltuav+Bvj1sMw5wFRgP7AeWCppmqR5wHxgS6/H8K6P\nMbRhBfXq0LnSXAJcAzwpaVuYdwtwJ3CnpKeAEWCZmRmwXdJaYAfZHiPLe+3xAR7UreQhPTFV91f7\nWcvjZmaPAN2++nypy21WACuKPoZ3fYziPyK6ItryYdeGb5cp8KBumbYETNP4B3m7eVDneDXt+tGW\nDz2vquvnQd0ibQkW55rGg7pmXk2nrcoPP99Vr708qIOmr4heTQ+Pv7Zu2DyonUuIfwNrJw9qmv8j\nold8w9eG17jp3zpj5kHdcG0IkLbxqrp9Wh/UTa+mXXXa8KHoVXU9Wh/UTdaG4HCuDVo91odXB/Wb\nO/u1Qss9u/fUIbekHFWNA+JjVbdLa4O6zpBue7dH0XDudptUQtu5shTq+pB0kqS7w9l0d0r6VUmn\nSNogaXf4f3Ju+b7OsOvKF2O3x9zZrw0U0t3up4z7GoaqXns/AKY9ivZRfxd4wMzOBS4gO3njTcDD\nZjYfeDhcHn2G3SuB2yVNKrvhE+ErWbWGGaptD+s6+XZUnXGDWtKJwK+RncEAMxsxs9fJzqS7Oiy2\nGvhimO77DLttUkUVFEtIVFX1xlxdO1eGIhX1POA14HuSfirpLyQdC5xuZvvCMi8Dp4fpQmfYlXRt\n56y+I++9Pfgz6JNXAdWoIzjbGNZ1/97h21M1igT1ZOATwJ+Z2UXA24Rujo5wepm+foI2s1VmttDM\nFk6dcmw/Nx1YG1aqGKrpOgMzprCO4b1wzVAkqPcCe81sc7h8N1lwvyJpJkD4/2q4vu8z7LZF3dVP\nFWIIyhjaUKW616s2FEC9SJojaaOkHZK2S7pu1PU3SDJJM3Lz+trhYtygNrOXgRckfSzMuozspIzr\ngWVh3jLgvjDd9xl2q9CGlanuCi6mgIylLXW/J64Sh4AbzGwBcDGwPOxUgaQ5wOeA5zsLD7LDRdG9\nPr4OrJH0BHAh8AfASmCxpN3A5eEyZrYd6Jxh9wEKnGHXpS+WYMyLsU1N1YZCqBsz22dmj4XpA2R7\nxXV+l/tj4EY+3DXc9w4XhQ54MbNtwMIxrrqsy/J9nWF32GJYier+ejpMMQfi3Nmv1X6ATBVHK8Zw\npvIGH7E4Q9LW3OVVZrZqrAUlzQUuAjZLWgK8aGaPSx/a/mcBm3KXx9zhIq/xRybGENJVqOsrdswh\n3RFDWLu4TBqhnw+2/WY2VqH6IZKOA+4BrifrDrmFrNtjwnxQJjewFEK6I6W2pqwthdFokqaQhfQa\nM1sHnE22a/Pjkp4l26niMUkfYYAdLhod1LGsNE3s9kgx+OpscxXfeJq4nqVAWb/GHcBOM7sNwMye\nNLPTzGyumc0l6974RNg5o+8dLhob1LGEdBWq7vZIMaQ7Um57Ktq07QWXANcAl0raFv6u6rbwIDtc\nNLKPuoUriutDXX3WVQ2BGoMG/7B4BDN7BOj5dSZU1fnLfe1w0diKOhbD/jrq1bTL8+6PZmpcUHs1\nPTxNCum6nkubDoDxbbE8jQpqXzGGp0kh3dHE5xQb3ybL0ZigjnGFaFq3RxM1Maxj6/6IcdtMTSOC\n2leE4WpimNXJP2Bdv5IPag/p4WpDSLfhOdbNt9OJSTqo2/zme1VWrqaFdWzdH9Du7XWikgzqN86e\nFv2bHuOG0q+mhVdM2vpBG/t2G6vkgtrf6Gq0MaTb+Jzr4Ntw/5IJ6hSq6Kq0tRqrQpVhPez3MeZv\ndb499yfqQ8hTfSNj3kCK8MrSVaVNh5pPRHQVdeeTNtWQHjavpofPP6iq5dv6+KKoqA9Pl79ZkfCQ\nqlabBmrqpbP9e3U9tugqaudi0JQPrNS64bxgG5sHdclS2zDymhJOZfHXox7e/XmkKLo+XDHeP91M\n3v3R3Zhh/aPKm1E7r6gd4NVjN/66uBh4UDvXcCl3x7mMB3WJhrlBDLPbw6vG3qp4fbxbK12S5kja\nKGmHpO2Srgvz/1DSLklPSLpX0km529wsaY+kpyVdMd5jeFA759zEHAJuMLMFwMXAckkLgA3A+Wb2\nceCfgJsBwnVLgfOAK4HbJU3q9QAe1C3n1XQxqb9O3v0xPGa2z8weC9MHgJ3ALDN70MwOhcU2AbPD\n9BLgLjM7aGbPAHuARb0ew4M6Af612LlazZC0Nfd3bbcFJc0FLgI2j7rqy8APw/Qs4IXcdXvDvK58\n97ySpFixpF4lVm3u7Nd4du+pQ7t/302vOpPetX6OgtxvZgvHW0jSccA9wPVm9mZu/jfJukfWDNJW\n8KB2zrkJkzSFLKTXmNm63PzfBD4PXGZmFma/CMzJ3Xx2mNeVd30414eUv4Wk+K0vBZIE3AHsNLPb\ncvOvBG4EvmBm7+Rush5YKmmapHnAfGBLr8fwijpyw+qfTjlwmsy7P5J0CXAN8KSkbWHeLcD/BqYB\nG7IsZ5OZfdXMtktaC+wg6xJZbmaHez2AB3UJvFJpl2H3Vbu0mNkjwFgh8Lc9brMCWFH0Mbzro4W8\nmnYuLR7UEfPd8tppmO+7f/tLkwd1y3g1XQ5/HV2VCgW1pG+EY9ifkvRXkqZLOkXSBkm7w/+Tc8v3\ndRx7yrxCcc4N27hBLWkW8LvAQjM7H5hEdpz6TcDDZjYfeDhcHug4dudS5FW1q0rRro/JwNGSJgPH\nAC+RHa++Oly/GvhimO77OHZ3pGH0U3qwpMP7qV3euEFtZi8CfwQ8D+wD3jCzB4HTzWxfWOxl4PQw\nXeg4dknXdo6dP/Rvb0/gKThXH//wc1Uo0vVxMlmVPA84AzhW0pfyy4RDI22Mm3dlZqvMbKGZLZx8\n9LH93NQ551qlSNfH5cAzZvaamb0HrAM+BbwiaSZA+P9qWL7v49hTNayvkN7t4cB3z3QfKBLUzwMX\nSzomHNN+Gdl4q+uBZWGZZcB9Ybrv49idS5l/CLphG/cQcjPbLOlu4DGy49J/CqwCjgPWSvoK8Bxw\ndVi+7+PYnXPVOnCWOP65vnorXY0KjfVhZt8CvjVq9kGy6nqs5fs6jt0Nl1d8w+fjf7hh8kGZItPW\nfsnFH9nV9boNL59bYUvi4qPpOfCgHlgq+6LGXE33Cuduy7U5tF17+VgfrnKLP7KrcEiPddtYxfyh\n6NLmFbWrTFkh27kfr64nxn9QTIdX1BEpu386pgpvGJVwzNV1mdr6u4X7gAe1G7phBmpsYR3Th6Nr\nDg/qAaTyQ2IMqgjS2MLatYukOZI2StoRhoO+LswvbShoD+qGiqGyqzJAPawH40VHKQ4BN5jZAuBi\nYHkY7rm0oaA9qCPRtH7IOoIzlrAexodk09aPJjGzfWb2WJg+QDbExixKHArag9qVrs7AjCWsXTtJ\nmgtcBGxmgkNB5/nuea5UMQTl4o/sqn3XPT+kPG56d4Spu/YWXXyGpK25y6vMbNUR9ykdB9wDXG9m\nb2Zj2GXMzCQNvC+kB3WfUujTq6t/OoaQ7oghrF1j7Dezhb0WkDSFLKTXmNm6MPsVSTPNbN9Eh4L2\nro8IeP+jK8LXkziF4Z/vAHaa2W25q0obCtqD2pUipmq6I8Y2xSiFb4mRuwS4BrhU0rbwdxWwElgs\naTfZCVhWQjYUNNAZCvoBCgwF7V0fDVNHt0fMgVhnF4j3U7eDmT0CdPu0K2UoaK+onXMuch7UbkJi\nrqY7UmhjUd5P3U4e1H0YRl9eyhteSgFYV1tjOELUpc+DukE8FNyg/AfFuHlQu4GkVE13pNhm58CD\n2rVMHWFd9jedlLvL3GA8qGtU5gZXZbeHV6bOVcuD2rWOf9C41HhQF+Q/tmQ85Jyrnge1a6WqP3BS\n2CPHi5F4eVA3QFUh4NV0PPwHxXbxoK6Jb2j18w8elwoPaleIh9rEpdD94eLkQe1azT+AXAo8qBNX\nRZXmYRYn7z5rDw/qAvzX8GbzD6IP+LoeJw/qGqRUCXmIlcv7qd0gPKidwz+QXNw8qBM27OrMw8u5\nOHhQOxek+MGUUjdaU0m6U9Krkp7KzbtQ0qZwotutkhblrrtZ0h5JT0u6oshjeFC7MaUYWqnwfurG\n+b/AlaPmfQe41cwuBH4vXEbSAmApcF64ze2SJo33AB7UFfMKyLlmMbN/AH42ejZwQpg+EXgpTC8B\n7jKzg2b2DLAHWMQ4ZGYlNXdwkg4AT9fdjj7NAPbX3Yg+pdbm1NoL3uYqfMzMjp/IHUh6gOx5FzEd\neDd3eZWZrRp1f3OB+83s/HD5V4C/A0RWEH/KzJ6T9H+ATWb2l2G5O4AfmtndvRowuWBDh+1pM1tY\ndyP6IWmrt3m4UmsveJurIGnrRO/DzEZ3VZTta8A3zOweSVcDdwCXD3pn3vXhnHPlWwasC9N/zQfd\nGy8Cc3LLzQ7zevKgds658r0EfCZMXwrsDtPrgaWSpkmaB8wHtox3Z7F0fawaf5HoeJuHL7X2gre5\nClG1V9JfAZ8FZkjaC3wL+C3gu5Imk/VvXwtgZtslrQV2AIeA5WZ2eNzHiOHHROecc91514dzzkXO\ng9o55yJXa1BLukDSTyQ9Ken/STohd13fh1lWRdLXJe2StF3Sd3Lzo2uzpN+X9EQ4lPVBSWfkrouu\nvR2Srgzt2iPpprrbM5qk6ZK2SHo8rAe3hvmnSNogaXf4f3Ldbc2TdJKku8P6u1PSr8bcZknXSXoq\nvMbXh3nRtndozKy2P+Afgc+E6S8Dvx+mFwCPA9OAecA/A5PqbGuuzb8OPARMC5dPi7nNwAm56d8F\n/jzm9oa2TQrt+WVgamjngrrbNaqNAo4L01OAzcDFZIcK3xTm3wR8u+62jmr3auC/humpwEmxthk4\nH3gKOIZsx4eHgI/G2t5h/tXd9XEO8A9hegPwH8L0QIdZVuRrwEozOwhgZq+G+VG22czezF08luzQ\nVoi0vcEiYI+Z/YuZjQB3kbU3GpZ5K1ycEv6MrJ2rw/zVwBdraN6YJJ0I/BrZwReY2YiZvU68bf4V\nYLOZvWNmh4AfA/+eeNs7NHUH9XY+2AD/Ix/sCD4LeCG33N4wLwbnAJ+WtFnSjyV9MsyPts2SVkh6\nAfjPZAPEQMTtJe62/YKkSZK2Aa8CG8xsM3C6me0Li7wMnF5bA480D3gN+J6kn0r6C0nHEm+bnyLb\n1n5J0jHAVWQZEWt7h2boQS3podDHNPpvCVl3x29LehQ4HohixKJx2jwZOIXsa+5/B9ZKqvX8ReO0\nFzP7ppnNAdYAv1NnW5vEzA5bNjrabGCRpPNHXW988A0mBpOBTwB/ZmYXAW+TdR38QkxtNrOdwLeB\nB4EHgG3A4VHLRNPeYRr6AS9mNt7x7Z8DkHQO8Bth3kCHWZalV5slfQ1YF1aQLZLeJxvcpbY2F3iN\nO9YAf0u2Q36tr/E4Ym7bEczsdUkbyYatfEXSTDPbJ2kmWbUdi73A3lD5A9xNFtTRttnM7iB01Uj6\nA7LnEG3b9KHvAAABJ0lEQVR7h6XuvT5OC/+PAv4n8OfhqoEOs6zI35D9oNj5cJlKNvJYlG2WND93\ncQnQGWg6yvYG/wjMlzRP0lSy8XvX19ymD5F0qqSTwvTRwGKy13Y92TgPhP/31dPCI5nZy8ALkj4W\nZl1GdoRctG3OZcSZZP3T3yfi9g5L3YeQ/ydJy8P0OuB7MPhhlhW5E7hT2dkcRoBlobqOtc0rw4b5\nPvAc8FWI+zU2s0OSfodsmMhJwJ1mtr3mZo02E1itbND3o4C1Zna/pJ+QdYd9hez1vrrORo7h68Ca\n8AH4L8B/IbQ/0jbfI+mXgPfI1tHXJa0k3vYOhR9C7pxzkat7rw/nnHPj8KB2zrnIeVA751zkPKid\ncy5yHtTOORc5D2rnnIucB7VzzkXu/wPWAnh74MdvuwAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD8CAYAAABekO4JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGcRJREFUeJzt3X+QXeV93/H3ByEhG2R+BJkRkqhEI+wArcGojB3Gjmvs\nwDieyHHHFI/DkJiWkhIbYhoXiFPHdukQxyElbR2yNXblqWyiIsDUvwXFjpmCsIRlQBIUCZARFmCB\nQZiAhMSnf5xn4Xq1d/fevbu6z+5+XjN39pznPOee7y53Pzo8e85zZJuIiKjXAf0uICIiRpagjoio\nXII6IqJyCeqIiMolqCMiKpegjoioXII6IqIHkmZLukvSjyVtkPSp0v6Bsv6ypKUt/RdJekHS+vK6\nZrRjHDiR30BExDSwC3in7V9ImgncLulbwH3A+4G/HWafLbZP6vQACeqIiB64uWvwF2V1ZnnZ9iYA\nST0fo4qgPvyIAzx/QRWlRETlNtz70g7bc3t5j7e9Y7Z//vTLnR5vA/BiS9OA7YHWPpJmAOuAXwX+\nm+01o7ztYknrgWeBT9j+wUidq0jHF14zn5c+8LF+l9FXu47Z3e8SYpI46Cez+l1Cf937sa29vsXP\nn36ZVd84sqO+bzxm+4u2l47Ux/Ze4CRJhwE3SjrR9n1tum8HjrH9lKRTgJsknWB7Z7v3ryKoZ+yG\nOVun95wjc7bO7HcJMWlM79+Vmtl+RtJtwJk0Y9TD9dlFM66N7XWStgDHAWvbvW+u+oiI6IGkueVM\nGkmvAd4N3D9K/xll+VhgCfDQSMdIUEdE9GYecJuke4AfAqttf13S70jaBrwV+Iak75T+bwfuKWPU\n1wMX2H56pAPUMfTxojl0y65+lxER0TXb9wAnD9N+I3DjMO2rgFXdHCNn1BERlUtQR0RULkEdEVG5\nBHVEROUS1BERlUtQR0RULkEdEVG5Kq6jjslj1v3b+l3ChNn9xgX9LiFiWFUEtV7cPaUDICaHfAaj\nVhn6iIioXII6IqJyCeqIiMolqCMiKpegjoioXII6IqJyCeqIiMolqCMiKpegjoioXII6IqIHkmZL\nukvSjyVtkPSp0n6EpNWSHixfD2/Z5zJJmyU9IOmM0Y6RoI6I6M0u4J223wScBJwp6S3ApcCttpcA\nt5Z1JB0PnA2cAJwJfH7wqeTtVDHXh2fPyoQ4EdGZx/tdwC+zbeAXZXVmeRlYBryjtC8Hvgf8+9J+\nne1dwMOSNgOnAne0O0bOqCMieiRphqT1wJPAattrgKNsby9dHgeOKsvzgUdbdt9W2tqq4ow6ImJ/\n+vne13L9zjd32PsbR0pa29IwYHugtYftvcBJkg4DbpR04pDtluSx1pugjogY2Q7bSzvpaPsZSbfR\njD0/IWme7e2S5tGcbQM8Bixs2W1BaWsrQx8RET2QNLecSSPpNcC7gfuBm4FzS7dzga+V5ZuBsyUd\nJGkxsAS4a6Rj5Iw6IqI384Dl5cqNA4CVtr8u6Q5gpaTzgK3AWQC2N0haCWwE9gAXlqGTthLUERE9\nsH0PcPIw7U8Bp7fZ5wrgik6PkaGPiIjKJagjIiqXoI6IqFyCOiKicgnqiIjKJagjIiqXoI6IqNyo\nQS1poaTbJG0sc61eVNrHba7ViIhor5Mz6j3AJbaPB94CXFjmUx23uVYjIqK9UYPa9nbbd5fl54BN\nNFPyLaOZY5Xy9X1l+ZW5Vm0/DAzOtRoREWPQ1Ri1pEU0t0qO61yrERHRXsdBLekQYBVwse2drdvK\nEw66mmtV0vmS1kpau/ul57vZNSJiWukoqCXNpAnpFbZvKM1PlDlWGctcq7YHbC+1vXTWzIPHWn9E\nxJTXyVUfAq4FNtm+qmXTuM21GhER7XUyzelpwDnAveWZYACXA1cyTnOtRkREe6MGte3bAbXZPC5z\nrUZERHu5MzEionIJ6oiIyiWoIyIql6COiOjBCPMhnSTpTknryz0jp5b2RZJeKO3rJV0z2jHycNuI\niN4Mzod0t6Q5wDpJq4HPAp+y/S1J7ynr7yj7bLF9UqcHSFBHRPSgTKWxvSw/J2lwPiQDryvdDgV+\nOtZjJKgjYtrZuWc2qx9/Y4e9v3GkpLUtDQO2B4brOWQ+pIuB70j6HM0w86+3dF1c7kt5FviE7R+M\nVEGCOiJiZDtsLx2t09D5kCT9R+CPbK+SdBbNHd7vojn7Psb2U5JOAW6SdMLQOZRa5Y+JERE9ajMf\n0rnA4PL/okz3XKaAfqosrwO2AMeN9P4J6oiIHowwH9JPgd8oy+8EHiz95w4+TEXSsTTzIT000jEy\n9BER0Zt28yH9a+BqSQcCLwLnl21vBz4t6SXgZeAC20+PdIAEdURED0aZD+mUYfqvohkm6ViGPiIi\nKpegjoioXII6IqJyCeqIiMolqCMiKpegjoioXBWX5+2dLZ79xwf1u4yISenQLbv6XUJMsCqCOiLG\nbtqd5Hyv3wXsfxn6iIioXII6IqJyCeqIiMolqCMiKpegjoioXII6IqJyCeqIiMolqCMiKpegjoio\nXII6IqJyCeqIiB5IWijpNkkbJW2QdFFp/ztJ68vrkZbnKSLpMkmbJT0g6YzRjpG5PiIierMHuMT2\n3ZLmAOskrbb9Lwc7SPpL4NmyfDxwNnACcDRwi6TjbO9td4CcUUdE9MD2dtt3l+XngE3A/MHtkgSc\nBXy1NC0DrrO9y/bDwGbg1JGOkTPqiJh2du8+kEe2ze20+5GS1rasD9geGK6jpEXAycCalua3AU/Y\nfrCszwfubNm+jZZgH06COiJiZDtsLx2tk6RDgFXAxbZ3tmz6IK+eTY9Jx0MfkmZI+pGkr5f1IySt\nlvRg+Xp4S9+uBsojIiYzSTNpQnqF7Rta2g8E3g/8XUv3x4CFLesLSltb3YxRX0Qz9jLoUuBW20uA\nW8v60IHyM4HPS5rRxXEiIiaNMgZ9LbDJ9lVDNr8LuN/2tpa2m4GzJR0kaTGwBLhrpGN0FNSSFgC/\nBXyhpXkZsLwsLwfe19Le1UB5RMQkdhpwDvDOlsvx3lO2nc2QYQ/bG4CVwEbg28CFI13xAZ2PUf9n\n4OPAnJa2o2xvL8uPA0eV5a4HyiMiJivbtwNqs+332rRfAVzR6TFGPaOW9F7gSdvr2vWxbcCdHrS8\n7/mS1kpau+eF57vZNSJiWunkjPo04LfLqfxs4HWS/ifwhKR5trdLmgc8Wfp3NFBeLm8ZADh47sKu\nQj4iYjoZ9Yza9mW2F9heRDPe8n9s/y7NgPi5pdu5wNfKctcD5RER0V4v11FfCayUdB6wlebOG2xv\nkDQ4UL6HDgbKIyKiva6C2vb3gO+V5aeA09v062qgPCIi2stcHxERlUtQR0RULkEdEVG5TMoUY/bc\nPxr2Gv9JZc7WXBka9UtQxyumQvB2q5vvOaEe/ZKgnqKmY+hOtIR69EuCepJI8E4uCfUYTwnqPkr4\nBiTUY3QJ6nGU4I2JllCfnhLUw0jgxlQwls9xwr1OVQT13lkJx4gaTMTvYcK/d1UEdURMXTkJ613u\nTIyIqFyCOiKiB5IWSrpN0kZJGyRdVNr/TNJjQ5+jKGmRpBda2q8Z7RgZ+oiI6M0e4BLbd0uaA6yT\ntLps+yvbnxtmny22T+r0AAnqiIgelId8by/Lz0naxDg/0DtDHxERIzty8EHc5XV+u46SFgEnA2tK\n00ck3SPpi5IOb+m6uAx7fF/S20YrIGfUETHtaLc46CezOu2+w/bSUd9TOgRYBVxse6ekvwE+A7h8\n/UvgwzRn38fYfkrSKcBNkk6wvbPde+eMOiKiR5Jm0oT0Cts3ANh+wvZe2y8D/x04tbTvKo8yxPY6\nYAtw3Ejvn6COiOiBJAHXAptsX9XSPq+l2+8A95X2uZJmlOVjgSXAQyMdI0MfERG9OQ04B7hX0vrS\ndjnwQUkn0Qx9PAL8m7Lt7cCnJb0EvAxcYPvpkQ6QoI6I6IHt24Hhbr/8Zpv+q2iGSTqWoY+IiMol\nqCMiKpegjoioXII6IqJyCeqIiMolqCMiKpegjoioXII6IqJyCeqIiMolqCMiKpegjoioXII6IqJy\nCeqIiMp1FNSSDpN0vaT7JW2S9FZJR0haLenB8vXwlv6XSdos6QFJZ0xc+RERU1+nZ9RXA9+2/Ubg\nTcAm4FLgVttLgFvLOpKOB84GTgDOBD4/OEl2RER0b9SglnQozUTX1wLY3m37GWAZsLx0Ww68rywv\nA64rj5t5GNhMeQRNRER0r5Mz6sXAz4AvSfqRpC9IOhg4qjwmHeBx4KiyPB94tGX/bQzz6HRJ5w8+\n1Xfv88+P/TuIiJjiOnnCy4HAm4GP2F4j6WrKMMcg25bkbg5sewAYAJg9f2FX+0a9dh2zu98lDKuL\nJ05HVKeToN4GbLO9pqxfTxPUT0iaZ3t7eYjjk2X7Y8DClv0XlLaYxGoN4E51U39CPbohaSHwZZpR\nBQMDtq9u2X4J8Dlgru0dpe0y4DxgL/BR298Z6RijBrXtxyU9KukNth8ATgc2lte5wJXl69fKLjcD\nX5F0FXA0zRN27+r4u46+mexhPF5G+jkkxGMYe4BLbN8taQ6wTtJq2xtLiP8m8JPBzkMuuDgauEXS\ncbb3tjtApw+3/QiwQtIsmsea/z7N+PZKSecBW4GzAGxvkLSSJsj3ABeOVEDsPwni3o32M0yQTz/l\nb3Xby/JzkjbR/F1uI/BXwMd59UQWWi64AB6WNHjBxR3tjtFRUNteDywdZtPpbfpfAVzRyXvH+EoY\n91fOxqekIyWtbVkfKH9j24ekRcDJwBpJy4DHbP9Y+qWHlM8H7mxZH/aCi1adnlFHRRLGk1NCvB4z\ndsOcrR1fw7DD9nAnqr9E0iHAKuBimtGEy2mGPXqWoK5Uwnh6SYhPbpJm0oT0Cts3SPonNJc2D55N\nLwDulnQqY7jgIkHdJwni6FTGxeumJomvBTbZvgrA9r3A61v6PAIstb1DUtcXXCSoJ1DCOPaHnI33\n3WnAOcC9ktaXtsttf3O4zmO54CJBPUYJ4ZgMOvmcJsx7Y/t2QKP0WTRkvasLLhLUQySAY7rp9DOf\nQO+fKRXUCdmIiTOev18J/e5UEdSe5YRsxDSS3/fu5AkvERGVS1BHRFQuQR0RUbkEdURE5RLUERGV\nS1BHRFQuQR0RUbkEdURE5RLUERGVS1BHRFQuQR0RUbkEdURE5RLUERGVS1BHRFQuQR0RUbkEdURE\nDyQtlHSbpI2SNki6qLT/haT7Jd0j6UZJh5X2RZJekLS+vK4Z7RgJ6oiI3uwBLrF9PPAW4EJJxwOr\ngRNt/1Pg/wGXteyzxfZJ5XXBaAdIUEdE9MD2dtt3l+XngE3AfNvftb2ndLsTWDDWYySoIyJGdqSk\ntS2v89t1lLQIOBlYM2TTh4FvtawvLsMe35f0ttEKqOKZiRER+9OMF82hW3Z12n2H7aWjdZJ0CLAK\nuNj2zpb2P6EZHllRmrYDx9h+StIpwE2STmjdZ6icUUdE9EjSTJqQXmH7hpb23wPeC3zItgFs77L9\nVFleB2wBjhvp/RPUERE9kCTgWmCT7ata2s8EPg78tu1/aGmfK2lGWT4WWAI8NNIxMvQREdGb04Bz\ngHslrS9tlwN/DRwErG6ynDvLFR5vBz4t6SXgZeAC20+PdIAEdURED2zfDmiYTd9s038VzTBJxzL0\nERFRuQR1RETlEtQREZXrKKgl/VG5h/0+SV+VNFvSEZJWS3qwfD28pf9lkjZLekDSGRNXfkTE1Ddq\nUEuaD3wUWGr7RGAGcDZwKXCr7SXArWWdco/72cAJwJnA5wcvRYmIiO51OvRxIPAaSQcCrwV+CiwD\nlpfty4H3leVlwHXlou6Hgc3AqeNXckTE9DJqUNt+DPgc8BOaWx+ftf1d4Cjb20u3x4GjyvJ84NGW\nt9hW2n6JpPMH753f+9zzPXwLERFTWydDH4fTnCUvBo4GDpb0u619yq2R7ubAtgdsL7W9dMacg7vZ\nNSJiWulk6ONdwMO2f2b7JeAG4NeBJyTNAyhfnyz9HwMWtuy/oLRFRMQYdHJn4k+At0h6LfACcDqw\nFngeOBe4snz9Wul/M/AVSVfRnIEvAe4a57pjili04Gdj3veRbXPHsZKIeo0a1LbXSLoeuJtmqr4f\nAQPAIcBKSecBW4GzSv8NklYCG0v/C23vnaD6oxK9BO7+PmYCPiabjub6sP1J4JNDmnfRnF0P1/8K\n4IreSova9COMJ8JI30dCPGqUSZliH1MlkMei3feeAI9+SlBPY9M5kLuVAI9+SlBPEwnliTH055rg\njomQoJ6CEsr9M9zPPuEdvUpQT3IJ5folvKNXCepJJsE8NWTIJLqRoK5YQnn6yFn35CVpIfBlmvmO\nDAzYvlrSB4A/A34NONX22pZ9LgPOA/YCH7X9nZGOkaCuREI5hkp4Txp7gEts3y1pDrBO0mrgPuD9\nwN+2dh4yFfTRwC2SjhvpxsAEdR8klGOsMmRSnzKL6Pay/JykTcB826sByhPIW70yFTTwsKTBqaDv\naHeMBPV+kGCOiZLgroukRcDJwJoRus0H7mxZH3Yq6FYJ6gmScI5+aP3cJbTb04u7mXX/tk67Hylp\nbcv6gO2Bfd5TOgRYBVxse+c4lPmKBPU4SjhHTXK2PW522F46UgdJM2lCeoXtG0Z5v66ngk5Q9yDB\nHJNJzrYnhppB6GuBTbav6mCXrqeCTlB3KeEcU0FCe1ydBpwD3CtpfWm7HDgI+C/AXOAbktbbPmMs\nU0EnqDuQcI6pLEMkvbF9O7DPpR3FjW326Woq6AR1GwnnmK5ytl2fBHWRYI7YV8626zCtgzrhHNGd\nnG33x7QK6gRzxPjJLe77z5QN6oRyxP6X8J4Ykz6oE8gRdctjzHpXRVDPmrUngRsxzYz1d37rONcx\nGRzQ7wIiImJkCeqIiMolqCMiKpegjoioXII6IqJyVVz1sXv3gcNeqpMrQSIiKgnqdlrDO6EdMb3k\nOutXVR3UrQb/oyWwI6a2BPS+Jt0Ydf4jRkxNj2ybm9/vNiZdUEPCOmKqye/0yCbN0MdQGQqJmPwS\n0J2ZtEE9qN1/6AR4RB0Sxr2b9EHdztAPR4I7Yv+YbsEs6YvAe4EnbZ9Y2t4EXAMcAjwCfMj2TkmL\ngE3AA2X3O21fMNoxpmxQD5VL/SImznQL5yH+B/BfgS+3tH0B+He2vy/pw8AfA39atm2xfVI3B5g2\nQd0q49sRvZvm4fwK239fzpRbHQf8fVleDXyHV4O6a7I91n3HjaTnePV/BSaLI4Ed/S6iS5Ot5slW\nL6Tm/eENtuf08gaSvk3zfXdiNvBiy/qA7YEh77cI+HrL0Mf/BT5r+yZJHwM+ZXtO6bcBeBB4FviE\n7R+MVkAtZ9QP2F7a7yK6IWltap5Yk61eSM37g6S1vb6H7TPHo5YRfBj4a0l/CtwM7C7t24FjbD8l\n6RTgJkkn2N450pvVEtQREVOG7fuB3wSQdBzwW6V9F7CrLK+TtIVmmGTEf3wm5Q0vERE1k/T68vUA\n4BM0V4Agaa6kGWX5WGAJ8NBo71fLGfXA6F2qk5on3mSrF1Lz/lBVvZK+CrwDOFLSNuCTwCGSLixd\nbgC+VJbfDnxa0kvAy8AFtp8e9Rg1/DExIiLay9BHRETlEtQREZXra1BLepOkOyTdK+l/S3pdy7bL\nJG2W9ICkM/pZ51CSPiLpfkkbJH22pb26miV9RtI9ktZL+q6ko1u2VVfvIElnlro2S7q03/UMJWm2\npLsk/bh8Dj5V2o+QtFrSg+Xr4f2utZWkwyRdXz6/myS9teaaJV0k6b7yM764tFVb74Sx3bcX8EPg\nN8ryh4HPlOXjgR8DBwGLgS3AjH7W2lLzPwduAQ4q66+vuWbgdS3LHwWuqbneUtuMUs+xwKxS5/H9\nrmtIjQIOKcszgTXAW4DPApeW9kuBP+93rUPqXg78q7I8Czis1pqBE4H7gNfSXPhwC/CrtdY7ka9+\nD30Mvc3yX5TlZcB1tnfZfhjYDJzah/qG8wfAlW6uh8T2k6W9ypr9yxfSHwwM/vW4ynqLU4HNth+y\nvRu4jqbearjxi7I6s7xMU+fy0r4ceF8fyhuWpENprjq4FsD2btvPUG/Nvwassf0PtvcA3wfeT731\nTph+B/UGXv0F/ACwsCzPBx5t6bettNXgOOBtktZI+r6kf1baq61Z0hWSHgU+BPyH0lxtvdRd2ysk\nzZC0HngSWG17DXCU7e2ly+PAUX0rcF+LgZ8BX5L0I0lfkHQw9dZ8H83v2q9Iei3wHpqMqLXeCTPh\nQS3pljLGNPS1jGa4499KWgfM4dXbLPtqlJoPBI6g+d/cPwZWSlLF9WL7T2wvBFYAf9jPWqcS23vd\nzIK2ADhV0olDtptX/w+mBgcCbwb+xvbJwPM0QwevqKlm25uAPwe+C3wbWA/sHdKnmnon0oTf8GL7\nXaN02ec2S+AxXj27huYX4bHxr254I9Us6Q+AG8oH5C5JL9NM7tK3mjv4GQ9aAXyT5oL8vv6MR1Fz\nbfuw/Yyk24AzgSckzbO9XdI8mrPtWmwDtpUzf4DraYK62pptX0sZqpH0n2i+h2rrnSj9vupj2Nss\naSYxOVvSQZIW09xmeVd/qtzHTTR/UBz8x2UWzcxjVdYsaUnL6jLg/rJcZb3FD4ElkhZLmgWcTVNv\nNdTcCnxYWX4N8G6an+3NwLml27nA1/pT4b5sPw48KukNpel0YCMV19ySEcfQjE9/hYrrnSj9voX8\ngxrmNkvbGyStpPkQ7QEutL23zXvsb18EvijpPpqhmnPL2XWtNV9ZfjFfBrYCF0DdP2PbeyT9Ic0c\nvjOAL9re0OeyhpoHLFczb8MBwErbX5d0B81w2Hk0P++z+lnkMD4CrCj/AD4E/D6l/kprXiXpV4CX\naD6jz0i6knrrnRC5hTwionL9vuojIiJGkaCOiKhcgjoionIJ6oiIyiWoIyIql6COiKhcgjoionL/\nH2JpwZG9gRAmAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_temp_section(model3)\n", "plot_temp_section(diffband)" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VeW5/vHvkzkhIyRMmQcGAQEhIIMEFBQcKm2titbZ\nMlRsbWvrUE/P6Tm/eurRVq2zUK3WShVn1KIIMqoMAZllSMIQQghhCgkh8/P7I9s2WqaQvbP28Hyu\nKxfJ2jtZdzY7d96svdb7iqpijDHG/wU5HcAYY0z7sMI3xpgAYYVvjDEBwgrfGGMChBW+McYECCt8\nY4wJEFb4xhgTIKzwjTEmQFjhG2NMgAhxOkBLiYmJmpGR4XQMY4zxKatXrz6gqkmnu59XFX5GRgb5\n+flOxzDGGJ8iIrvO5H52SMcYYwKEFb4xxgQIK3xjjAkQVvjGGBMgrPCNMSZAWOEbY0yAsMI3xpgA\n4VXn4RvjDY7VNrDjwDFKjhxnz+HjVFTXgQgChIcGkZIQRVrHKNI7RpHQIczpuMacMSt8E/Aam5Tl\nRQdZuv0Ay4sOsqGkgsamM1vrOSupAyOzExmZ04m8nklEhdmPlPFebnt2ikgwkA+UqOoVItIReB3I\nAHYC16jqYXftz5i22nXwGG/k7+GtNXsoraghJEgYkBrPtNFZ9OseR0pCFCkJkcRHhSIiqCrH6xvZ\nc/g4uw9WU1BexfKig7y1Zg+vLN9FdHgI3xnQnUlDUumfEoeIOP0tGvMNonpmI5nTfiGRXwC5QKyr\n8B8GDqnqQyJyH5Cgqvee6mvk5uaqTa1gPK1gfxWPz9/GhxtKESCvZxJXD05lTK8kOoS3fgxU19DE\n6l2HeXP1Hj7csJea+ibOS4vnV5f0YkROovu/AWO+RURWq2ruae/njsIXkRTgZeBB4Beuwt8KjFHV\nUhHpBixS1V6n+jpW+MaT9h45zh/mbeXdL0uICA3mlhEZ3Dg8nW5xkW7bx9Gaet79soRnFxVSWlHD\nBTmJ3DOhF/1T4t22D2O+rb0L/03g90AM8EtX4R9R1XjX7QIc/vrjk7HCN57Q1KT8bcUu/m/uFhqa\nlJtHZDA1L4tO0eEe22dNfSOvrtjN0wsLOFxdx20jM/nlJb2IDAv22D5N4DrTwm/zMXwRuQLYr6qr\nRWTMie6jqioiJ/zNIiJTgCkAaWlpbY1jzDcUlVdxz5vryd91mFE9Evnf751Lascoj+83IjSY2y/I\n5JrcFB7+aCsvLNvB/K/KeOj7/Rme3cnj+zfmRNo8wheR3wM3Ag1ABBALvA0MwQ7pGAd9sH4v9765\nnpDgIH5zRR+uGpTs2Aupy4sOcu9b69l9qJq7xvbgpxf1ICjIXtQ17nGmI/w2X3ilqveraoqqZgCT\ngE9V9QZgDnCz6243A++1dV/GnIm6hiZ+O2cTd876kt7dYvn4Z3n8YHCKo2fNDMvqxEd35fG985J5\nfP52bn95FRXV9Y7lMYHJk1faPgRcLCLbgXGuj43xqCPVdfzwz8t56fOd3DYyk9emDKNrXITTsQCI\nDAvmj1cP4P99tx/LCg7wnaeWsb2s0ulYJoC47bRMd7BDOqYtSo4c5+YXV7L7YDWPXN2fiQOTnY50\nUmt2H2bqK6upb2zihZuHMDg9welIxoe12yEdY7zB1n2VXPXM55RV1PDybUO9uuwBBqUl8Na0EcRH\nhvLDPy9n4Zb9TkcyAcAK3/i8jSUVXP3c5yjK7GnDfeYsmLROUbwxbQTZSdH86K/5vLe2xOlIxs9Z\n4RuftnnvUW54YQUxEaG8OW0E53SLdTpSqyTFhPPalGEMTk/gF7PXMXdDqdORjB+zwjc+a1tZJTe8\nsILI0GD+PnlYu5xf7wkxEaG8eMsQBqTE8dPXvuTTLWVORzJ+ygrf+KSdB45x/cwVhAQJsyYPI62T\nb5b916LDQ3jptqH07hrLtL+tYdn2A05HMn7ICt/4nEPH6rjlLytpUmXW5GFkJnZwOpJbxEaE8srt\nQ8lK7MDUV/LZvPeo05GMn7HCNz6lpr6RH728itKKGmbelEtO52inI7lVfFQYL906lJiIUG57aRWl\nFcedjmT8iBW+8RlNTcrPX1/Ll8VHePzagX577nrXuAhevGUIlTX13PZSPlW1DU5HMn7CCt/4jD/M\n28rcjft44LJzuPTcbk7H8ag+3WN5+oeD2FZWyZ2z1pzxClzGnIoVvvEJH20s5ZlFhUwaksrtF2Q6\nHaddjOnVmd9e2ZdFW8t5fP42p+MYP2CFb7xewf4q7p69jgGp8fz3xL4BtXTgDeencfXgFJ78tID5\nm+10TdM2VvjGq1XW1DP1lXwiQoN59oeDCA8JrAVERIT/991+9EuO5eez17LzwDGnIxkfZoVvvJaq\nct9bG9h5sJonrz+P7vHuW4rQlzT/shtMcJAw7W+rOV7X6HQk46Os8I3Xmp1fzIcbSrn7kp6MyA7s\nxcBTO0bxp0nnsWVfJQ/+Y7PTcYyPssI3XqlgfxW/nbOZEdmdmJaX7XQcrzC6ZxKTR2Xyt+W7+cSO\n55uzYIVvvE5tQyM//fuXRIQG8di1A20pwBZ+Ob4XfbrFcs+b6yg7WuN0HONjrPCN13nko61sLj3K\nIz8YQJdY71ityluEhwTzxHXncby+kbtnr6PJzs83rWCFb7zKiqKD/HnZDm4cls64Pl2cjuOVcjpH\n859X9GVZwQFe+nyn03GMD7HCN16juq6Be95aT1rHKO6/rLfTcbzadUNTGdMriYc/3sKug3aqpjkz\nVvjGazzy8VZ2Hazm4R/0JyosxOk4Xk1E+P33zyU0KIh73lxvh3bMGbHCN15h5Y5DvPT5Tm4ens6w\nLN9YotBp3eIi+Y8rzmHFjkO8umKX03GMD7DCN447XtfIPW+uIzUhinsvtUM5rXFNbiqjeiTy+7lb\nKD5U7XQc4+XaXPgikioiC0Vks4hsEpG7XNs7isgnIrLd9a9/zmVr2uzJT7ez82A1D111rh3KaSUR\n4aGr+iPAf7y7EVU7tGNOzh0j/AbgblXtAwwDpotIH+A+YIGq9gAWuD425hu2lVUyY0kRVw1KCfir\nac9Wcnwkv7ikF4u3lTN34z6n4xgv1ubCV9VSVV3jer8S+ApIBiYCL7vu9jLw3bbuy/iXpiblgXc2\nEB0RwgOXn+N0HJ928/B0+nSL5b/f32QLppiTcusxfBHJAM4DVgBdVLXUddM+wE6qNt/wxupiVu08\nzK8vPYeOHcKcjuPTQoKDePB7/dhfWcuj82zufHNibit8EYkG3gJ+pqrfWH1Zmw8snvDgoohMEZF8\nEckvLy93Vxzj5Q5W1fL7uVsYmtGRq3NTnI7jF85LS+C6oWm89PkONu2tcDqO8UJuKXwRCaW57F9V\n1bddm8tEpJvr9m7A/hN9rqrOUNVcVc1NSkpyRxzjAx75eCtVNQ08+L1+AbWgiafdO743CVFh/Obd\njXZuvvk37jhLR4AXgK9U9dEWN80Bbna9fzPwXlv3ZfzDuuIjvJ5fzK0jM+jRJcbpOH4lLiqUey/t\nzZrdR3h3bYnTcYyXcccIfyRwI3CRiKx1vV0GPARcLCLbgXGuj02Aa2pS/nPOJhKjw/np2B5Ox/FL\nPxiUwoCUOB6au8VewDXf4I6zdJapqqhqf1Ud6Hr7h6oeVNWxqtpDVcep6iF3BDa+7c3Ve1hXfIRf\nX9abmIhQp+P4paAg4b+u7Mv+ylqe+rTA6TjGi9iVtqbdVFTX838fbSE3PYHvDkx2Oo5fG5SWwFWD\nUnhx2Q522Dq4xsUK37Sbxxds43B1Hb+9sq+9UNsO7p3Qi7CQIH73gS2JaJpZ4Zt2UVhexStf7OLa\nIWn0S45zOk5A6BwbwZ0X5bBgy36WbT/gdBzjBazwTbv43w+/IiI0mLsv6el0lIByy4gMUhIi+d2H\nm2m00zQDnhW+8bil28tZsGU/d16UQ2J0uNNxAkpEaDD3XdqbLfsqeXN1sdNxjMOs8I1HNTQ28bsP\nviKtYxS3jsxwOk5AuvzcbgxKi+cP87ZxzE7TDGhW+MajXltVzNaySn59WW/CQ4KdjhOQRIQHLu9D\neWUtzy8pcjqOcZAVvvGYqtoGHvtkG0MzOzK+b1en4wS0wekJXNG/GzOWFLKvosbpOMYhVvjGY55f\nXMjBY3U8cNk5dhqmF7h3Qm8am5TH59tsmoHKCt94RNnRGmYuLeI7A7ozIDXe6TgGSO0YxQ3D0pmd\nX0zB/kqn4xgHWOEbj3h03jYam5RfXdLL6SimhTsvzCEqLISHP9rqdBTjACt843Zb91Xyxupibhqe\nQVqnKKfjmBY6RYczNS+LeZvLWL3LprcKNFb4xu0emvsV0eEh/OSiHKejmBO4fVQmSTHhPDR3iy16\nHmCs8I1bLS86yMKt5Uy/MIf4KFu20BtFhYXws3E9WLXzMAu+OuG6RMZPWeEbt1FVHpq7hW5xEdw8\nIsPpOOYUrslNJTOxA3+Yt9VWxgogVvjGbeZtLmNt8RF+Nq4HEaF2kZU3Cw0O4ucX92TLvkrmrNvr\ndBzTTqzwjVs0NDbxyMdbyU7qwFWDbFFyX3DFud3o0y2WRz/ZRl1Dk9NxTDuwwjdu8faaEgr2V/Gr\n8b0ICbanlS8IChJ+Nb4Xuw9V83q+TawWCOwn07RZTX0jj83fxsDUeJtCwceM6ZXEkIwEnlywneN1\njU7HMR5mhW/a7G/Ld1FaUcM9E3rZFAo+RkT41fje7K+s5aXPdzodx3iYFb5pk8qaep5eWMCoHomM\nyE50Oo45C0MzOzKmVxLPLymksqbe6TjGg6zwTZvMXLqDw9X13DO+t9NRTBvcfXEvjlTX8+KynU5H\nMR5khW/O2oGqWl5YWsRl53bl3BRbp9aXnZsSx/i+Xfjz0iKOVNc5Hcd4iMcLX0QmiMhWESkQkfs8\nvT/Tfp5eWEBNQxN32wRpfuHnF/ekqq6BGbZIit/yaOGLSDDwNHAp0Ae4TkT6eHKfpn2UHDnOq8t3\n84NBKWQnRTsdx7hB766xfKd/d/7y2U4OVNU6Hcd4gKdH+EOBAlUtUtU64DVgoof3adrBn1yLaNw1\nrofDSYw73TWuB7UNjTy7qNDpKMYDPF34yUDLKzr2uLYZH1ZYXsWbq/dww7B0usdHOh3HuFF2UjTf\nH5TC35bvouyoLYXobxx/0VZEpohIvojkl5eXOx3HnIHHPtlGRGgwd1yY7XQU4wE/vagHjU3K0wsL\nnI5i3MzThV8CpLb4OMW17Z9UdYaq5qpqblJSkofjmLbatLeCD9aXctvITBKjw52OYzwgrVMUV+em\n8NrKYkqOHHc6jnEjTxf+KqCHiGSKSBgwCZjj4X0aD3p03jZiI0KYnJfldBTjQXde1PzazFOf2ijf\nn3i08FW1AbgT+Bj4Cpitqps8uU/jOat3HWbBlv1MHZ1NXGSo03GMByXHRzJpaCpv5BdTfKja6TjG\nTTx+DF9V/6GqPVU1W1Uf9PT+jOf8cd5WEqPDuHVkhtNRTDu4Y0wOQUHCEwu2Ox3FuInjL9oa3/B5\nwQE+LzzIHWNyiAoLcTqOaQdd4yK44fx03v6yhJ0Hjjkdx7iBFb45LVXlj59so2tsBNefn+Z0HNOO\npo3JIjRYeOJTG+X7Ayt8c1qLtpWzetdh7rwox5YuDDCdYyK4cVg6735ZQlF5ldNxTBtZ4ZtTUlUe\nnbeNlIRIrslNPf0nGL8zdXQ24SHBdizfD1jhm1Oat7mMDSUV3DW2B2Eh9nQJRInR4dw0PJ056/ZS\nsN9G+b7MfoLNSTU1KY99so2sxA587zybESOQTcnLIiLURvm+zgrfnNTcjfvYsq+Su8b1sIXJA1yn\n6HBuGp7B++v3sr2s0uk45izZT7E5oaYm5U8LtpHTOZor+nd3Oo7xAlPysogMDeZJu/rWZ1nhmxP6\ncEMp28qq+OnYHgQH2cLkBjp2CPvnKN+O5fsmK3zzbxqblD8t2E7PLtFcfm43p+MYLzJ5VCYRIcE8\naefl+yQrfPNvPnCN4O4a29NG9+YbOrnO2Hl/3V4K7bx8n2OFb77h69F9764xXNqvq9NxjBeanJdF\neEiwzaTpg6zwzTd8sH4vReXH+OnYHgTZ6N6cQGJ0ODcMS+O9tXb1ra+xwjf/1NikPLFgO726xDCh\nr43uzclNycsmLCSIpxfa2re+xArf/NOHG0opLD/GT8bm2OjenFJSTDjXD03n3bUl7D5o8+X7Cit8\nAzSfd//kgu306BzNZf3szBxzelNHZxEcJDy72I7l+worfAM0X1W7fX8VP7Fj9+YMdYmN4NrcVN5c\nvcfWvvURVviGJtex++ykDnbevWmVaWOyAXh+sR3L9wVW+IZ5m/extaySn1xkV9Wa1kmOj+QHg1N4\nbVUxZUdrnI5jTsMKP8CpKk9+WkBmYge+M8DmzDGt9+PROTQ2KTOWFDkdxZyGFX6AW7h1P5v2HuXH\nY7JtdG/OSlqnKCYO7M6sFbs5WFXrdBxzClb4AUxVeWJBASkJkTbfvWmTO8bkUNPQyIuf7XA6ijkF\nK/wAtqzgAGuLj/DjMdmE2nz3pg1yOkdzab+u/PXzXVQcr3c6jjmJNv2Ui8gjIrJFRNaLyDsiEt/i\ntvtFpEBEtorI+LZHNe725KcFdI2N4AeDU5yOYvzA9AtzqKxt4JUvdjodxZxEW4d1nwD9VLU/sA24\nH0BE+gCTgL7ABOAZEQlu476MG60oOsjKHYeYOrp5Iixj2qpv9zgu6t2ZF5btoLquwek45gTaVPiq\nOk9Vv/6fXQ58PVScCLymqrWqugMoAIa2ZV/GvZ5eVEinDmFMGpLmdBTjR6ZfmMPh6npmrdjtdBRz\nAu48cHsbMNf1fjJQ3OK2Pa5t/0ZEpohIvojkl5eXuzGOOZn1e46wZFs5t4/KJDLMRvfGfQanJzA8\nqxMzlxZR29DodBzzLactfBGZLyIbT/A2scV9HgAagFdbG0BVZ6hqrqrmJiUltfbTzVl4ZmEhMREh\n3Dgs3ekoxg/dcWE2ZUdreXtNidNRzLeEnO4OqjruVLeLyC3AFcBYVVXX5hIgtcXdUlzbjMO2l1Xy\n0aZ9/OSiHGIiQp2OY/zQBTmJ9E+J4/nFhVyTm2rXd3iRtp6lMwG4B7hSVVvOkToHmCQi4SKSCfQA\nVrZlX8Y9nl1USGRoMLeOzHQ6ivFTIsIdY7LZebCaf2wodTqOaaGtx/CfAmKAT0RkrYg8B6Cqm4DZ\nwGbgI2C6qtoBPYftPljNe+v2cv35aXTsEOZ0HOPHLunTleykDjyzqJB//eFvnNbWs3RyVDVVVQe6\n3qa1uO1BVc1W1V6qOvdUX8e0j+eXFBIswuRRWU5HMX4uKEiYNjqbr0qPsmirnYzhLezyygCxv7KG\nN1bv4arByXSNi3A6jgkAEwcm0z0ugmcW2QIp3sIKP0C8sGwHDY1NTM3LdjqKCRBhIUFMzsti1c7D\nrNp5yOk4Biv8gFBxvJ5Xl+/msnO7kZHYwek4JoBcOySVhKhQnltkC6R4Ayv8APC35buoqm1g2mgb\n3Zv2FRUWwi0jMlmwZT9b91U6HSfgWeH7ueN1jby4bAejeybRLznO6TgmAN00PJ3I0GBbBtELWOH7\nudn5xRw8VscdY2x0b5yR0CGM64amMWfdXvYcrj79JxiPscL3Y/WNTcxYUsTg9ASGZnZ0Oo4JYD8a\n1Xyh35+X2gIpTrLC92Mfri+l5Mhxfjw6GxG7vN04p3t8JBMHJvP6qmIOHatzOk7AssL3U6rKc4sL\n6dE5mot6d3Y6jjFMG53F8fpGXvlil9NRApYVvp9atLWcLfsqmTY6myCbvMp4gR5dYhjbuzMvf7GT\n43U204oTrPD91LOLC+keF8GVA7s7HcWYf5o2JptDx+p4Y3Xx6e9s3M4K3w+t3nWYlTsOcfuoLFuc\n3HiV3PQEBqXFM3NpEQ2NTU7HCTjWBn7oucWFxEeFMmlI6unvbEw7EhGmjs6m+NBx5m7c53ScgGOF\n72cK9lfyyeYybhqeQYfw065vY0y7u/icLmQlduD5JTZ1cnuzwvczM5YUEREaxM3DbflC452CgoQp\neVlsLDnKZwUHnY4TUKzw/UjZ0Rre+bKEa3JT6RQd7nQcY07qe4OSSYoJ5/klNt1Ce7LC9yMvLttB\nY5PyowtsgRPj3cJDgrllRAZLtx9g896jTscJGFb4fuJoTT2vrtjN5f27k9Ypyuk4xpzWDeenExUW\nzMylRU5HCRhW+H5i1ordVNU2MDXPRvfGN8RFhXLtkFTeX7eXvUeOOx0nIFjh+4HahuYpkC/ISbQp\nkI1Puf2CTBT4y2c2qVp7sML3A+99uZf9lbVMHW2je+NbUhKiuKJ/N/6+spijNfVOx/F7Vvg+rqlJ\neX5JIX26xXJBTqLTcYxptSl5WVTVNjBrxW6no/g9txS+iNwtIioiiS223S8iBSKyVUTGu2M/5t8t\n2LKfwvJjTB2dZVMgG5/Ut3scF+Qk8pfPdlDXYNMteFKbC19EUoFLgN0ttvUBJgF9gQnAMyIS3NZ9\nmX83Y0khyfGRXH5uN6ejGHPWJudlUXa0ljnr9jodxa+5Y4T/GHAP0PIa6YnAa6paq6o7gAJgqBv2\nZVpYveswq3Ye5kejMgmxSdKMD8vrkUivLjHMXFJk0y14UJtaQkQmAiWquu5bNyUDLec/3ePaZtxo\nxpJC4iJDuSbXJkkzvk1EmJyXxdaySpZsP+B0HL912sIXkfkisvEEbxOBXwP/2ZYAIjJFRPJFJL+8\nvLwtXyqgFJVXMW9zGTcNT7dJ0oxfuHJAd7rEhjPDplvwmNMWvqqOU9V+334DioBMYJ2I7ARSgDUi\n0hUoAVoOO1Nc20709Weoaq6q5iYlJbX1+wkYM5fuIDQ4iJuGZzgdxRi3CAsJ4taRmXxWcJCNJRVO\nx/FLZ31IR1U3qGpnVc1Q1QyaD9sMUtV9wBxgkoiEi0gm0ANY6ZbEhvLKWt5as4erBqWQFGOTpBn/\ncd3QNDrYdAse45FX+lR1EzAb2Ax8BExXVVvE0k1e/nwn9Y1NTB6V6XQUY9wqLjKUSUPT+GB9KSU2\n3YLbua3wXSP9Ay0+flBVs1W1l6rOddd+At2x2gZeWb6LS/p0ISsp2uk4xrjdbRc0D2T+ssymW3A3\nO5fPx8zOL6bieD1T8rKdjmKMRyTHR7qmW9hNxXGbbsGdrPB9SENjE39euoPc9AQGpyc4HccYj5k8\nKotjdY28ttKmW3AnK3wf8uGG5uOaU0fb6N74t37JcYzI7sRfPttp0y24kRW+j1BVZiwpIiupA2N7\nd3Y6jjEeNzkvi31Ha3jfpltwGyt8H/FZwUE27T3K1LwsgoJskjTj/8b0TKJnl2hmLrXpFtzFCt9H\nPL+kkKSYcL57ns1QYQKDiDB5VBZb9tl0C+5ihe8DNu2tYOn2A9w2MpPwEJt01ASOKwd2p3NMODOX\n2IVY7mCF7wNmLCkiOjyE689PczqKMe0qPCSYW0dmsqzggE234AZW+F6u+FA1H6wv5bqhqcRFhjod\nx5h2d/35Nt2Cu1jhe7kXlu1A+NfVh8YEmrjIUK5zTbew53C103F8mhW+Fzt8rI7XVxUzcWAy3eIi\nnY5jjGNu/Xq6hc92OhvEx1nhe7GXv9jJ8fpGpo7OcjqKMY5Kjo/kO/278drK3VRU23QLZ8sK30tV\n1zXw8uc7Gdu7Mz27xDgdxxjHTcnL5lhdI39bscvpKD7LCt9LzV5VzOHqeqaNsWkUjAHo0z2WvJ5J\n/OWzndTU22zrZ8MK3wvVNzYxc+kOBqcnMCSjo9NxjPEa0/KyOFBVyztfnnABPXMaVvhe6EPX4g/T\nbJI0Y75heHYnzk2OY8aSIhqbbLqF1rLC9zKqynOLC8npHG2TpBnzLSLC1NFZ7DhwjE8273M6js+x\nwvcyC7fuZ8u+SpskzZiTuLRfN9I6RvHsYptUrbWs8L3MMwsLSY6PtEnSjDmJ4CBhcl4W64qPsGLH\nIafj+BQrfC+ycsch8ncdZvKoTEKD7b/GmJO5enAKidFhPLuo0OkoPsVaxYs8vbCATh3CuHaITZJm\nzKlEhDZPqrZ4W7lNqtYKVvheYmNJBYu3lXPbBZlEhtkUyMaczo3D04kJD7FRfitY4XuJZxcVEhMe\nwg3D0p2OYoxPiI0I5cbh6fxjYymF5VVOx/EJbS58EfmJiGwRkU0i8nCL7feLSIGIbBWR8W3djz8r\nLK/iHxtLuWF4uk2BbEwr3HZBJmHBQTy/2Eb5Z6JNhS8iFwITgQGq2hf4g2t7H2AS0BeYADwjInac\n4iSe/rSA8JAgbrcpkI1plcTocCYNSeXtNSXsPXLc6Ther60j/B8DD6lqLYCq7ndtnwi8pqq1qroD\nKACGtnFffmnngWO8u7aEG85PJzE63Ok4xvicyXnNs8nOsGUQT6uthd8TGCUiK0RksYgMcW1PBopb\n3G+Pa9u/EZEpIpIvIvnl5eVtjON7nl5YQGhwEFNsCmRjzkpKQhTfH5TM31fuZv/RGqfjeLXTFr6I\nzBeRjSd4mwiEAB2BYcCvgNki0qrLQ1V1hqrmqmpuUlLSWX0Tvqr4UDVvf1nC9een0Tkmwuk4xvis\n6Rfm0NCkPG+j/FMKOd0dVHXcyW4TkR8Db2vz9c0rRaQJSARKgNQWd01xbTMtPL2wgOAgsUnSjGmj\n9E4d+O7AZF5dsYtpo7NJirHDoyfS1kM67wIXAohITyAMOADMASaJSLiIZAI9gJVt3Jdf2XO4mjdX\n72HSkFS6xNro3pi2uvOiHOoammyx81Noa+G/CGSJyEbgNeBmbbYJmA1sBj4CpquqrVjQwhMLthMk\nNro3xl0yEzswcWAyr3yxi4NVtU7H8UptKnxVrVPVG1S1n6oOUtVPW9z2oKpmq2ovVZ3b9qj+o2B/\nJW+u3sONw9PpHm+LkxvjLtMvzKGmoZGZS3c4HcUr2ZW2DvjjvG1EhgZzhy1faIxb5XSO5soB3Xn5\n853sr7Qzdr7NCr+drSs+wtyN+5icl0UnO+/eGLf7+bie1Dc28dSnBU5H8TpW+O3s4Y+30LFDGD8a\nZefdG+MJGYkduHZIKrNW7Gb3wWqn43gVK/x2tGz7AT4rOMj0C3OIDj/tGbHGmLP007E9CAkWHv1k\nq9NRvIpvTgKGAAALiElEQVQVfjupa2jiv9/fRHJ8JD883+a7N8aTusRGcOvITN5bt5fNe486Hcdr\nWOG3k5lLi9i+v4r/mdiXiFCbR84YT5uWl01MeAiPfLzF6Shewwq/Hew6eIwnFmzn0n5dGXtOF6fj\nGBMQ4qJCmX5hDgu3ljN/c5nTcbyCFb6HqSq/eW8TocFB/Nd3+jodx5iAcuvITHp2iea/5mziWG2D\n03EcZ4XvYe+vL2XJtnJ+eUlPusbZFArGtKewkCD+93vnUnLkOI/P3+Z0HMdZ4XvQroPH+M27G+mf\nEseNwzOcjmNMQMrN6Mh1Q9N48bOdAb/guRW+hxyrbWDKX1cD8NR1gwgOatWs0cYYN7pvQm8SokJ5\n4J0NNDap03EcY4XvAarKL99Yx/b9lTx53XmkdYpyOpIxAS0uKpT//E5f1u2p4I/zAvfcfCt8D3hm\nUSFzN+7jvkt7k9czsBZ1McZbXTmgO9cNTeWZRYV8uL7U6TiOsMJ3s1krdvPIx1u5ckB3Jtv0CcZ4\nld9e2ZdBafH88o11fFUaeBdkWeG70eurdvPrdzZwYa8kHrm6P61c7dEY42HhIcE8d8NgYiJCmPJK\nPoeP1TkdqV1Z4bvJG/nF3Pf2BvJ6JvHsDYMJD7GraY3xRp1jI3juxsGUVdRy819WUnG83ulI7cYK\nv41UlT8vLeKet9YzMjuRGTcOtqkTjPFyg9ISePaGQXxVepSbXlzJ0ZrAKH0r/Daoa2jivrc28LsP\nv2JC367MvCnXyt4YHzH2nC48ff0gNpVUcMuLK6kKgCtxrfDP0oGqWm58YQWv5xdz54U5PH39ICLD\nrOyN8SWX9O3KU9efx7o9FVw3Yzn7Kvx7lSwr/LPwyeYyJjy+hC+Lj/D4tQP55fheBNmFVcb4pAn9\nujHzpsEUlVdx5VPLWFd8xOlIHmOF3wqVNfXc8+Y6Jv81n6SYCN6/8wK+e16y07GMMW10Ue8uvH3H\nSMJCgrjm+S9458s9TkfyCCv8M9DYpPx95W4u/MNi3ly9hzvGZPPe9JH06hrjdDRjjJv06hrDe9NH\nMiA1np+/vo7ps9ZwyM9O22xT4YvIQBFZLiJrRSRfRIa2uO1+ESkQka0iMr7tUdtfU5Py6ZYyLn9i\nKfe/vYGMTlG8c8dI7pnQm7AQ+11pjL/pFB3OrB+dz6/G92Lepn1c8thiPtq4D1X/mH9H2vKNiMg8\n4DFVnSsilwH3qOoYEekD/B0YCnQH5gM9VbXxVF8vNzdX8/PzzzqPu9TUN/LOlyW8sGwHBfurSOsY\nxf2X9mZCv652MZUxAeKr0qPcPXsdm0uPMjyrE/df1pv+KfFOxzohEVmtqrmnu19bV9JWINb1fhyw\n1/X+ROA1Va0FdohIAc3l/0Ub9+cxqsrqXYd5d20JH64v5XB1PX26xfLYtQO4/NzuNqI3JsCc0y2W\nd6ePZNaKXTzxaQFXPvUZl/fvxo9HZ9MvOc7peGelrYX/M+BjEfkDzYeHRri2JwPLW9xvj2ubVzla\nU88XhQdZur2chVvKKTlynIjQIMad04Xrh6YxPLuTjeiNCWBhIUHcMjKTqwanMGNJES8s28GH60sZ\nkpHALSMyubhPF58aDJ628EVkPtD1BDc9AIwFfq6qb4nINcALwLjWBBCRKcAUgLS0tNZ86hmrqW9k\n75Hj7Dl8nIL9VWzcW8HmvUfZvr+KxialQ1gww7I68YuLezK+X1eiw9v6e9AY409iIkK5+5Je/GhU\nFm/kF/PXL3YxfdYaYiNCGN+3K1cM6M6I7E6EBnt3+bf1GH4FEK+qKs1D4QpVjRWR+wFU9feu+30M\n/FZVT3lI52yP4RcfquaZRYXUNjRSW99ETX0jR2vqOXSsjiPV9Rz81ivtSTHh9Osey7nJcYzMSeS8\ntASf+i1tjHFWY5OyZFs576/by7zNZVTVNhAVFszQzI6MzE5kaGZHenWNabcr79vrGP5eYDSwCLgI\n2O7aPgeYJSKP0vyibQ9gZRv3dVJHa+r5ZHMZ4SFBRIQGER4STGxkCL26xhAfFUbnmHBSE6JI7RhF\nRmIUnWNsbVljzNkLDhIu7N2ZC3t3pqa+kaXbD7BkWzmfFx7gwa1fARASJOR0jqZPt1jSO3UgvVMU\nqR0jSYqOoGN0GB3Cgtv9kHFbR/gXAH+i+RdHDXCHqq523fYAcBvQAPxMVeee7ut5y1k6xhhztvZV\n1LC2+DAbS46ycW8FW/dVUnqCKRvCQoLoEBZMRGjz29jenfmPK/qc1T7PdITfpsJ3Nyt8Y4w/qqlv\nZM/haooPHedAVS2HjtVxqLqO6tpGauobqWloYmBqPLdfkHlWX7+9DukYY4w5jYjQYHI6x5DT2dmr\n8+2VSmOMCRBW+MYYEyCs8I0xJkBY4RtjTICwwjfGmABhhW+MMQHCCt8YYwKEFb4xxgQIr7rSVkTK\ngV1O5ziNROCA0yHOgOV0P1/Jajndz9uzpqtq0unu5FWF7wtEJP9MLmF2muV0P1/Jajndz5eynood\n0jHGmABhhW+MMQHCCr/1Zjgd4AxZTvfzlayW0/18KetJ2TF8Y4wJEDbCN8aYAGGFfwZE5HURWet6\n2ykia13bM0TkeIvbnvOCrL8VkZIWmS5rcdv9IlIgIltFZLzDOR8RkS0isl5E3hGReNd2b3xMJ7ge\nswIRuc/pPF8TkVQRWSgim0Vkk4jc5dp+0ueAk1w/OxtcmfJd2zqKyCcist31b4LDGXu1eNzWishR\nEfmZtz6mrWWHdFpJRP5I82Lt/yMiGcAHqtrP2VT/IiK/BapU9Q/f2t4H+DswlOZ1hucDPVW1sd1D\nNue5BPhUVRtE5P8AVPVeb3tMRSQY2AZcDOwBVgHXqepmR4MBItIN6Kaqa0QkBlgNfBe4hhM8B5wm\nIjuBXFU90GLbw8AhVX3I9cs0QVXvdSpjS67/+xLgfOBWvPAxbS0b4beCNK84fA3NxelrJgKvqWqt\nqu4ACmguf0eo6jxVbXB9uBxIcSrLaQwFClS1SFXrgNdofiwdp6qlqrrG9X4l8BWQ7GyqVpsIvOx6\n/2Waf2F5i7FAoap6+8WgZ8wKv3VGAWWqur3FtkzXn3iLRWSUU8G+5SeuQyUvtvgTORkobnGfPXhP\nOdwGtFzk3pseU29+3P7J9ZfRecAK16YTPQecpsB8EVktIlNc27qoaqnr/X1AF2eindAkvjm488bH\ntFWs8F1EZL6IbDzBW8vR3HV88wlQCqSp6kDgF8AsEYl1OOuzQBYw0JXvj57Oc5Y5v77PA0AD8Kpr\nkyOPqS8TkWjgLeBnqnoUL3oOfMsFrv/XS4HpIpLX8kZtPr7sFceYRSQMuBJ4w7XJWx/TVrFFzF1U\nddypbheREOD7wOAWn1ML1LreXy0ihUBPIN+DUU+b9WsiMhP4wPVhCZDa4uYU1zaPOYPH9BbgCmCs\n64fdscf0FNr9cWsNEQmluexfVdW3AVS1rMXtLZ8DjlLVEte/+0XkHZoPl5WJSDdVLXW9JrHf0ZD/\ncimw5uvH0lsf09ayEf6ZGwdsUdU9X28QkSTXCzuISBbQAyhyKN/Xmbq1+PB7wEbX+3OASSISLiKZ\nNGdd2d75viYiE4B7gCtVtbrFdm97TFcBPUQk0zXqm0TzY+k412tKLwBfqeqjLbaf7DngGBHp4Hph\nGRHpAFxCc645wM2uu90MvOdMwn/zjb/mvfExPRs2wj9z3z6eB5AH/I+I1ANNwDRVPdTuyb7pYREZ\nSPOfxjuBqQCquklEZgObaT6EMt2pM3RcngLCgU+ae4vlqjoNL3tMXWcR3Ql8DAQDL6rqJqfyfMtI\n4EZgg7hOFQZ+DVx3oueAw7oA77j+r0OAWar6kYisAmaLyO00z5R7jYMZgX/+QrqYbz5uJ/y58jV2\nWqYxxgQIO6RjjDEBwgrfGGMChBW+McYECCt8Y4wJEFb4xhgTIKzwjTEmQFjhG2NMgLDCN8aYAPH/\nAQYe1toPfYm3AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(diffband.lat, diffband.timeave['ASR'] - diffband.timeave['OLR'])" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xlc1VX+x/HXuewgoICgIAiIG26kaGqmZVZWplaTWdnm\nlNXUtMxi2zRt00xNy0xNi9M21WSZZs1o415Zlhu4oYALIjsii4Dsyz2/P6D5kePCcuHce/k8Hw8f\nwuXyve/H18ubr9/v+Z6jtNYIIYRwHhbTAYQQQtiWFLsQQjgZKXYhhHAyUuxCCOFkpNiFEMLJSLEL\nIYSTkWIXQggnI8UuhBBORopdCCGcjKuJFw0KCtKRkZEmXloIIRzWjh07irTWvc/2PCPFHhkZSWJi\noomXFkIIh6WUymzN8+RUjBBCOBkpdiGEcDJS7EII4WSk2IUQwslIsQshhJORYhdCCCcjxS6EEE7G\nyDh2IUTX01qTc7ya7JIqckqrKSirwcvdhQAfd3r5uDO0jx99/D1NxxQ2IMUuhBPTWrM3t4xVe4+y\nel8+mcVVZ3x+THAPJsUEMX14H86NCkAp1UVJhS1JsQvhpDanFfH8mv3sySnD1aKYGBPE7ZOiGBDc\ng349vQnx96Cm3srxyjqKKmrZmXWcTYeK+GR7Fu9vzmBEmD93TI7m8uF9cHWRs7aORGmtu/xF4+Pj\ntUwpIETn2H+0nGf/k8qmQ0WE+ntyz9QYZowIxd/brVXfX1PfyBe7cnn7u3TSiyqJCPDmmdnDmTLo\nrFOUiE6mlNqhtY4/6/NsVexKKRcgEcjVWs8403Ol2IWwPa01H27J5Nn/pOLt4cK9F8Ywb3x/PN1c\n2rU9q1WzIbWA59bsJ72wkllxoTw+I5agHh42Ti5aq7XFbstTMfcDqYCfDbcphGiFsup6Hl6exOp9\nR7lwcG9emhNHgI97h7ZpsSguGdaHKYN788Y3h3lz42E2Hijkr3PjuHBwsI2Si85gkxNnSql+wBXA\nO7bYnhCi9bJLqpj52vesTyng0cuH8O4tYztc6i15uLrw4MWDWHX/JMJ6ejH//QRe+/oQJk7jitax\n1RWRvwILAauNtieEaIXDhRVcu2gLpVX1LFkwngWTB2CxdM5IlphgX5bfPZFZo0J5cd1B7vpoB5W1\nDZ3yWqJjOlzsSqkZwDGt9Y6zPG+BUipRKZVYWFjY0ZcVottLzS/nur9vocFqZcmC8cRHBnT6a3q5\nu/CX6+J4fEYsG1KPMe/dbZRV1Xf664q2scUR+3nATKVUBrAEmKqU+ujkJ2mt39Jax2ut43v3lqvr\nQnTEwYITzH1rK24uFj69cwJD+3bdpS2lFD+fFMUbN44mObec69/eSnFFbZe9vji7Dhe71voRrXU/\nrXUkMBf4Wms9r8PJhBCndOxEDbf9IwF3VwtL75zAgN49jOS4dFgf3r4lnsOFFVz31lYKymuM5BD/\nS+46EMKBVNU1cPsHiZRU1vHeLWMJD/A2mmfKoN58MH8c+aXV3PjONkqr6ozmEU1sWuxa641nG8Mu\nhGifRqvm/iW72Zdbxt+uP4cR/fxNRwJgfHQg79wylqziKua/n0B1XaPpSN2eHLEL4SBe+eoQ61MK\n+P2MWKbFhpiO8xMTBgTyytw4dmWXcu/HO2lolAFyJkmxC+EANqcV8bevD3HN6H7cel6U6TindNmI\nvjwzazhf7T/GY1/sk3HuBskkYELYuaKKWu7/dDdRQT48PWuY6ThnNG98fwrKa/jb12kM6evLbXb6\nS8jZyRG7EHbMatX8aukeyqrref2G0fh42P+x2IPTBnFxbAh/+E8qm9OKTMfplqTYhbBj7/1whO8O\nFvL4jNguHaveERaL4uU5o4gK8uGej3eSXXLmOeCF7UmxC2GnMooqeWHtAaYNDWHeuRGm47SJr6cb\nb98cT6NVs+CfO6ipl5EyXUmKXQg7ZLVqHlqehLurhWevGu6QKxlFBfnwytxzSM0v5w//STEdp1uR\nYhfCDi1JyGbbkRIeu3woIX6Ouw7phUOCWTA5mo+2ZrF6b77pON2GFLsQdia/rJo/rUpl4oBArhsb\nbjpOh/3mksGMCu/JwuVJcr69i0ixC2Fnfv/vZOqtVp67eqRDnoI5mburhb/NPQc03LdkF/Vy81Kn\nk2IXwo58e7CQ9SkF3H/RICICzc4DY0sRgd786ZoR7Moq5fVv0kzHcXpS7ELYifpGK0+vTCYy0Jv5\nkyJNx7G5GSNDmR0Xymtfp7E3p8x0HKcmxS6EnfhgcwaHCyv53RWxeLi2bwFqe/fUzOEE9nDnV0t3\nyxDITiTFLoQdKKqo5ZUNh5g8qDcXDXXehaL9vd14/pqRHDpWwcvrD5qO47Sk2IWwAy+uPUB1fSO/\nnxHrFBdMz+SCwcHccG4Eb29KJyGjxHQcpyTFLoRhB46e4NPEbG6eEElMsJnVkLraY5cPJaynFw8v\nT5JTMp1Ail0Iw15cd4Ae7q78cmqM6ShdxsfDlWevGsHhwkrekFEyNifFLoRBOzKPsz6lgDunRNPL\nx910nC41ZVBvrj4njDc2Hmb/0XLTcZyKFLsQhmiteX7NfoJ6eHTbect/NyMWPy83Hl6+l0arLMxh\nK1LsQhjy7cFCth8p4b6LYhxinvXOEODjzhNXxrI7u5QPt2SYjuM0pNiFMMBq1fx5zQHCA7yYO9ax\npuS1tZmjQpk8qDcvrTtIQXmN6ThOQYpdCAPWJB8lJb+cX108CHfX7v1jqJTi6ZnDqGu08syXMr2v\nLXTvd5QQBlitmle/OkR0kA8zR4WZjmMXIoN8uOeCGL5MymfToULTcRyeFLsQXWxDagH7j57g3qkx\nuFic+2aktrhzSjRRQT48/q99Mra9g6TYhehCWmte/foQ/QO9mTkq1HQcu+Lp5sLTs4aRUVzFom8P\nm47j0KTYhehC3xw4xr7ccu65MAZXF/nxO9n5A3szY2Rf3tx4WBbl6AB5ZwnRRbTWvPJVGv16eXHV\nOXJu/XQeu2IoFqVkndQOkGIXootsOlTEnuxS7rkwBjc5Wj+tvv5e3Ds1hrXJBXx3UC6ktoe8u4To\nIm9uPEwfP0+uGd3PdBS7d/v5UUQGevPkymTqGmQpvbaSYheiC+zJLmVLejE/nxTV7cett4aHqwu/\nvzKW9MJK3t98xHQchyPvMCG6wFvfpePr6crcceGmoziMqUNCmDokmFc2HOLYCbkjtS2k2IXoZBlF\nlazel8+88f3x9XQzHcehPD4jlrpGKy+sOWA6ikORYheik73zfTquFgu3TYw0HcXhRAX5MP+8KJbt\nyGFPdqnpOA5Dil2ITlRUUcuyxByuHh1GsJ+n6TgO6d6pMQT1cOeplcloLVP7toYUuxCd6MPNGdQ1\nWrljcrTpKA7L19ONhZcOYWdWKSv25JmO4xCk2IXoJDX1jXy0LYuLhgQzoHf3WMu0s/xsTD9GhPnz\np1X7qaprMB3H7kmxC9FJVuzOo6SyjvmTuufqSLZksSieuDKWo+U1LPo23XQcuyfFLkQn0Frz3g9H\nGNLHlwnRgabjOIX4yACuHBXK3789TG5ptek4dq3Dxa6UCldKfaOUSlFKJSul7rdFMCEc2ZbDxew/\neoL5k6JQSqbmtZWHLxsCwPOr9xtOYt9sccTeAPxaax0LjAfuUUrF2mC7Qjis9344QqCPu0zNa2Nh\nPb24c3I0K/bksSOzxHQcu9XhYtda52utdzZ/fAJIBWTqOtFtHSmq5Kv9x7hxfH883VxMx3E6d10w\ngBA/D55amYLVKsMfT8Wm59iVUpHAOcA2W25XCEfyweYMXC2KeeO79yLVncXb3ZWHpg8hKaeMz3fl\nmo5jl2xW7EqpHsBy4AGtdfkpvr5AKZWolEosLJSpOIVzOlFTz7LEbK4cGUqwr9yQ1Flmx4UxKrwn\nf16zn8paGf54MpsUu1LKjaZSX6y1/vxUz9Fav6W1jtdax/fu3dsWLyuE3fliVy6VdY3cLNMHdKof\nhz8eO1HLGxvTTMexO7YYFaOAd4FUrfXLHY8khGPSWvPhlkxG9vMnLryn6ThOb3REL2bHhfL2piOy\njN5JbHHEfh5wEzBVKbW7+c/lNtiuEA5lS3oxaccquGl8f9NRuo2HLhuCi1L8aXWq6Sh2xbWjG9Ba\nfw/IQF3R7f1zSyY9vd24UoY4dpm+/l7cfcEAXl5/kK3pxYyXm8EAufNUCJvIL6tmXUoB140NlyGO\nXWzB5GjCenrx5IpkGhplGT2QYhfCJj7eloVVa+adK6dhupqnmwuPXj6U/UdP8ElCtuk4dkGKXYgO\nqmuw8sn2bKYODiY8wNt0nG7p8hF9GB8dwEvrDnC8ss50HOOk2IXooPUpBRRV1DJPLpoao5TiyZnD\nKK+u5+X1B03HMU6KXYgOWrwtk7CeXkweJPdnmDSkjx83je/P4m2ZpOT9zz2S3YoUuxAdkF5YwebD\nxdxwbgQuFhkcZtqDFw/C38uNJ1d072X0pNiF6IBPtmfhalFcG9/PdBQB9PR2Z+H0IWzPKOGLbjyP\njBS7EO1UU9/IZztyuDg2ROaFsSPXxYcTF96TP65Kpayq3nQcI6TYhWinNfuOcryqnhtliKNdsVgU\nf5g9nJLKOl5cd8B0HCOk2IVop4+3ZdE/0JuJA+RuR3szPMyfmydE8tG2TJJySk3H6XJS7EK0w6GC\nE2zPKOH6cRFY5KKpXfrVJYMI9PHgd//aR2M3W5BDil2IdliSkI2bi+LaMXLR1F75ebrx+IyhJOWU\n8f7mDNNxupQUuxBtVNvQyOc7c7gktg+BPTxMxxFnMHNUKBcM7s2Law90q6l9pdiFaKO1yQUcr6rn\nurHhpqOIs1BK8exVI7AoePSLvd1mbLsUuxBttGR7Fv16eTEpJsh0FNEKYT29WDh9CJsOFfH5zu4x\ntl2KXYg2yCyuZPPhYq6LD5eLpg7kpvH9GdO/F8/8J4XCE7Wm43Q6KXYh2mBJQjYWBdfGy2kYR2Kx\nKJ6/ZgRVdY088nmS05+SkWIXopXqG60sS8xh6pBg+vjLnaaOJibYl4WXDmZD6jGWJjr3vO1S7EK0\n0tf7j1FUUct1YyNMRxHtNP+8KCZEB/L0yhSyip13lIwUuxCttDQhm2BfDy4cLNPzOiqLRfHinFFY\nlOI3y/Y47Y1LUuxCtEJBeQ3fHDjGNWP64eoiPzaOLKynF0/OHMb2jBIWfXvYdJxOIe9QIVrhsx05\nWDXMkYumTuHq0WFcOSqUl9YdYGt6sek4NifFLsRZaK1ZlpjNuKgAooJ8TMcRNqCU4o9XDad/oA/3\nfbLL6YZASrELcRbbjpSQUVzFdXK07lR8Pd14/YbRlFXX8+Cnu53qfLsUuxBnsTQhG18PVy4f0dd0\nFGFjsaF+PDVzGN+nFfHKBudZBFuKXYgzKK+pZ9W+fK6MC8XL3cV0HNEJrhsbzs/G9OPVr9NYuSfP\ndBybkGIX4gxW7M6jpt4qp2GcWNNEYcOJ79+L3yzbw+5sx1+YQ4pdiDNYlpjNkD6+jOznbzqK6EQe\nri78/aYxBPt5cMeHieSVVpuO1CFS7EKcxoGjJ9iTU8a18eEoJRN+ObvAHh68e8tYauoamf9+gkMv\nhC3FLsRpLEtsWiVpdlyo6SiiiwwK8eXNeWNIL6zkln9sp6K2wXSkdpFiF+IU6hqsfLErl2lDQ2SV\npG5m0sAgXrvhHPbmljH//QSq6xpNR2ozKXYhTuHr/ccorqyTO027qUuG9eHlOaNIyCjhzo92OFy5\nS7ELcQrLErMJ8fPg/IGySlJ3NSsujOevHsmmQ4Xc+M5WjlfWmY7UalLsQpzkvxN+jZYJv7q7OWPD\nef2G0ezLK+dnizaTc9wxpvqVd60QJ/l8Zy5WLaskiSaXj+jLP+eP49iJWq55czO7so6bjnRWUuxC\ntPDjhF9jI3vJhF/iv86NDmTZXRNwtVi4dtEW3vruMFY7nltGil2IFnZkHie9qFKO1sX/GNLHj1X3\nnc+0oSH8cdV+fv5Bgt3OCinFLkQLyxJz8HZ34QqZ8Eucgr+3G2/OG80zs4bxQ1oxU1/cyNvfpVPX\nYDUd7SdsUuxKqelKqQNKqTSl1MO22KYQXa2qroEvk/K4YkRffDxcTccRdkopxU0TIlnzwPmMjQrg\n2VWpTP/rd3yZlEd9o30UfIeLXSnlArwOXAbEAtcrpWI7ul0hutqqvUeprGuU0zCiVaJ79+C9W8fy\nj9vGgoJ7P97FpOe/5q8bDpJreK4ZWxyWjAPStNbpAEqpJcAsIMUG2/6JNfuOkpRTSoCPO4E93Anx\n82RUv55ydCVsYlliNpGB3oyN7GU6inAgFw4OZvLA3mw8cIx/bs3krxsO8dcNh4gK8mF8dACjI3oR\n4uf5394K6uGBWycPo7VFI4YB2S0+zwHOPflJSqkFwAKAiIiIdr1QQkYJH2zOoKHF1WhXi2JEP3/G\nRwcyOy6MwX1827Vt0b1lFley7UgJv710sEz4JdrMxaK4aGgIFw0NIbO4kvUpBWxNL+bLpHw+2Z79\nk+e+e0s8Fw0N6dQ8SuuODdlRSv0MmK61vr3585uAc7XW957ue+Lj43ViYmK7Xs9q1ZTX1FNcWUd2\nSRXbj5Sw7UgJe7JLabBqxkUGMG9Cfy4b3qfTfysK5/HSugO8/k0aPzw8lb7+XqbjCCfRaNVklVRR\nXFFLUUUdJZV1XDikd7vfY0qpHVrr+LM9zxZH7LlAy5OS/Zof6xQWi6Kntzs9vd0Z0LsHFwwOBqCk\nso5lidks3pbFfZ/sIjrIh8euGMrUIcFyBCbOqNGq+WxHDucPbP8PnBCn4mJRRAX5dPk9EbY4pE0A\nBiqlopRS7sBcYIUNttsmAT7u3DllABt/cwFv3xwPCn7+QSI3v7edtGMnujqOcCA/pBWRX1bDtfH9\nTEcRwiY6XOxa6wbgXmAtkAos1Vond3S77WWxKC6ODWHtA5P5/YxY9mSXcsWr37N4WyYdPe0knNPS\nxGx6ertxcWznnvcUoqvY5CS01nqV1nqQ1nqA1vpZW2yzo9xcLMyfFMVXv76Ac6MDeeyLffxi8U6H\nXhVF2F5pVR3rkguYHReGh6ssVi2cg9NfXezt68H7t47lkcuGsD6lgBmvbSLtWIXpWMJO/Ht3HnWN\nVjkNI5yK0xc7NJ2euXPKAJbeNYHqukZ+tmgziRklpmMJO7A0MZthoX4MC5XFqoXz6BbF/qPREb34\n/O7z6OXtzg3vbGP13nzTkYRByXllJOeVyypJwul0q2IHiAj0ZvndExke6scvPt7JF7tyTEcShixL\nzMHdxcIsWaxaOJluV+zQNDRy8e3jGR8VyK+X7mGVHLl3O7UNjfxrdy6XDAuhp7e76ThC2FS3LHYA\nL3cX3rklntERvbjvk11sSCkwHUl0ofUpBZRW1cuEX8IpddtiB/DxcOUft41lWJg/v1i8k81pRaYj\niS7yaUI2of6eTIqRxaqF8+nWxQ7g6+nGh7eNIzLIm7s+2iFDIbuBnONVfJ9WxM/iw3GxyHQTwvl0\n+2KHplVR3r1lLO6uFua/n0BJZZ3pSKITLd/RNJXRtWNk7LpwTlLszcIDvHnr5ngKymtY8GEiNfWN\npiOJTmC1apbtyOa8AUGEB3ibjiNEp5Bib2F0RC9enhNHYuZxHv/XPtNxRCfYfLiYnOPVcqepcGpS\n7Ce5YmRf7psaw7IdOSxNyD77NwiH8mliNv5eblw6rI/pKEJ0Gin2U7h/2iAmxQTx+L/3kZxXZjqO\nsJHSqjrWJh9ldlwonm4y4ZdwXlLsp+BiUbwyN45e3u5NM0JWy4yQzuBfu3Kpa7AyZ6yMXRfOTYr9\nNAJ7ePD6jeeQe7yahz5LkrncHZzWmiUJ2YwI85cJv4TTk2I/gzH9A1g4fTBrko+yLFHmlHFke3LK\n2H/0BHPHydG6cH5S7Gdx+6RoJkQH8uTKZDKLK03HEe20ZHsWXm4uzBwlE34J5yfFfhYWi+KlOaNw\ntSge+HQ3DY1W05FEG1XUNrBiTx4zRvbF19PNdBwhOp0UeyuE9vTi2atGsCurlNe+STMdR7TRl3vy\nqKprZO64CNNRhOgSUuytdOWoUGbHhfK3r9PYlytDIB3JJwnZDArpweiInqajCNElpNjb4MmZwwjw\ncWfhZ0nUyykZh5CaX86e7FLmjo1AKZnwS3QPUuxt0NPbnWdmDSclv5y/f3vYdBzRCp8mZOPuYuGq\nc8JMRxGiy0ixt9H04X24YmRfXv0qjUMFJ0zHEWdQXdfI8p05XDaiD718ZJUk0X1IsbfDUzOH4ePh\nwm8/S6LRKjcu2auVSXmcqGngxnP7m44iRJeSYm+HoB4ePHHlMHZnl/LR1kzTccRpfLwti5jgHoyN\n7GU6ihBdSoq9nWbFhXL+wCBeWHuAgvIa03HESZLzytidXcoN4+Siqeh+pNjbSSnFM7OGU9do5ekv\nU0zHESf5eFsWHq4Wrhkt866L7keKvQMig3y498IY/pOUz8YDx0zHEc0qaxv49+48ZowMxd9b7jQV\n3Y8UewfdOSWa6N4+PP7vfbKcnp1YsSePitoGbjhX7jQV3ZMUewd5uLrwh9nDyS6p5nWZbsA4rTWL\nt2UypI+v3Gkqui0pdhuYOCCIWXGh/P3bdDKKZAZIk3Zll7Ivt5x54/vLRVPRbUmx28ijlw/FzUXx\n1MpkWZTDoH9uyaSHhyuz5U5T0Y1JsdtIiJ8nD0wbxDcHCvkqVS6kmlBUUct/kvK5ZnQYPTxcTccR\nwhgpdhu69bxIBgb34Kkvk+VCqgGfJmRT12jlpglyp6no3qTYbcjNxcJTs4aRXVLNIpkkrEs1WjUf\nb8ti4oBAYoJ9TccRwigpdhubOCCIK0b25c2Nh8k5XmU6TrfxVWoBuaXV3CxH60JIsXeGxy4filLw\nx1WppqN0G//cmklff0+mDQ0xHUUI4zpU7EqpF5RS+5VSSUqpL5RSMnCYpqX07rkghlV7j7I5rch0\nHKeXdqyCTYeKuGFcBK4ucqwiREd/CtYDw7XWI4GDwCMdj+Qc7pgcTXiAF0+uTJYFsDvZ+5uP4O5q\n4Xq501QIoIPFrrVep7VuaP50KyAzLjXzdHPhd1fEcrCggn/K1L6dpqyqnuU7cpk1KpSgHh6m4whh\nF2z5/9b5wGobbs/hXRIbwvkDg/jL+oMUV9SajuOUliRkUV3fyG3nRZmOIoTdOGuxK6U2KKX2neLP\nrBbPeQxoABafYTsLlFKJSqnEwsJC26S3c0opnrgylqq6Rl5cd9B0HKfT0Gjlg80ZjI8OIDbUz3Qc\nIezGWW/P01pPO9PXlVK3AjOAi/QZ7qXXWr8FvAUQHx/fbe65jwn25eYJkfxj8xFuPDeC4WH+piM5\njXUpBeSV1fDkzGGmowhhVzo6KmY6sBCYqbWWQduncf+0gQR4u/PkCplHxpbe+/4I4QFeXCRDHIX4\niY6eY38N8AXWK6V2K6UW2SCT0/H3cmPh9MEkZh5nxZ4803Gcwp7sUhIzj3PrxChcLDKLoxAtdWim\nJK11jK2COLtrx4Tz0dYs/rgqlWlDQ/CRSao65K3v0vH1cGVOvAzEEuJkcjdHF7FYFE/OHEZBeS2v\nyYIcHZJZXMnqffncOL4/vp6y9J0QJ5Ni70Jj+vfimtH9eGdTOumFFabjOKx3Nh3B1WLhtvMiTUcR\nwi5JsXexhy4bjIerC0+tTJELqe1QXFHL0sRsrjonjBA/T9NxhLBLUuxdLNjXkwemDeTbg4VskAU5\n2uzDLZnUNli5Y7LckCTE6UixG3DLxKYFOZ6WBTnapLqukQ+3ZDBtaIjMuS7EGUixG+DmYuGpmbIg\nR1t9mpDF8ap67poSbTqKEHZNit2QiTFBzBjZlzc2HiazuNJ0HLtX29DIom/TGRcZQHxkgOk4Qtg1\nKXaDfndFLG4WJXektsJnO3I4Wl7DLy+SWyeEOBspdoP6+Hvy4MWD+OZAIetSCkzHsVv1jVbe+OYw\n50T0ZFJMkOk4Qtg9KXbDbpkYyeAQX55emUJVXcPZv6Eb+mJnLrml1dw3dSBKyfQBQpyNFLthbi4W\nnpk9nNzSal756pDpOHanodHKa9+kMSLMnwsG9zYdRwiHIMVuB8ZFBTAnvh/vbDpCan656Th2ZcWe\nPLJKqvjl1Bg5WheilaTY7cSjlw+lp5cbj3y+F6tVLqRC07n1V746xNC+flwcK1PzCtFaUux2oqe3\nO7+bMZTd2aUs3iZrpAJ8mpBNZnEVv710kBytC9EGUux2ZHZcGOcPDOLPaw5QUF5jOo5R1XWNvPrV\nIeL79+LCwcGm4wjhUKTY7YhSij/MHk5do5XH/7WvW49t/2BLBsdO1LJw+hA5WheijaTY7Uz/QB8e\nvHgQ61IK+DIp33QcI8qq63lz42EuHNybcVFyl6kQbSXFbodunxTFqH7+PLEimeKKWtNxutxb3x2m\nrLqe31w62HQUIRySFLsdcnWx8MK1o6ioaeCJFcmm43Sp3NJq3v3+CFeOCmVYqL/pOEI4JCl2OzUo\nxJf7Lorhy6R81uw7ajpOl3lu9X60hoemy9G6EO0lxW7H7pwygGGhfvzuX3sp6ganZLYfKWHlnjzu\nnDKAfr28TccRwmFJsdsxNxcLL8+Jo7ymgYeXJzn1KJlGq+aplcn09feU+daF6CApdjs3uI8vD08f\nwobUY3yyPdt0nE7z2Y5skvPKefiyIXi7u5qOI4RDk2J3ALdOjOT8gUE882UK6YUVpuPYXFlVPS+s\nPUB8/17MHBVqOo4QDk+K3QFYLIoXrx2Fh5uFBz/dTV2D1XQkm3p2VQrHq+p5cuYwuRlJCBuQYncQ\nIX6ePHf1CPbklPHc6v2m49jMD2lFLE3M4Y7zoxkeJsMbhbAFKXYHMn14X247L5L3fjjC6r2Of1dq\ndV0jj3y+l8hAbx6YNtB0HCGchhS7g3nksqGMCu/Jws+SyChy7EWw/7LhIFklVfzp6pF4urmYjiOE\n05BidzDurhZev+EcLBbFLxbvpKa+0XSkdtmVdZx3NqVz/bhwJgwINB1HCKcixe6A+vXy5i/XjSL1\naDm//czxxreX19Tzy0920dffi4cvG2o6jhBOR4rdQU0dEsLCS4ewck8er36VZjpOq2mtefTzveSX\n1fDq9ed8BL+mAAAInUlEQVTg7+VmOpIQTkfuBHFgd02J5tCxE/xlw0EGBPswY6T9jwFflpjDl0n5\n/PbSwYzp38t0HCGckhyxOzClFH+6egTx/Xvx66V72Jl13HSkM0o7doInViRzXkwgd00ZYDqOEE5L\nit3Bebi68PebxhDi58lt/0ggNb/cdKRTKqmsY/77ifh4uPCXOXG4WORGJCE6ixS7Ewjs4cHi28/F\ny82Fm97dzhE7GwZZU9/Igg8TKSiv4a2b4wn28zQdSQinJsXuJMIDvPno9nFYtWbeO9vILa02HQlo\nulj60PIkEjOP89KcUYyOkPPqQnQ2KXYnEhPsy4fzx1FeXc+cRVs4bHjCMK01f157gH/vzuO3lw52\niIu7QjgDKXYnMzzMn4/vGE9NfSPXLtpCUk6pkRxaa55bvZ83Nx7m+nHh/OICuVgqRFexSbErpX6t\nlNJKqSBbbE90zIh+/nx290S83V24/q2tbDpU2KWvr7XmqZUp/P27dOaNj+DZ2SNk1kYhulCHi10p\nFQ5cAmR1PI6wlaggH5bfPZHwAG9ueW87r3+ThtXa+Xeo1jY08tDyJN7fnMH886J4ZtZwLDICRogu\nZYsj9r8ACwHHuq+9Gwjx8+SzuycyY2QoL6w9wG3vJ1BSWddpr5dzvIo5i7awNDGHX06N4fEZQ+VI\nXQgDOlTsSqlZQK7Weo+N8ggb6+Hhyitz43j2quFsOVzM9L9+x4o9eTafX+br/QVc8er3pBdWsmje\naH59yWApdSEMUWf7AVdKbQD6nOJLjwGPApdorcuUUhlAvNa66DTbWQAsAIiIiBiTmZnZkdyiHfbl\nlvHw50nsyy1nXFQAT80cxtC+fh3a5pGiSp5bncra5AJi+/rxxo2jiQzysVFiIURLSqkdWuv4sz6v\nvUduSqkRwFdAVfND/YA8YJzW+uiZvjc+Pl4nJia263VFxzRaNUsSsnhx7QFKq+uZOjiYmyb0Z/LA\n3m06F36kqJIPNmfw0dZM3F0t3D1lAHdMjpZ51YXoRJ1e7Kd4wQzOcMTekhS7eaVVdbyz6QhLErIo\nqqijf6A3Fw0JYWxkL8ZE9iLY96d3h5bX1JNeWEliRgkr9uSRlFOGRcF1YyN48OKB//N8IYTtSbGL\nVqltaGTNvqMsTcwmMeM4tc0LZXu7uzT/caWqroGiiv+/6DoizJ9ZcaHMGBlKH38pdCG6SmuL3WbT\n9mqtI221LdF1PFxdmBUXxqy4MOoarOzLK2NHxnGOnaihsq6R6rpG3F0sRPf2ISrIhyF9/IgI9DYd\nWwhxBjIfu/gvd1cLoyN6yXwuQjg4mVJACCGcjBS7EEI4GSl2IYRwMlLsQgjhZKTYhRDCyUixCyGE\nk5FiF0IIJyPFLoQQTsZmUwq06UWVKgTsfXrHIOCs0yPYAclpW46SExwnq+S0nf5a695ne5KRYncE\nSqnE1szJYJrktC1HyQmOk1Vydj05FSOEEE5Gil0IIZyMFPvpvWU6QCtJTttylJzgOFklZxeTc+xC\nCOFk5IhdCCGcjBR7C0qpT5VSu5v/ZCildjc/HqmUqm7xtUWGcz6plMptkefyFl97RCmVppQ6oJS6\n1GTO5jwvKKX2K6WSlFJfKKV6Nj9uV/u0OdP05v2WppR62HSeHymlwpVS3yilUpRSyUqp+5sfP+37\nwGDWDKXU3uY8ic2PBSil1iulDjX/bXzCf6XU4Bb7bbdSqlwp9YA97tP2kFMxp6GUegko01o/rZSK\nBL7UWg83m6qJUupJoEJr/eJJj8cCnwDjgFBgAzBIa93Y5SH/P9MlwNda6wal1PMAWuuH7HCfugAH\ngYuBHCABuF5rnWI0GKCU6gv01VrvVEr5AjuA2cAcTvE+MOlUS2Qqpf4MlGitn2v+hdlLa/2QqYwn\na/63zwXOBW7DzvZpe8gR+ykopRRNPzSfmM7SRrOAJVrrWq31ESCNppI3Rmu9Tmvd0PzpVqCfyTxn\nMA5I01qna63rgCU07U/jtNb5WuudzR+fAFKBMLOp2mQW8EHzxx/Q9EvJnlwEHNZa2/tNk60mxX5q\n5wMFWutDLR6Lav6v2bdKqfNNBWvhl82nN95r8V/bMCC7xXNysK8CmA+sbvG5Pe1Te993QNMpLOAc\nYFvzQ6d6H5ikgQ1KqR1KqQXNj4VorfObPz4KhJiJdlpz+elBnL3t0zbrdsWulNqglNp3ij8tj86u\n56f/0PlAhNY6DvgV8LFSys9gzjeBaCCuOdtLnZmlg1l/fM5jQAOwuPmhLt+njk4p1QNYDjygtS7H\nzt4HzSY1/5teBtyjlJrc8ou66dyv3Zz/VUq5AzOBZc0P2eM+bbNut5i11nramb6ulHIFrgbGtPie\nWqC2+eMdSqnDwCAg0VTOHyml3ga+bP40Fwhv8eV+zY91qlbs01uBGcBFzT/YRvbpWRjZd62llHKj\nqdQXa60/B9BaF7T4esv3gTFa69zmv48ppb6g6RRXgVKqr9Y6v/l6wTGjIX/qMmDnj/vSHvdpe3S7\nI/ZWmAbs11rn/PiAUqp38wUWlFLRwEAg3VC+Hy+m/egqYF/zxyuAuUopD6VUFE05t3d1vpaUUtOB\nhcBMrXVVi8ftap/SdLF0oFIqqvkobi5N+9O45ms+7wKpWuuXWzx+uveBEUopn+aLuyilfIBLmjOt\nAG5pftotwL/NJDyln/zv3N72aXt1uyP2Vjj5fBvAZOBppVQ9YAXu0lqXdHmy//dnpVQcTf+lzQDu\nBNBaJyullgIpNJ32uMfkiJhmrwEewPqmfmKr1vou7GyfNo/auRdYC7gA72mtk03lOcl5wE3AXtU8\nBBd4FLj+VO8Dg0KAL5r/nV2Bj7XWa5RSCcBSpdTPaZrVdY7BjP/V/MvnYn663075s+VoZLijEEI4\nGTkVI4QQTkaKXQghnIwUuxBCOBkpdiGEcDJS7EII4WSk2IUQwslIsQshhJORYhdCCCfzfz4PcvHI\niGh0AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot the northward heat transport in this model\n", "Rtoa = np.squeeze(diffband.timeave['ASR'] - diffband.timeave['OLR'])\n", "plt.plot(diffband.lat, inferred_heat_transport(Rtoa, diffband.lat))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }