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ABSTRACT

This paper evaluates several versions of CMA-ES on the strict-box-
constrained benchmarking suite (SBOX-COST). SBOX-COST is a
variant of the well-known BBOB benchmark suite that enforces
box-constraints by returning an invalid evaluation value for solu-
tions violating any of the constraints on the bounds of decision
variables. We compare four variants of CMA-ES: two initialization
methods (centre of mass near the origin versus uniformly at ran-
dom) and two box-constraint handling methods (saturate versus
no handling at all). Contrary to what may be expected, handling
box-constraints by saturation is not always better that not handling
them at all. However, over all BBOB functions, saturation is better
than not handling and the difference increases with the number of
dimensions. Enforcing sbox-constraints also has a clear negative ef-
fect on the performance of classical CMA-ES (with uniform random
initialization and no constraint handling), especially as problem
dimensionality increases.
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1 INTRODUCTION

Box-constraints impose limits on the domain of decision variables
and are perhaps the most typical type of constraints that arise in
black-box continuous optimization. In almost all real-world prob-
lems, the range of decision variables will be limited by physical,
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design, resource or policy bounds that are known a priori. As a
result of these bounds, solutions outside those bounds, i.e., violat-
ing the box-constraints, are not only unacceptable, but they may
not have a defined value of the objective function. Unfortunately,
many optimization algorithms do not follow this assumption and,
instead, allow the evaluation of solutions violating box-constraints.
Moreover, benchmarking suites used for comparing algorithms,
such as COCO/BBOB [4], return a valid objective value for such
solutions, which is used by the algorithms to steer their search.

Here, we consider a benchmark SBOX-COST that enforces box-
constraints by returning the same invalid value (co) for any infea-
sible solution, thus the algorithm cannot use infeasible solutions
to inform the search. We evaluate the effect that such strict-box-
constraints have on the performance of some variants the Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES).

The Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [5] is a very popular heuristic optimisation algorithm for contin-
uous optimisation problems [7]. CMA-ES is considered state-of-the-
art in evolutionary computation and has been adopted as one of the
standard tools for continuous optimisation in many research labs.
There are many flavours and variants of CMA-ES developed through
the years and different implementations of sub-components such
as the sampling strategy and the boundary correction method.

In recent works, the different modules and configurations of
CMA-ES are explored and analysed based on their performance [1].
In that research a modular CMA-ES framework is presented, rep-
resenting a plethora of different CMA-ES configurations. In this
paper, the modular CMA-ES framework is used to analyse the effect
of introducing boundaries to standard BBOB problems, as done in
the new SBOX-COST benchmark.

This paper serves as an example of a short paper for the ACM
Workshop on Strict Box-Constrained Optimization! (SBOX-COST)
within GECCO 2023.

2 METHODOLOGY
2.1 SBOX-COST benchmarking suite

For our benchmarking, we make use of the newly proposed Strict

Box-Constraint Optimization Studies benchmark? (SBOX-COST),

Uhttps://sbox-cost.github.io/
Zhttps://github.com/sbox-cost
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which is a modification of the original BBOB suite [4]. The changes
made are as follows:

o hard box-constraints: points evaluated outside of the domain
[-5, S]d are considered infeasible and evaluated to oo;

e Location of the optima: SBOX-COST has optima across
instances located uniformly within the full domain — except
for, as in BBOB, F4, F8, F9, F19, F20, F24 which have optima
uniform in [—4, 4]d and F5 - in some corners of [-5, 5]d4

2.2 Modular CMA-ES

To investigate several commonly and less commonly used config-
urations and variants of the CMA-ES algorithm [5], we use the
Modular CMA-ES framework [1, 6]. The framework is open-source
and available® as part of the IOHprofiler [3] environment.

Modular CMA-ES framework is currently made up of 11 mod-
ules, each having a number of implemented options: Active update
(2), Elitism (2), Orthogonal Sampling (2), Sequential Selection (2),
Threshold Convergence (2), Step-Size adaptation (7), Mirrored Sam-
pling (3), Quasi-Gaussian Sampling (3), Recombination Weights
(2), Restart Strategy (3) and Boundary Correction (6). The frame-
work allows a total of 72.576 possible configurations. A detailed
description of each module and their settings can be found in [1].

In this paper, to investigate the effect of the introduction of strict
boundaries on the BBOB problems in the SBOX-COST benchmark-
ing suite, we compare the behaviour of 4 different variants withing
modular CMA-ES by considering:

o two initialization methods for the centre of mass (set to the
origin of the space, centre, or set uniformly at random in
the domain),

e enabling or disabling the method for dealing with box-
constraints (saturate, which places the infeasible coor-
dinates to the closest corresponding bound or none which
allows infeasible points ).

All other modules and parameter settings are set to their defaults
specified in [1].

3 EXPERIMENTAL SETUP

We evaluate algorithms on the same 24 functions of both BBOB
and SBOX-COST. The only difference between a function in both
benchmark suites is the objective function value returned for solu-
tions violating a box constraint. We use an identical setup for BBOB
and SBOX-COST: 15 instances per function, 1 run per instance,
dimensionality d € {5, 20,40}, budget 10000 x d.

Experiments reported in this study are carried out in the IOHex-
perimenter environment [2], which implements both sets of bench-
marking functions.

4 RESULTS

The data from the described experiments is visualized using IO-
Hanalyzer [8]. We start by aggregating the performance of each
of the 8 settings across all 5-dimensional problems. This is done
by making use of the Empirical Cumulative Distribution function,
which aggregates the fraction of targets (we use the default of 51
logarithmically spaced targets {1078 ...10%}) hit in each run on

3https://github.com/IOHprofiler/ModularCMAES
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Figure 1: Empirical Cumulative Distribution Function for
all considered variants within modular CMA-ES, aggregated
over the 24 functions of BBOB and SBOX-COST in 5D. Targets
are 51 log-spaces values between 102 and 10~8 (’bbob’ default
in IOHanalyzer).
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Figure 2: Empirical Cumulative Distribution Function for
all considered variants within modular CMA-ES, aggregated
over the 24 functions of BBOB and SBOX-COST in 20D. Tar-
gets are 51 log-spaces values between 102 and 1078 ("bbob’
default in IOHanalyzer).

each function, as shown in Figure 1. From this figure, we notice
that the variants of CMA-ES without boundary correction run on
the SBOX-suite perform slightly worse on aggregate than the other
versions.

In Figure 2, we show the ECDF curves on the 20-dimensional
problems. Here, the poor performance of the CMA-ES with ran-
dom initialization without boundary correction on SBOX is much
more obvious. This is likely caused by the fact that in higher di-
mensions, a Gaussian distribution around a random point will be
much more likely to generate points outside the domain, leading
to many wasted function evaluations, and potentially a disrupted
search process. While initializing the CMA-ES in the center of the
domain alleviates this problem somewhat, it still performs worse
than the versions which add a boundary handling mechanism.
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DIM funcld 1D runtime runs mean median sd 2% 5% 10% 25% 50% 75% 90% 95% 98%

1 20 5 CMAES_center_ BBOB 10000 15 0 0 0 0 0 0 0 0 0 0 0 0
2 20 5 CMAES_center_SBOX 10000 15 29.58 32.94 9.15 11.55 11.56 14.44 26.25 32.94 34.90 37.68 38.80 39.99
3 20 6 CMAES_center_BBOB 10000 15 0 0 0 0 0 0 0 0 0 0 0 0
4 20 6 CMAES_center_SBOX 10000 15 7735.90 0 29961.02 0 0 0 0 0 0 0 34811.56 83547.75
5 20 7 CMAES_center_BBOB 10000 15 7.56 7.42 3.59 1.58 2.11 3.43 5.73 7.42 8.93 11.74 13.80 14.59
6 20 7 CMAES_center_SBOX 10000 15 7.66 8.65 4.07 2.26 2.53 2.92 4.45 8.65 10.19 12.02 13.64 15.07
7 20 14 CMAES_center_BBOB 10000 15 0 0 0 0 0 0 0 0 0 0 0 0
8 20 14 CMAES_center_SBOX 10000 15 0 0 0 0 0 0 0 0 0 0 0 0
9 20 15 CMAES_center_BBOB 10000 15 33.70 32.83 11.75 14.61 17.11 20.10 25.87 32.83 42.78 47.16 50.54 53.05
10 20 15 CMAES_center_SBOX 10000 15 36.17 33.83 1141 2217 22.59 24.48 27.36 33.83 43.28 53.47 54.49 55.22
1 20 16 CMAES_center_BBOB 10000 15 0.52 0.39 0.44 0.10 0.11 0.12 0.17 0.39 0.73 1.10 1.38 1.51
12 20 16 CMAES_center_SBOX 10000 15 0.89 0.84 0.60 0.09 0.10 0.16 0.32 0.84 139 157 173 1.87
13 20 17 CMAES_center_ BBOB 10000 15 0.04 0.03 0.04 0 0 0 0.02 0.03 0.06 0.09 0.12 0.15
14 20 17 CMAES_center_SBOX 10000 15 0.33 0.08 0.67 0 0 0.01 0.02 0.08 0.25 0.76 1.46 2.12
15 20 18 CMAES_center_ BBOB 10000 15 0.31 0.25 0.23 0.07 0.07 0.09 0.17 0.25 0.36 0.70 0.73 0.75
16 20 18 CMAES_center_SBOX 10000 15 1.65 1.58 118 0.33 0.34 0.43 0.73 1.58 2.34 2.84 3.38 4.11
17 20 21 CMAES_center_BBOB 10000 15 10.45 7.59 8.87 0 0 0.63 5.15 7.59 16.40 21.19 25.97 28.86
18 20 21 CMAES_center_SBOX 10000 15 8.92 7.59 6.71 1.06 1.61 2.02 3.21 7.59 12.34 17.11 19.15 22.01
19 20 22 CMAES_center_BBOB 10000 15 11.50 7.27 14.07 1.05 1.58 1.95 3.51 7.27 14.58 20.38 32.28 46.99
20 20 22 CMAES_center_SBOX 10000 15 8.65 5.06 7.93 1.05 1.58 1.95 2.59 5.06 12.86 20.38 22.89 24.44
21 20 23 CMAES_center_BBOB 10000 15 2.24 2.62 114 0.15 0.19 0.38 1.71 2.62 3.05 3.36 339 341
22 20 23 CMAES_center_SBOX 10000 15 1.82 2.49 141 0.07 0.07 0.09 0.12 2.49 2.99 3.22 3.32 3.44

Table 1: Summary statistics of function value reached after 10 000 evaluations for the CMA-ES with center initialization and no
boundary correction on a selected set of 20-dimensional problems.

To get a more detailed view of the performance on individual
functions, we plot the convergence trajectories (mean function
value over time) in Figure 3. To ease readability, we only show the
CMA-ES variants which are initialized in the center of the domain.
From this figure, we can see that for several functions, the perfor-
mance differences between the algorithms run on SBOX and on
BBOB are rather small. In particular, this is the case for the functions
{4,8,9,19, 20, 24}, where the instance generation procedure was not
modified from the original BBOB suite. However, the differences
on function 5 clearly show the impact of the hard box-constraint,
with the CMA-ES on BBOB easily solving the problem (achieved
by moving outside the domain).

Finally, for a few selected functions, we show some detailed
summary statistics in Table 1, which confirms the observations
from Figure 3: for many problems, the CMA-ES can overcome the
addition of hard box-constraints and changed function initialization,
although there are some problems where the changes lead to a
noticeable deterioration in performance.*

5 CONCLUSIONS

In this paper we have benchmarked four variants of CMA-ES on
SBOX-COST, which is a variant of the BBOB suite that enforces box-
constraints. Our results clearly show that enforcing box-constraints
has a negative effect on the performance of classical CMA-ES,
specially with higher dimensionality. Although not handling box-
constraints sometimes performs worse than the constraint handling
method evaluated here (saturation), over all BBOB functions, han-
dling box-constraints is clearly better than ignoring them when the
box-constraints are strict.

REPRODUCIBILITY

To ensure the reproducibility of results presented in this paper,
the complete code used for experiments and runs data in the IOH
format have been uploaded to a Zenodo repository.’

“4Note that the discussion in this paper is purely for illustration purposes. In a submitted
paper, this should be extended.
Shttps://doi.org/10.5281/zenodo.7649077
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