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Recap from 28/ 09 lecture (Vean-Mave)

Overview

e Graphical models fundamentals
o Bayesian networks, representations
e conditional independence
e undirected graphical models

e Learning
e ML, MAP, Bayesian
e the EM algorithm, latent variable models

Gaussian Mixture Model (GMM)
Hidden Markov Model (HMM)

e Later : PCA, Probabilistic PCA
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RMP: EM for GMM

M-step ﬁ/

T Converge? —> Stop

Initial guess —> E-step 4

E-step




RMP: Local optima issue when using EM for GMMW




RMP: Local optima issue when using EM for GMMW

EM will improve the likelihood at each
iteration, but it can get trapped into
poor local optima in the solution space

— Parameters initialization is important!

Log-likelihood

Unknown
solution space

Parameter space




Ru.o\p: Local optima issue when using EM for GMMW

Log-likelihood

Unknown
solution space

Parameter space

The introduction of a regularization
term can change the shape of the
solution space




Hidden Mavkov Moded (HMM)
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Lattice vepresentation of a sequence of obsevvations
(with +he possible associated hidden states)

Dictionary of possible
observations

2=

YY) XY YY) YY) XY Options for the

>< ><: ><: ><: ><: ur\derlying
t& & @ @ Q @ hidden states S1.g

t=1 t=2 t=3 t=4 t=5 t=6

,( ’( ,( ! ! ;é Observed sequence 51:6



GMM

— You can think of an HMM either as:
e a Markov chain with stochastic measurements

e a GMM with transition between the Gaussians

HMM
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OuHine of 'l'vo\g's lectuve

* Markov models

 Hidden Markov model (HMM)

* Forward-backward algorithm

* Viterbi decoding (dynamic programming)
 Hidden semi-Markov model (HSMM)

* HMM with dynamic features (Trajectory-HMM)
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Mavkov models

\\w . .
J Dictionary: “

time

With a first order Markov model, the joint distribution of a
sequence of states is assumed to be of the form

T
P(s1, 82, ..., s1) = P(s1) H P(st]st-1)
t=2
and we thus have
P<St|817 S2y -+ s St—l) — P<St|8t—1>

In most applications, the conditional distributions P(s;|s;_1) will
be assumed to be stationary (homogeneous Markov chain).
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Mavkov models - Pavameters

K possible states

The initial state distribution is defined by "

Dictionary

K
[; = P(sy=4) with Y II; =1

1=1

A transition matrix A is defined, with elements

a;; = P(sp1=7|s1=1)

defining the probability of getting from state 7 to state 7 in one step. 1

ai1|ai2| ais

. . K
Constraint: each row of the matrix sums to one, » ;= a;;j=1.




Exo\mrlu language modeling

We define the state space to be all the words in some language.
The marginal probabilities P(s;=k) are called unigram statistics.
For a first-order Markov model, P(s;=Fk | s.1 =) is called a bigram model.

For a second-order Markov model, P(s; =k |s;1 = 7,59 =1) is called a trigram
model, etc.

In the general case, these are called n-gram models.
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Exo\mrlu language modeling

Sentence completion

The model can predict the next word given the previous words in a sentence.
This can be used to reduce the amount of typing required (e.g., mobile devices).

Data compression

The model can be used to define an encoding scheme, by assigning codewords to more
probable strings. The more accurate the predictive model, the fewer the number of
bits is required to store the data.

Text classification

The model can be used as a class-conditional density and/or generative classifier.

Automatic writing

The model can be used to sample from P(s1, so, ..., s¢) to generate artificial text.
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Exo\mrlu language modeling

SAYS IT’S NOT IN THE CARDS LEGENDARY RECONNAISSANCE BY
ROLLIE DEMOCRACIES UNSUSTAINABLE COULD STRIKE
REDLINING VISITS TO PROFIT BOOKING WAIT HERE AT
MADISON SQUARE GARDEN COUNTY COURTHOUSE WHERE HE
HAD BEEN DONE IN THREE ALREADY IN ANY WAY IN WHICH A
TEACHER ...

Example of text generated from a 4-gram model, trained on a
corpus of 400 million words.

The first 4 words are specified by hand, the model generates the
5th word, and then the results are fed back into the model.

Source: http://www.fit.vutbr.cz/~imikolov/rnnlm/gen-4gram.txt
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MLE of transition matvix in Markov models

A Markov model is described by @™ = {{ai,j}ﬁil,ﬂi}il, where the transition
probabilities a; ; are stored in a matrix A.

The maximum likelihood estimate (MLE) of the parameters can be computed with
the normalized counts

. N,

i, . Ni

- =K , i) = =K
Zk:1 N, Zkzl Ni,k

These results can be extended to higher order Markov models, but since an n-gram
models has O(K™) parameters, special care needs to be taken with overfitting.

For example, with a bi-gram model and 50,000 words in the dictionary, there are 2.5
billion parameters to estimate, and it is unlikely that all possible transitions will be
observed in the training data.
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Hidden Mavkov model
(Hmm)

Python notebook:
demo_HMM.ipynb

Matlab code:
demo HMMO1.m



Emission/oubwl' distvibutions in HMM

Discrete tables

——@:

V1l V1|
v v B

vl v

/

Gaussian distribution

\

GMM with latent variable z; depending
on the conditional distribution P(z¢|z¢ 1)

Mixture of Gaussians

——@:
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Transition matvix stractuves in HMM

1.2
ag 2
a3 2
4.2

1.2
a3 2

0

1.2
a3 2

ai.3
a2.3
asz,3
4.3

az.3

a3 3
0
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HMMN - Examples of' application

HMM is used in many fields as a tool for time series or sequences analysis, and in

fields where the goal is to recover a data sequence that is not immediately observable:

Speech recognition Cryptoanalysis

Speech synthesis Activity recognition
Part-of-speech tagging Protein folding

Natural language modeling Human motion science
Machine translation Online handwriting recognition
Gene prediction Robotics

Molecule kinetic analysis

DNA motif discovery

Alignment of bio-sequences (e.g., proteins) N\)‘ ‘\'\\Qﬂs
Metamorphic virus detection N\N\‘A

Document separation in scanning solutions

22



HMM pavameters

O = {1, u;, T; Hr,

™" = {{ai,j}ﬁ(:la Hia s EZ}z}il

GMM

HMM

From now on, we will consider
a single Gaussian as state output

7T7;:1 /
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Infevence problems associated with HMMs

Probability of an observed sequence
7)<€1:T) — 7)(617 627 R 7€T)
Probability of the latent variables

Filtering
P(St \ sl:t) — P(St | £17 £27 SR 7€t)

Prediction

P(St—i-l ‘ gl:t) — P(St—i-l ' 517 627 IR 7575)

Smoothing —  Forward-backward algorithm

P(‘St \ gl:T) — P(‘St ‘ 517 627 I 7€T)

MAP estimation —  Viterb: decoding
P(‘SLT ‘ él:T) — P(Sh S2y+..,8T ‘ 517 627 IR 7£T)

24



|r\+wmwliavg vaviables Hhat we will vequive in HMM

How to estimate the parameters of an HMM? C":"D
— Maximum of expected complete data log-likelihood Q(®, @) vi ll v
V2 - v:
V3 - V3 -

09 —0 09 —0 00 0 and OQ —0 ?

How to compute o, = 90 =0 gp =

s

— Requires to compute Cffgi = P(s=1, st1=J | §1.7) Observations &;.7

— Requires to compute VHMM =P(si=1|&.7)
mSXQ(@, @old)

How to compute (""" and ;"™ 7

HMM HMM
. : t,2,9 fyt ?
— Requires to compute o™ = P(s;=1,&.)
. HMM
— Requires to compute BHMM =P(&q1.7 | St=1) Oy 2 ;I,l;,m



EM for HMM (Baum-Welch algovri-H\M)

E-step: compute vy, and Y C,':"D

M-step:

Hié—

vi B vil
V2 - V2 .
Total number of times  v; |l v: I

M HMM
Zm 1 /ym,l,z

in 1 at time step 1

M ~ Total number of trajectories

M Tl v Total number of
D m—1 Dt m.t,i,j

transitions from 1 to ]

ZM Tri—1 _ nuwm Total number of times in 1
m=1 t=1 /ym )

Zm 1275 1 771;;\4247! mit

22'4-—

HMM result similar to GMM
Zm:1 thl Vimt,i

Zm 1 Zt 1 ’Yfﬁ% ( m,t /’l’z)(gm,t o ”z)T )

Zmzl Ztiﬁ Vi.t.i

(and transit to anything else)

26

K Gaussians
M sequences
I'm points per sequences

The update rules can be
interpreted as normalized
counts, with several types of
weighted averages required
in the computation.

afit = Plsi=1,&1.)
ti = P&t | 5:=1)

it = Plsi=i| &)

= P(si=i, st1=7|&1.7)



Useful intevmediary vaviables in HMM

{Forward variable o™ = P(si=1,&14) }

Backward variable it =P(&r | se=1)

HMM

Smoothed node marginals " = P(si=1|&1.1)

Smoothed edge marginals (%% ="P(s=i, stn=J | §1.7)
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forward algovi'H\M oy

The probability to be in state 2 at time step ¢ and to observe
£1.,=1{&1,€&,,...,&;} can be computed with the forward variable

Oé?ffM = P(s1=1,&1,&9, ..., &) = P(si=1,&1)
which can be used to compute

P(si=1,&1.4) _ Qpi
P(&:14) Dy oo

7)<St:?’ \ 61:75) —

The direct computation would require marginalizing over all possible state sequences

{s1,89,...,8_1}, which would grow exponentially with t.

The forward algorithm takes advantage of the conditional independence rules of the

HMM to perform the calculation recursively:.



fovward o\lgovi-H\M ot = P(si=1,814)

~— 9 0 ®
® @ ® O @
A

AN Ei) with Oélilfﬁ'M = 11; N(& 1, 27;)

> It can be used to evaluate

trajectories by computing
the likelihood

> K
2 PE|©™) =Y

OBSERVATION, !



Useful intevmediary vaviables in HMM

Forward variable o™ =P(si=1,&14)

{ Backward variable b= P&y | st=1) }

HMM

Smoothed node marginals " = P(si=1|&1.1)

Smoothed edge marginals (%% ="P(s=i, stn=J | §1.7)
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Backwavd algoviH\M o — D€ | s =1)

ti

Similarly, we can define a backward variable starting from the boundary condition

HMM:1

T

and computed as
K
hio= Zai,j N (&l 1y, %5) B
j=1

corresponding to the probability of the partial observation {&,.q,...,&r_1,&7},
knowing that we are in state ¢ at time step t.

31



Backward algovithm

1=1 "
@ 0 @ 0 O
1 =X
® ® e\e o ®
1=
® ® ® ® @
t=1 t=2 t=3 t=4 t=5 t=6
K
f,z-%;aiw(etm i B5) By with SR =1 N
boundary condition,
T 4 corresponding to
P |sr=i)=1, Vi

1
2

LYV

1
3
OBSERVATION, t



Useful intevmediary vaviables in HMM

Forward variable

Backward variable

These variable are sometimes called
smoothed variables as they combine forward

and backward probabilities in the computation.

You can think of their roles as passing
"messages" from left to right, and from
right to left, and then combining the
information at each node.

HMM __
ot =T

i = P&

| St~

Smoothed node marginals

vt = Plsi=1| &ur)

Smoothed edge marginals

£ =P(s=t, 541=7 | &1.7)
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Smoothed node marginals

o~
I
o
o~
l
Do
o~
|
o

MMMMMM
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i = Plsi=1] &)
ot =Plsi=i,€1)

Bf,hzm =P(&i1.r | 51=1)

MMMMMM




Useful intevmediary vaviables in HMM

Forward variable o™ =P(si=1,&14)
Backward variable Li = P(&y1r | s1=1)

HMM

Smoothed node marginals " = P(si=1|&1.1)

{Smoothed edge marginals ;2{“]4:73(87522', St1=) } 51:T>}

35
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Smoothed edge Mowginals =P (5=, 5t1=7|&1.7)

-

t=

Qi Qg N(§t+1| 122 Ej) B
K K
>0y apy apy N(&q |, X) B

STATE

t+1 t+2

Qi Qi N(§t+1| 128 Zj) B
P(&)

OBSERVATION,



EM for HMM (Baum-Welch algovri-H\M)

E-step: compute vy, and Y C,':"D

M-step:

Hié—

vi B vil
V2 - V2 .
Total number of times  v; |l v: I

M HMM
Zm 1 /ym,l,z

in 1 at time step 1

M ~ Total number of trajectories

M Tl v Total number of
D m—1 Dt m.t,i,j

transitions from 1 to ]

ZM Tri—1 _ nuwm Total number of times in 1
m=1 t=1 /ym )

Zm 1275 1 771;;\4247! mit

22'4-—

HMM result similar to GMM
Zm:1 thl Vimt,i

Zm 1 Zt 1 ’Yfﬁ% ( m,t /’l’z)(gm,t o ”z)T )

Zmzl Ztiﬁ Vi.t.i

(and transit to anything else)
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K Gaussians
M sequences
I'm points per sequences

The update rules can be
interpreted as normalized
counts, with several types of
weighted averages required
in the computation.

afit = Plsi=1,&1.)
ti = P&t | 5:=1)

it = Plsi=i| &)

= P(si=i, st1=7|&1.7)
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Namevical andevflow issue in HMM

For long sequences, the forward and backward variables can quickly get very low,
likely exceeding the precision range of the computer.

A simple scaling procedure is to multiply ;™ by a factor independent of i, and
divide S} by the same factor so that they are cancelled in the forward-backward

computation.

The computation can be kept within reasonable bounds by setting the scaling factor

|

K HMM
D i1 Qy

Ct —



Namevical andevflow issue in HMM

This issue is sometimes not covered in

1 textbooks, although it remains very
Ct = ZK . important for practical implementation
b=l of HMM!

We have by induction

t T

~HMM HMM DHMM L HMM
Qy,; = ”Cs Qi s ti ”Cs £

s=1 s=t

With this, the numerator and denominator will cancel out when
used in the re-estimation formulas. For example

HMM QHMM t T HMM (QHMM HMM (QHMM
HMM Oét £y . (H8:1CS>(HS—tC) at t,e Oét t,1

&?71\]461\/1 A;ﬂ\};{M (Hi:1cs)(1_[ tCS) Z CVHMM f’l\éM Z OéHMM HMM




Wkg did we introduce these intermediary variables in HMMWP

Forward variable
o™ =P(si=1,&.)
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@ o ® ® @ Tt (si=1]&1.7)

~
Il
—
~
Il
[\]
~
I
w
~
Il
S~
~
I
(24
~
Il
(@)

/0

/

i
Tg)

Smoothed edge marginals
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Nb\g did we introduce these intermediary variables in HMMWP

How to estimate the parameters of an HMM?

— Maximum of expected complete data log-likelihood Q(®, @)

0 0 0 0
How to compute 6—1%:0, 87%:0, 83:0 and 82%:0 ?

1

HMM

— Requires to compute (/" = P(si=i, sp1=j | €1.7)

— Requires to compute VEZIM =P(si=1|&.7)
How to compute (""" and ;"™ 7
— Requires to compute Qi = P(si=1,&4)

— Requires to compute 5, = P11 | si=1)

—@>

vi vil
Vz- Vz.
v:iil v: I

Observations &;.p

maxQ (0, O")
®

HMM HMM

tij VIt

HMM HMM
Qg £



Viterbi decoding

(N\AP vs \PE esti MM%)
% N

Maximum a posteriori Most probable explanation

Python notebook:
demo_HMM.ipynb

Matlab code:
demo HMM ViterbiOl.m
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Vitevbi decoding (N\AP Vs N\PE Q/S‘l'IMA‘l%)

Maximum a posterlorl Most probable explanation

The (jointly) most probable sequence of states §"*" is not necessarily the same as the
sequence of (marginally) most probable states §"*

§"" = arg max P(s|§)

{31 52,.. 7ST}

HMM HMM HMM
’Y1 '72 YT

§MPE {argmaxp<sl‘£) argmaXP(S2‘£> ;al“gmaXP ST}S }

S = P(s =i | Erp)

AMAP

§"*" can be computed with the Viterbi algorithm, employing the max operator
in a forward pass, followed by a backward pass using a fast traceback procedure
to recover the most probable path.
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Vil bi AQ/OOAi'\g Forward aI%?rithm:
o = (D ey ai) N (& i =)
j=1

W
m € 9
2) (&

~
Il
-
~
Il
N
~
Il
w
~
Il
'S
~
Il
~
I
=

)

’Cl)\ 1 1 1 1
N
D e O—eL O 6
N\
3 3 s L0

.
< probability of ending in state ¢
_ 675,73 — max(ét—laj ajai) N(€t| ki EZ) at tpi)me step}g by takingg the most
Forward recursion: < J probable path
\Ijt,i — al'g max((st—l,j aj,i) < indices that keep track of the
~ J states 7 that maximized dy.
Backtracking: )" = W, 1,807



Viterbi decoding - Examplez

IT = [1,0,0]
C1
C2
- C3
&
o C4
S C5
- C6
C7

Figure adapted from Kevin P. Murphy (2012), Machine Learning: A Probabilistic Perspective

Oti = mﬁX(@—l,j ij,z') b(&;|7)
with 01 ; = I1; N(£1| 223 Ei)

Observation: & = {C1,C3,C4,C6}
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Namevical andevflow issue in Vitevbi

Similarly to the forward-backward variables in HMM, we have to take care about
potential numerical underflow when implementing Viterbi decoding.

A simple way is to normalize 0¢; at each time step ¢ by multiplying it with
1
K
Zi:1 O,

similarly as in the computation of the forward-backward variables.

Ct —

Such scaling will not affect the maximum.
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Namevical andevflow issue in Vitevbi

Alternatively, we can work in the log domain. We then have

10g 575’@‘ — Imax 10g P(SI:t—h St:i ' €1:t)

S1:4—1

= max(log (515_17]- -+ log ai,j) - 1OgN(£t| ki Ei)
J

With high dimensional Gaussians as emission distributions, the Viterbi computation
with log can result in a significant speedup, since computing log P(&,|s;) can be
much faster than computing P(&;|s;).

When training HMMs, the Viterbi algorithm can be also used (instead of the forward-
backward variables) in the E step of the EM procedure.

47



Hidden semi-Mavkov model
(Hsmm)

Python notebook:
demo_HSMM.ipynb

Matlab code:
demo HSMMO1l.m
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State duvation probability in standard HMM

The state duration follows a Naive approach: By artificially duplicating
geometric distribution the number of states while keeping the
d—1 same emission distribution, other state
P(d) = aj; (1 —a;;)

duration distributions can be modeled

1 a1

0 50 100 0 50 100
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Hidden semi-Markov model (HSMM)

_ GMM HMM
O
O
© @ HSMM
Another approach is to provide LL \_L
an explicit model of the state

duration instead of relying on
self-transition probabilities

N —



Hidden semi-Markov model (HSMM)
O™ = {m;, w;, Zz}li
O™ = {{G’Z]}] 15 ’L?H’iazi}fil

O™ = {{alj}j 1 37&27 s E’&}z[il

[ GMM

Rt .
AR RE -

" ', N ’
) Z':..' B 3 s
RO ") s
g -
w

Parametric duration
distribution

a2 1

HMM 1,1 c’<
a1.2

I
( D D

N(:ul ) 21) CL2’1

HSMM ‘ ,‘
1.2
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RV with dynamic featuves
(T\M\J ectovy -HM N\)

Matlab code:
demo _trajHSMMO1.m



HMM with dynamic featuves

Z2

53



HMM with dynamic featuves

For the encoding of movements, velocity and acceleration can be used as dynamic
features. By considering an Euler approximation, the velocity is computed as

. L1 — Ly
YT A

where ax; is a multivariate position vector.

The acceleration is similarly computed as

. Lppl — X Lpyo — 2T T X

T TN At2
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HMM with dynamic featuves C m @ . By 2t

I+ = I+ =
! At At2

A vector ¢, will be used to represent the concatenated position, velocity
and acceleration vectors at time step ¢

Lt 1 0 0 Lt
. 1 1
Ct — wt — __tI EI 10 wt_|_1
| Lt_ sl —apd el | [T

Here, the number of derivatives will be set up to acceleration (C'=3), but
the same approach can be applied to a different number of derivatives.

A GMM/HMM/HSMM with centers {u;}7, and covariance matrices
{33}, is first fit to the dataset [Cy, (o, ..., Cl.
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HMM with dynamic featuves
Gy

¢ and @ are defined as large vectors concatenating ¢, and x; for
all time steps

¢y | £
¢ = <.2 e
_CT_ | LT |

Similarly to the matrix operator defined in the previous slide for
a single time step, a large sparse matrix @ can be defined so that

( =Px

56



HMM with dynamic featuves

o |
Lit+1
L+l

C c RbCT
(C=3 here)

1 0 0

1 1
__tI K%I 10
apd —xpl zpl
I 0 0
1 1
aloat 0
WI —AtQI At2I

P c RDCTXDT

\ Large sparse matrix

xr &

Li+1
Lt492
Lt+3

RDT

D dimensions
C derivatives
T time steps
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HMM with dynamic featuves

By providing explicitely a sequence of states s = {s1, o, ..., s7} of T time steps (e.g.,
retrieved by Viterbi or specified manually), with discrete states s; € {1,..., K}, the
likelihood of a movement ¢ = ®x is given by

T
P(C|S) — HN<Ct I H’stv ESt)
t=1

where pg and X, are the center and covariance of state s; at time step ¢.

This product can be rewritten as

P(Cls) = N(¢ | ps, Xs)

i, >, 0 .-
I, 0 . --- 0
with p,=| and Xg=| . .

IJ’ST 0 0 c. ZST



HMM with dynamic featuves

For example, for a sequence of states s = {1,1,2,2,3,3, 3,4} with
K =4 and T'=8, we have

” > 0 0 0 0 0 0 O
n 03 0 0 0 0 0 O
1o 0 03 0 0 0 0 O
1o 0 00 0 0 0 0
Hs= || W 2= 5 9 0 5 0 0 0
1 0 0 0 0 0 % 0 0
s 0 000 0 0 % 0
g 0 0 0 00 0 0 X,

L, c RDCT 23 c RDCTXDCT



HMM with dynamic featuves

By using the relation ¢ = ®x, we want to retrieve a trajectory

& = argmax log P(Px | s)

(

DCT

1 1
N (@ | 1y, Ty) = (27) F 2] o (= 5(@2 - ) B, (@2 — )

Equating to zero the derivative of

1
logP(Px|s)=—=
with respect to @ yields

'S, (@ — p,) = 0

— &= (9%,;'®) X, 'pu,

B |
2((1)33 o “S)TES 1((1)33_“’3)_5 log ‘ES|_

VR

DCT
¢ log(27)

Weighted
least squares!
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HMM

T2

61

with dynamic features

The residual error of this estimate is given by the covariance matrix

557 — o(®'%;'®)

where o is a scaling factor.

The resulting Gaussian N (&, f]"”) forms a trajectory distribution,
where & € RPT is an average trajectory stored in a vector form.

T
T2

i 1 T
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HMM with dynamic features - Summary

= (5'®) T,
557 — o (@S, 1P)

N(H’sa ES)

N (&, 37)
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