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9. Kernel Methods - SVM
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OuHine

Properties of multivariate Gaussian distributions:
* Product of Gaussians
* Linear transformation and combination
* Conditional distribution

Three nonlinear regression models:

* Locally weighted regression (LWR) Modeling possible
_ . . co-variations
e Gaussian mixture regression (GMR) (a.k.q. aleatoric uncertainty)

. . Modeli taint
* Gaussian process regression (GPR) e

(a.k.a. epistemic uncertainty)



Multivaviate Ganssian distvibution

Univariate Gaussian distribution:

1 1
N (i, 0%) = (2mo?) [exp ( - Tﬂ<x — ,LL)Q)} Radial basis function (RBF)

r€eR Datapoint,
ne R Center (or mean)
o eR Variance

} Parameters {1, 0%}

Multivariate Gaussian distribution:

1 1
N(p,X) = —_exp(—=(x—p)Z N x —
(b, 33) pTIST p( 5@ —p) B u))
T € RD Datapoint

JIAS RP Center (or mean)
PINS RP*P Govariance matrix

} Parameters {u, 2}




onpw-l'i% of Gaussian distvibutions

Linear combination:
N(p", B5) ~ % N(pW, Wy 4+ 2 M (p?, 2@
Product of Gaussians:
e N(p" 27 ~ N(p, 5W) - N (), 5
Conditional probability:
N (p®,2%) ~ P(as|z1)



Lincar combination
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Product of Gaussians

The product of two Gaussian distributions

N (D, =Wy and N (@, £3)) is defined by
cN(p 3 = N(p®, 20)- N (p, 52),
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Product of Gaussians

N(l"’l) El)

N(""Qa 22)

[t center of Gaussian
>, covariance matrix

W, precision matrix

(Wi=%7)

-~ . 2 2
& = argmin ||p;—x|| | po—||
g po L1 W, + LL2 W,

= (W1 + Wa) " (Wi + W)

- Product of Gaussians

Standard fusion problem
for state estimation
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i?rarchy constraints)
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Conditional probability

Let @ ~ N (u, X) be defined by

T I 21 212
v <$2>’“ (Mz)’ (Ezl Ezz)
The conditional probability P(as|xy) is defined by

P(za|z1) ~ N(p, =),

with MC = Mo + 221(211>_1($1 — H1)>

¥ = o — 01 (Z1) 2.

X2




Conditional distvibution

— (XTX7) 7 X7 X° = X X°©

xI

- Linear regression from joint distribution



Conditional distvibution

We consider multivariate datapoints & and multivariate Gaussian
distributions characterized by centers p and covariances X, that
can be partitioned as

wI z EI EIO
L = [wO] ) K = [ZO] ) > = [ZOI EO] : \

N(2°,5°)

If x ~ N(u,X), we have x°|x* ~ N(ﬁzo, 20), 4
with parameters
30 — ,LLO+ ZOIEI—1<wI - IJ'I>>
20 _ ZO o 20121—1210.

We can see that #© is linearly dependent on @, and that 3¢ is
independent of x*.

We can also notice that for full joint covariance, the conditional
covariance X° will typically be smaller than the marginal 33°.




Conditional distvibution

70 = pu° + EOIEI_l(ZBI . HI)
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Low\“g weighted vegression
(LWR)

Python notebooks:
demo_ LWR.ipynb

Matlab codes:
demo LWRO1.m



Rmp: Linear mgve,ssior\

A = arg min (¥ — XA (Y -XA)
=(X'X)'XY=XY

A = arg Hiiln Y -XA WY -XA)

—(X'WX)'XWY

Degree 0 (e=24.31)

!l

L o0 4 M w A o N o ©

Ordinary least squares

Degree 1 (e=15.65)

Degree 2 (=8.53)
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r=1,x x=][1,x,x%
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4 o =4 M w o pd o N © ©

Weighted least squares
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Color darkness
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to weight
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Locally weighted vegression (LWR)

K weighted regressions with different W are performed on the same dataset { X7, X°}

0.6 0.7 0.8 0.9 1
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Locally weighted vegression (LWR)

LWR computes K estimates Ak, by using different weighting function
¢r(xl), often defined as the radial basis functions (RBF)

16

. 1 B
On(@y) = exp (= (@) — ui) BF @ — i),
or in a rescaled form as
Ou(@) TR
qbk(wi) — K 7/ 7\
Zi:l ¢i(x)

where p; and 37 are the parameters of the k-th RBF.

L — Nonlinear problem solved locally by linear regression }
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Locally weighted vegression (LWR)

Often, the centroids . are set to uniformly cover the input space, and
37 =107 is used as a common bandwidth shared by all basis functions.

X' =t1,t9,...,tNn]
An associated diagonal matrix A, = (XTW, X" XTTW;, X°

Wi = diag (on(2)). 0u(a3). ... on(@h))

can be used to evaluate Aj. The result can then be used to compute

K
X@:Z W.X*A,
k=1
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Locally weighted vegression (LWR)
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LWR can be used for local
least squares polynomial
fitting by changing the
definition of the inputs.

A=(XWX)'XWY
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Locally weighted vegression (LWR)

xr = [1,x,x°



Locally weighted vegression (LWR)

xr=|1,x

x =[1.x, x° N N
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Gaussian misctuve vegvession

(GMR)

Python notebooks:
demo_GMR.ipynb

Matlab codes:
demo GMRO1.m
demo_GMR_polyFit01l.m



Gaussian Mixkure Model (GMM)
~ Zm (1, 2

1 1 _
N(sz Z') eXp (_ 5(3371 — Ni)TE@‘ 1<33n — l’l’z)) K Gaussians
(27T> 7|3 '2 N datapoints of dimension D
X, < R” Datapoint
(7 €R Mixing coefficient | Parameters @™ = {m; pu, 3,15
M © R Center (or mean)
\237; S RP*P covariance matrixj

Equidensity contour of
one standard deviation




Gaussian estimate of a misture of Gaussians

We can approximate a mixture of Gaussians Zfil hi N(p;, X;) with
a single Gaussian N (u, X), by moment matching of the means
(first moments) and covariances (second moments) with

K
H = th‘ i,
i—1

K
=) h (Ez- 1 MM) — pp,

1=1

also referred to as the law of total mean and (co)variance.
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Ganssian mixtuve vegression (GMR)

P(xC|x”)

24



Ganssian mixtuve vegression (GMR)

x’ r > oy
v H o [Z] i [2;31 E]

P(x®|x”) can be computed as the multimodal conditional distribution

P(zf|z") = Zh N (=), 57)

with @) = pf + 38 (@ — pf)
39 — 3o _ yoryz-lyro
K Y
>k T N(&?| pg, 27)

and h; =

computed with the marginal

1 1
(@] puf, 35) = (2m) 5[] 2 exp (= 5 (@7 - ) = @ - ).
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Ganssian mixtuve vegression (GMR)

T T 3o
| -l =B

(4

= ¢+ S @ )
_ o _ yoryu—lywo

In GMR, an output distribution as a single multivariate Gaussian can be
evaluated by moment matching of the means and covariances. The resulting
Gaussian distribution N (f°, 33°) has parameters

th ,'l'z )

- Zhi(i(”ﬂl? i) — o
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CGMR for piccenwise polynomial fittin
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Ganssian mixtuve vegression (GMR)
‘—5 =t, &=

[Calinon, Guenter and Billard,
IEEE Trans. on SMC-B 37(2), 2007]

& S'SP

o £\ ,—-

[Hersch, Guenter, Calinon and Billard,

Z? IEEE Trans. on Robotics 24(6), 2008]
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Go\ussian process ve,ngssion

(GPR)

Python notebook:
demo_ GPR.ipynb

Matlab code:
demo GPRO1.m
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GCaunssian process - |n+wiwe/+o\‘|'ion

 Ajoint distribution represented by a bivariate Gaussian forms
marginal distributions P(y1) and P(y2) that are unidimensional.

* Observing y1 changes our belief about y2, giving rise to a .
conditional distribution. Yo = Mo + 22121_1 (y1 — ,ul)

* Knowledge of the covariance lets us shrink uncertainty in one
variable based on the observation of the other. Di9g = D99y — 22121—11212




GCaunssian process - |n~|’w?ve/+o\‘|'ion

This bivariate example can be extended to an arbitrarily large
number of variables.

Indeed, observations in an arbitrary dataset can always be

imagined as a single point sampled from a multivariate
Gaussian distribution.

Py1,y2, - - J/N)

P@ﬂw\

[yla Yya, . .. 7yN—1]

Y1
Y2

YN
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GCaunssian process - |r\'|'w'wv|w|'ion

}?J2 = f(x2)
{ylzf(xl)

Y1
Y= y2 ~ N(p, X)
| YN | { .
_ { { yn ="
y {ZJB:f(il??;).

32

How to construct this joint
distribution in GP?

By looking at the similarities in the
continuous X space, representing the
locations at which we evaluate y = f(x)



GCaunssian process - ‘r\'l'wyvvlwl'ion

* A covariance over an arbitrarily large set of variables can be
defined through the covariance kernel function k(xi, xj),

providing the covariance elements between any two sample
locations xi and x;.

{ { Tyn="
! { If xn is similar to xs,
g {yng(l‘s) we also expect yn
} F(ia) to be similar to ys.
Ya2=J (X2
}91:f<951>
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GCaunssian process (GP)

For a set of input locations & = {@®y,xs,...,xy}, a positive
semidefinite covariance matrix (also known as the Gram matrix)
is defined as

Kz x) L2, L1 L2, L2 L2, LN
k(xy, 1) k(xN,T2) -+ K(xzy,TN)

The entire function evaluation y, = f(x,) associated with the set
of inputs x,, is a draw from a multivariate Gaussian distribution

y ~ N (n@), K@ ),

specifying a distribution over functions.

IANCY ) \ W ¥
(] N\
PN \ X T
AN NI 2K A
\y ¥ W\ A
1 i ",L\‘\ A ‘ [\
4 Q‘\‘/ \ X

AJ
X)

<y
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How 4o choose k(Xi,XJ) r

 We may know that our observations are samples from a process that is smooth, that is
continuous, that has typical amplitude, or that the variations in the function take place within a
typical dynamic range.

 These models require hyperparameters to be inferred, but these hyperparameters define
characteristics that are more generic (such as the scale of a distribution) rather than acting
explicitly on the structure or functional form of the signals.

* The notion of similarity will depend on the application: some of the basic aspects that can be
defined through the covariance function k(xi,xj) are the process stationarity, isotropy,
smoothness or periodicity.

e With continuous time series, past observations will be informative about current data as a
function of how long ago they were observed.

* This corresponds to a stationary covariance, dependent on the Euclidean distance |xi - xj|.
* This process is also considered as isotropic if it does not depend on directions between xi and x;.

* A process that is both stationary and isotropic is homogeneous.
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How 4o choose k(xi,XJ) r

x=[1,2,...,100]
y ~N(0,K(x,x))

k(x;, ;) = min(x;, x;) + 65"

k(xi, z;) = (xjx; + OF)



k(xi,xJ) as squaved exponential function

A popular homogeneous covariance function is the squared
exponential kernel, also known as radial basis function

1 '
k(x;, :cj) = OF exp <—@Gp (x; — w]-) (x; — wﬂ) ,
9

with two hyperparameters ©f" and ©5" corresponding respectively to
output and input scales of the problem.

The radial basis function is widely employed when it is expected that
nearby inputs &; and x; will have their corresponding outputs y; and

Yy, also nearby (assumption of continuity).

37



N\oAdir\g noise in the observed yn

If we assume there i1s noise associated with the observed function
values y, = f(a,)+mn, this noise term can also be modeled in the
covariance.

This noise is most often assumed to be uncorrelated from sample to
sample, meaning that the noise term is only added to the diagonal
elements of K, giving a modified covariance for noisy observations
of the form

~

Kz, )= Klx,x)+ 651

where I is the identity matrix and ©5" is a Gaussian process
hyperparameter representing the noise variance.

38



GCaunssian process vegression (GPR)

We are interested in the posterior distribution of y* to be

*

computed at some location(s) x*.

The joint distribution of the already observed y (at location
x) augmented by y* (at location x*) is

Kx,x) =

HE (i Fdepiaialy o o

We can use the conditional probability property of Gaussians to
evaluate the posterior distribution of y*, yielding a Gaussian

y'ly ~N(p', %)
with p* = p(z*) + Klz*, ) Kx,z)' (y — p(x))
> = Ko, x") — Kz*, z) Kx,z) K,z

_k:(wl,a:l) k(ml,wg)
k(xo, 1) k(xo,x2) ---

k(xy, xN)
k(xo, )

k(acN, $N>

39




GCaunssian process vegression (GPR)

[t is also often assumed in practice that [

In this case, Gaussian processes can be completely defined by
second-order statistics, where the Gram matrix K is a positive

semi-definite covariance.

Note that K(, a:)_l can be pre-computed so that the posterior

distribution can be computed faster Mane) ko) -
k(xo, x1) k(xo,x9) ---
* * * Kz, x) =

with p* = p(x*) + Ko, ) Kz, x) (y — p(x))
> = Ko, z*) — Kz*, z) Kz, z) 'K, z*)

40
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k(Xi,xJ) as squaved exponential function

=1, ©3°=0.1, ©05=0

Yy ~ N(p(ah), Kz ")  y'ly ~Np T N(p*, %)
Samples from prior Samples from posterior Trajectory distribution

Y1

41
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k(Xi,xJ) as squaved exponential function
Or—1, 05=0.01, 65 =0

Y~ N (@), Kz z)  y'ly ~ N(p', 2" N(p*, 27)
Samples from prior Samples from posterior Trajectory distribution
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k(xa,x\;) as squaved exponential function
w =1, Oy=01, ©3=00l

Y~ N (@), Kz z)  y'ly ~ N(p' X N(p*, 27)
Samples from prior Samples from posterior Trajectory distribution
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k(Xi,xJ) as squaved exponential function
w1, 0y=01, ©Oy=00l

Y ~ N(p(x'), K(z*,z")  y'ly ~N(p, X N(p*, %)
Samples from prior Samples from posterior Trajectory distribution
px) =ax
?
QH-—c O " . — O~
« /
T T ]



k(xa,x\;) as periodic covaviance function
v =01, O5=01, OF=0, OF=10

Y~ N(p(e), K(x*, x*)  y'ly ~ N(p* 2 N(p*, %)

Samples from prior Samples from posterior Trajectory distribution

L1

1
k(x, x;) = OF exp <—@ sin’ (O |2; — wj\)) +0570;
2
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k(xi,xJ) as Mativn covaviance function

Another popular covariance kernel function is the Matérn function

o1V 4\’ d
k(z;, x;) = o° 2vm | K, | V2um
T(v) p p

with d = ||x; — x|

where I' is the gamma function, K, is the modified Bessel function
of the second kind, and p and v are non-negative parameters of the
covariance.

A Gaussian process with Matérn covariance has sample paths that
are |v — 1| times differentiable.
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k(xi,xJ) as Mativn covaviance function

Simplification for v half integer

When v = p+1/2, p € NT, the Matérn covariance can be written
as a product of an exponential and a polynomial of order p:

@d> (p+1) (p+1)! (\/8_Vd>p

P ['2p+1)&~=il(p—1) p

Cpr1/2(d) = % exp <—

bl&. ~.
~—— M@
()

For v =1/2 (p=0): Cy9(d) = 0% exp (
For v =3/2 (p=1): 03/2<d) = o* (1 + V3d exp (—@)
For v =15/2 (p = 2): C5/2<d> (1 + V5d + g‘;ﬁ) exp (—@)

b|w

p p

As v — o0, the Matérn covariance converges to the squared
exponential covariance function.
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k(xa,x\;) as Mativn covaviance function
w01, O5=0.1, O5°=0.0001

Yt~ N (), K(z*,z*)  yly ~ N(p* ") N(p*, X"
Samples from prior Samples from posterior Trajectory distribution
]
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k(xs,x\;) as Brownian motion covariance function

The Wiener process is a simple continuous-time stochastic process often put
in connection to the Brownian motion.

Y~ N(p(e), K(x*, x*) y*ly ~ N(p*, 2 N (p*, X¥)

Samples from prior Samples from posterior Trajectory distribution

k(x;, ;) = min(x;, x;) + 67 *=0.1

49
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k(xi,xJ) as quadvatic covaviance function

Bayesian linear regression is equivalent to a GP with
covariance function k(x;, ;) = xix;.

Y~ N(p(x'), K(z*,z")  yly ~N(p', X N(p*, %)
Samples from prior Samples from posterior Trajectory distribution

[




k(xa,x\;) as polynomial covaviance function

5* —0.1
Y ~ N(p(x), Kz z*)  y'ly ~ N(p", X7 N(p*, 37
Samples from prior Samples from posterior Trajectory distribution

E\
3

NS
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k(xi,x) as probabilistic model covaviance

* Another powerful approach to the construction of kernels is to exploit probabilistic
models.

* Given a generative model P(x), a kernel can be defined as k(xi, xj) = P(xi) P(xj), which can
be interpreted as an inner product in the one-dimensional feature space defined by the
mapping P(x).

* Namely, two inputs xi and x;j will be similar if they both have high probabilities to belong
to the model.

e This can bring additional properties to the underlying process such as the capability of
handling missing data or partial sequences of various lengths (e.g., with HMM).



k(xi,xJ) as weighted sum of covaviance functions

A covariance function can be defined as a linear combination of other
covariance functions, which can be exploited to incorporate different
insights about the dataset.

Such an approach can be exploited as an alternative to optimizing kernel
parameters (also known as multiple kernel learning).

The idea is to define the kernel as a weighted sum of basis kernels, and
then to optimize the weights instead of the kernel parameters.

. T 2 T
k(i x;) = (x;x)” + @),
Dictionary of basis

kernel functions < k2<xi’ wj) - min(a:i, wj)

k(s ay) = exp (— (@i — @) (@ — )

]{(CL‘Z', Cl?j) = @(fpkl(a:i, iBj) + @Spl@(wi, ZU]') + @gpkg(wi, il}j)
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Some uxctensions of Gaunssian processes

Cokriging:
Extending GPR to multiple target variables y.

Sparse GP:
A known bottleneck in Gaussian process prediction is that the computational

complexity of prediction is O(N3)
-> not feasible for large data sets!

Sparse Gaussian processes circumvent this issue by building a representative
set for the given process y = f(x).

Gaussian process latent variable models (GPLVM):
GPLVM is a probabilistic dimensionality reduction method that uses GPs to
find a lower dimensional non-linear embedding of high dimensional data.
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Example: GCaussian Process |M|>|id+ Suvface
(GPIS)

Distance to contour and gradient Uncertainty

Prior (circular contour)

Posterior

e Demonstrated interior points (y=1)

® Demonstrated contour points (y=0)

® Demonstrated exterior points (y=-1)
Lo - — Prior for contour estimation

: ——Estimated contour




Summary of 'l'oAag's lectuve

Properties of multivariate Gaussian distributions:
* Product of Gaussians
* Linear transformation and combination
* Conditional distribution

Three nonlinear regression models:

* Locally weighted regression (LWR) Modeling possible
_ . . co-variations
e Gaussian mixture regression (GMR) (a.k.q. aleatoric uncertainty)

. . Modeli taint
* Gaussian process regression (GPR) e

(a.k.a. epistemic uncertainty)
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