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Outline
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Properties of multivariate Gaussian distributions:

• Product of Gaussians

• Linear transformation and combination

• Conditional distribution

Three nonlinear regression models:

• Locally weighted regression (LWR)

• Gaussian mixture regression (GMR)

• Gaussian process regression (GPR)

Modeling possible  
co-variations
(a.k.a. aleatoric uncertainty) 

Modeling uncertainty 
of the estimate
(a.k.a. epistemic uncertainty)



Multivariate Gaussian distribution
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Multivariate Gaussian distribution:

Univariate Gaussian distribution:



Properties of Gaussian distributions
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Product of Gaussians:

Linear combination:

Conditional probability:



Linear combination
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Product of Gaussians
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Product of Gaussians
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→ Product of Gaussians

Standard fusion problem 
for state estimation



Conditional probability
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→ Linear regression from joint distribution

Conditional distribution 



Conditional distribution 
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Conditional distribution 
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Locally weighted regression

(LWR)

Python notebooks:  
demo_LWR.ipynb

Matlab codes: 
demo_LWR01.m



Recap: Linear regression
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Color darkness
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to weight



Locally weighted regression (LWR)
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Locally weighted regression (LWR)
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Locally weighted regression (LWR)
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Locally weighted regression (LWR)
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LWR can be used for local 
least squares polynomial 

fitting by changing the 
definition of the inputs.



Locally weighted regression (LWR)
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Locally weighted regression (LWR)
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Gaussian mixture regression

(GMR)

Python notebooks:  
demo_GMR.ipynb

Matlab codes: 
demo_GMR01.m

demo_GMR_polyFit01.m



Gaussian Mixture Model (GMM)
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Equidensity contour of
one standard deviation

K Gaussians
N datapoints of dimension D



Gaussian estimate of a mixture of Gaussians
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Gaussian mixture regression (GMR)
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Gaussian mixture regression (GMR)
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Gaussian mixture regression (GMR)
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GMR for piecewise polynomial fitting
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Gaussian mixture regression (GMR)
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[Hersch, Guenter, Calinon and Billard, 
IEEE Trans. on Robotics 24(6), 2008]

[Calinon, Guenter and Billard, 
IEEE Trans. on SMC-B 37(2), 2007]



Gaussian process regression 

(GPR)

Python notebook:
demo_GPR.ipynb

Matlab code: 
demo_GPR01.m



Gaussian process - Interpretation
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• A joint distribution represented by a bivariate Gaussian forms 
marginal distributions P(y1) and P(y2) that are unidimensional.

• Observing y1 changes our belief about y2, giving rise to a 
conditional distribution. 

• Knowledge of the covariance lets us shrink uncertainty in one 
variable based on the observation of the other.



Gaussian process - Interpretation
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• This bivariate example can be extended to an arbitrarily large 
number of variables.

• Indeed, observations in an arbitrary dataset can always be 
imagined as a single point sampled from a multivariate 
Gaussian distribution.



Gaussian process - Interpretation
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How to construct this joint 

distribution in GP?

By looking at the similarities in the 
continuous x space, representing the 
locations at which we evaluate y = f(x) 



Gaussian process - Interpretation
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• A covariance over an arbitrarily large set of variables can be 
defined through the covariance kernel function k(xi, xj), 
providing the covariance elements between any two sample 
locations xi and xj.

If xN is similar to x3, 
we also expect yN

to be similar to y3.



Gaussian process (GP)
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How to choose k(xi,xj) ? 
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• We may know that our observations are samples from a process that is smooth, that is 
continuous, that has typical amplitude, or that the variations in the function take place within a 
typical dynamic range.

• These models require hyperparameters to be inferred, but these hyperparameters define 
characteristics that are more generic (such as the scale of a distribution) rather than acting 
explicitly on the structure or functional form of the signals.

• The notion of similarity will depend on the application: some of the basic aspects that can be 
defined through the covariance function k(xi,xj) are the process stationarity, isotropy, 
smoothness or periodicity.

• With continuous time series, past observations will be informative about current data as a 
function of how long ago they were observed.

• This corresponds to a stationary covariance, dependent on the Euclidean distance |xi - xj|.

• This process is also considered as isotropic if it does not depend on directions between xi and xj.

• A process that is both stationary and isotropic is homogeneous.



How to choose k(xi,xj) ? 
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k(xi,xj) as squared exponential function 
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Modeling noise in the observed yn
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Gaussian process regression (GPR) 
39



Gaussian process regression (GPR) 
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k(xi,xj) as squared exponential function 
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k(xi,xj) as squared exponential function 
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k(xi,xj) as squared exponential function 
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k(xi,xj) as squared exponential function 
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k(xi,xj) as periodic covariance function
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k(xi,xj) as Matérn covariance function
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k(xi,xj) as Matérn covariance function
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k(xi,xj) as Matérn covariance function
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k(xi,xj) as Brownian motion covariance function

The Wiener process is a simple continuous-time stochastic process often put 
in connection to the Brownian motion.
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k(xi,xj) as quadratic covariance function
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k(xi,xj) as polynomial covariance function
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k(xi,xj) as probabilistic model covariance

• Another powerful approach to the construction of kernels is to exploit probabilistic 
models.

• Given a generative model P(x), a kernel can be defined as k(xi, xj) = P(xi) P(xj), which can 
be interpreted as an inner product in the one-dimensional feature space defined by the 
mapping P(x).

• Namely, two inputs xi and xj will be similar if they both have high probabilities to belong 
to the model.

• This can bring additional properties to the underlying process such as the capability of 
handling missing data or partial sequences of various lengths (e.g., with HMM).
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k(xi,xj) as weighted sum of covariance functions

• A covariance function can be defined as a linear combination of other 
covariance functions, which can be exploited to incorporate different 
insights about the dataset.

• Such an approach can be exploited as an alternative to optimizing kernel 
parameters (also known as multiple kernel learning). 

• The idea is to define the kernel as a weighted sum of basis kernels, and 
then to optimize the weights instead of the kernel parameters.

Dictionary of basis 
kernel functions



Some extensions of Gaussian processes
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• Cokriging: 
Extending GPR to multiple target variables y.

• Sparse GP: 
A known bottleneck in Gaussian process prediction is that the computational 
complexity of prediction is O(N3) 
→ not feasible for large data sets!

Sparse Gaussian processes circumvent this issue by building a representative 
set for the given process y = f(x).

• Gaussian process latent variable models (GPLVM): 
GPLVM is a probabilistic dimensionality reduction method that uses GPs to 
find a lower dimensional non-linear embedding of high dimensional data. 



Example: Gaussian Process Implicit Surface

(GPIS)

55



Summary of today’s lecture
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Properties of multivariate Gaussian distributions:

• Product of Gaussians

• Linear transformation and combination

• Conditional distribution

Three nonlinear regression models:

• Locally weighted regression (LWR)

• Gaussian mixture regression (GMR)

• Gaussian process regression (GPR)

Modeling possible  
co-variations
(a.k.a. aleatoric uncertainty) 

Modeling uncertainty 
of the estimate
(a.k.a. epistemic uncertainty)
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