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Abstract

This paper develops a general policy for learning the relevant features of an imitation task. We restrict our study to imitation
of manipulative tasks or gestures. The imitation process is modeled as a hierarchical optimization system, which minimizes
the discrepancy between two multi-dimensional datasets. To classify across manipulation strategies, we apply a probabilistic
analysis to data in Cartesian and joint spaces. We determine a general metric that optimizes the policy of task reproduction,
following strategy determination. The model successfully discovers strategies in six different imitative tasks and controls task
reproduction by a full body humanoid robot.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

This work aims at developing a general policy to
drive robot learning by imitation and robot program-
ming through demonstration. It follows a trend of re-
search that aims at defining a formal mathematical
framework for imitation learning[12,15].

Imitation learning needs to address the following
three key questions: ‘what to imitate’, ‘how to imitate’
and ‘when to imitate’[12]. Previous work has es-
sentially focused on the question of “how to imitate”
[3]. The imitation mechanism was, then, aimed at
a precise reproduction of a pre-specified sub-set of
task features, such as hand–object actions (picking up
a block, rotating the block)[9–11,17], state-actions
(turn left, move forward)[6,7], the path followed by
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the manipulated object[2,14] and the joint trajecto-
ries of the demonstrator’s motion[4,5,8], which could
be reproduced by pre-defined motor programs. The
present work aims at complementing these previous
approaches, by defining a general policy for learning
‘what to imitate’, i.e. which of the features of the task
are relevant to the reproduction.

Recent work [1] illustrated nicely the problem
of determining ‘what to imitate’ in a chess world
case-study, in which the imitator agent can follow
either of three strategies,end-point level, trajectory
level, path level, to reproduce either subparts or the
complete path followed by the demonstrator. We fol-
low a similar taxonomy and apply it to the learning
and reproduction of tasks involving object manipula-
tion and gestures by a humanoid robot. We take the
perspective that the relevant features of the move-
ment, i.e. those to imitate, are the features that appear
most frequently, i.e. the invariants in time. We develop
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a general formalism for determining the metric of
imitation performance.

Section 2presents a general mathematical formal-
ism to express the metric of imitation performance
and the optimal control policy, that optimizes this met-
ric. Sections 4 and 5describe the implementation of
the formalism to drive learning by imitation of tasks
involving object manipulation and gestures by a hu-
manoid robot.Section 6discusses the limitations of
the formalism and concludes this paper by offering a
general perspective on the future work.

2. Formulation of the imitation task

An imitation task can be decomposed into the serial
implementation of two processes: anobservation pro-
cess and animitation process. The observation process
consists of extracting relevant (i.e. in our case, invari-
ant over time) features from ademonstrated dataset.
The imitation process consists of generating animi-
tated dataset that minimizes the discrepancy between
the demonstrated and imitated datasets.

2.1. Formalism

Let D be the dataset generated by the demonstra-
tor while driven by a controllerU. U is such that
D(U) = { �X, �X0, �Θ}, where �X = {x, ẋ, ẍ} and �XO =
{xO, ẋO, ẍO} (3-dim Cartesian position, speed and ac-
celeration), are the Cartesian trajectories of the hand
and the object respectively, and�θ = {θ, θ̇, θ̈} (angular
position, speed and acceleration) the trajectory of the
demonstrator’s arm joints.

The imitation process consists of determining a con-
troller U′ (Fig. 1), that generates a datasetD′(U ′) =
{ �X′, �X′

0,
�θ′}, such thatJ, thecost function or themet-

ric of the imitation task, is minimal:δJ(D, D′) = 0.
Each imitation task is defined by a set of constraints

s ∈ [1, S]. For each constraints, ∃ a controllerUs gen-
erating a datasetDUs , such that the associated metric
JUs is minimal: δJUs(DUs, D

′
Us

) = 0.

2.1.1. Metric of imitation
We express the metric or cost function of the im-

itation taskJ as a linear combination of constraint-
dependent cost functionsJUs :

Fig. 1. Imitation of a manipulation task. The demonstrator’s world
is mapped into the imitator’s world. Demonstrator and imitator’s
worlds are modeled as two datasetsD = { �X, �X0, �Θ}, D′ =
{ �X′, �X′

0,
�Θ′}.

J(D, D′) =
U∑

u=1

S∑
s=1

wus · J(Dus, D
′
u′

s
). (1)

The weights of the constraints-dependent cost func-
tions are proportional to the likelihoodP(Us), that the
datasetD has been generated by the control strategy
Us:

wUs = P(Us)∑U
i=1
∑S

j=1P(ij)
. (2)

The weights are normalized, such that

U∑
i=0

S∑
j=1

w(Us) = 1. (3)

2.1.2. Optimal imitation policy
We hypothesize that the constraintss, once identi-

fied during the observation process, remain the same
during the imitation process. In the particular case
where all control strategies are mutually exclusive, the
optimal control strategy is unique. IfP(U ′

s) is the like-
lihood that the imitated dataset has been generated by
the control strategyU ′

s, we haveP(Us) = P ′(U ′
s).

In the case where different control strategies can
coexist, because they would be acting on separate
sub-datasets (e.g. one strategy tends to minimize a con-
straint on the objects trajectories, while another strat-
egy tends to minimize a constraint on the arm joint
trajectories), then the optimal control strategy is the
combination of all the optimal control strategies for
each sub-dataset, such that

P(Us) = P ′(U ′
s) ∀ s ∈ [1, S]. (4)
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This probabilistic framework is highly suitable to the
analysis and production of Cartesian and joint trajecto-
ries, when using probabilistic methods, such as prob-
abilistic distributions, Bayesian networks and Hidden
Markov Models, as we will see inSection 5.

3. Experimental set-up

A typical imitation experiment consists first of
the demonstrator performing the task with the robot
observing and extracting the relevant steps of the
demonstration. After a signal indicating the end of
the demonstration, the robot reproduces only the
part of the demonstration that was found significant.
In the work presented here, the demonstrator either
performs a manipulation task using two color boxes
(green and pink) on a table stand, seeFig. 2, or draws
in the air stylized letters (seeFig. 5). When manip-
ulating objects, the demonstrator performs four types
of manipulation tasks, in which he either:

1. moves only a specific box, irrespective of the di-
rection of movement or the hand used to move the
box;

2. moves all boxes in a specific direction (along the
x, y or z-axis);

3. moves the boxes in a specific sequence (box 1, box
2, box 3);

4. moves all boxes using the same hand–box relation-
ship (use the left hand only, or use the hand closest
to the target).

Fig. 2. Left: observation phase – the demonstrator moves each box
from left to right. Right: ATR DB robot imitates the invariant of
the demonstration, a motion of any block along thex-axis.

The demonstrator repeats each manipulation task
five times, in order to make the interesting feature
salient. The robot repeats only the invariant across the
different demonstration and does not simply copy the
whole sequence.

3.1. Robot control

The work was conducted first in the Xanim simula-
tor [16] and then implemented on DB, a 30 degrees of
freedom (head 3, arms 7× 2, trunk 3, legs 3× 2, eyes
four degrees of freedom) hydraulic humanoid robot,
located at the Advanced Telecommunication Research
Institute. The Xanim simulator is a dynamic simula-
tion of the DB robot (seeFig. 3 right). The exter-
nal force applied to each joint is gravity. Balance is
handled by supporting the hips; ground contact is not
modeled. There is no collision avoidance module. The
dynamics model is derived from the Newton–Euler
formulation of rigid body dynamics.

The robot/avatar’s movements are force-controlled
based on desired trajectories (inverse kinematics
transforms a kinematic plan from Cartesian to joint
space). The trajectory to imitate is specified as a set
of target points in Cartesian space. For instance, the

Fig. 3. Top: the Xanim simulator calculates the dynamics of a 30
degrees of freedom avatar and of 3 colored boxes[16]. Bottom:
the end-effector of the robot is a solid plate, whose orientation
in 3D can be modulated. In simulation and during control, the
position of the end-effector is considered to be at the end of the
plate (sphere in the drawing).
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Fig. 4. A stereo color vision system used for tracking motions of
colour boxes during demonstration and imitation.

action ‘pushing a box to the left’ follows a trajectory
made of three points, located 10 cm to the right of the
box, at the center of the box and 10 cm to the left of
the box.

In tasks involving the observation of gestures, the
joint trajectories of the demonstrator are segmented
at fixed time interval, as described inSection 4.2.3.
During reproduction of gestures, the joint velocities
and trajectories are fitted with a third-order spline.

3.2. Data recording

The Cartesian trajectories of the colored boxes are
tracked by a stationary pair of cameras (seeFig. 4).
The system tracks the position and velocity of the
three colored blobs at the rate of 60 Hz. The tra-
jectories of the blobs are segmented into four types
of events: hits, i.e. a displacement of a box by the
demonstrator/imitator; directed hits, i.e. a displace-
ment of the box in a specific direction; arm-choice,
i.e. the frequency of use of left and right arms;
close-far, the frequency of use of the hand closest to
the box for performing a hit (based on a measure of
the distance from the box to the left and right shoul-
der of the demonstrator). Arm-choice and close-far
measurements were available only in simulation.

Joint displacements, i.e. angular measurements of
the four degrees of freedom of the demonstrator’s right
arm (flexion, abduction and humeral rotation of the
shoulder and flexion of the elbow), are recorded by a
set of five Xsens sensors, that measure the absolute
orientation of the torso, upper and lower arms (see
Fig. 6). Data are captured at the rate of 100 Hz.

Fig. 5. The demonstrator, who wears an Xsens recording system,
draws in the air four stylized figures: A, B, C and D. The robot
reproduces a generalization over four examples of each drawing,
varying the speed and amplitude of the demonstrated gestures if
desired.

4. Experiments

The formalism, described inSection 2, was imple-
mented to determine the metric and optimal control
policies of different tasks consisting, either, of the
manipulation of objects, or, of drawing stylized let-
ters (seeFig. 2). These experiments were divided into
four categories according to four levels of complexity
or levels of imitation (seeSection 1). A number of
control strategiess were associated to each levell of
imitation, as follows:

• l1 – reproducing only the goal, reaching for the same
box (s11) or for the same set of boxes in sequence
(s12), irrespective of the path followed by the box
(directed by the demonstrator) or of the gesture.

• l2 – reproducing the path followed by the target, i.e.
moving the box in a specific direction (s21).

• l3 – reproducing the same hand–object relationship,
i.e. using only left or right hand (s31), or using the
hand closest to the target (s32).
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Fig. 6. From top to bottom: joint trajectories of the elbow and
shoulder (flexion, abduction and humeral rotation) during drawing
of the stylized figure A. The thin line corresponds to the demon-
stration. It is segmented into seven-time intervals of fixed length.
Each segmentation point is then mapped to a quantization of five
angles. Each trajectory is then encoded into one HMM of seven
states and five observation symbols. The thick line corresponds to
the trajectory produced by the HMM, using a third-order spline
fit to interpolate between the segmentation points.

• l4 – reproducing the exact gesture, i.e. reproducing
the trajectory of each jointi (s4i ) with i ∈ [1, 4].

4.1. Strategy determination

Let h(i) with i ∈ [1, 3], d(i) with i ∈ [1, 8], a(i)
with i = {1, 2}, andc(i) with i ∈ [1, 2] be the number
of events hits, directed hits, arm-choice and close-far,
respectively (seeSection 3.2for the definitions of the
events). Then, in order to determine which strategy has

been used when observing the demonstration (valid
for levels 1–3 only), we compute the following prob-
abilities:

P(s11) = maxi={1,2,3}

(
h(i)∑3
j=1h(j)

)
(5)

P(s21) = maxi={1,... ,8}

(
d(i)∑8
j=1d(j)

)
(6)

P(s31) = maxi={1,2}

(
a(i)∑2
j=1a(j)

)
(7)

P(s32) = maxi={1,2}

(
c(i)∑2
j=1c(j)

)
. (8)

Once the strategy used by the demonstrator is deter-
mined, we define the metric and imitation controller.
This is described in the following sections.

4.2. Metrics and control policies

4.2.1. Level 1 and level 2
For these two levels, the dataset consists of the tra-

jectories of the objectsD(U) = { �XO}. The constraints
are �X′

O = �XO and the metric is expressed as

J = J1&2( �XO, �X′
O) = || �XO − �X′

O||.
The imitation control strategy consists, then, of (1)
choosing the target object by drawing from the ob-
ject distributionP(X′

O); (2) defining a set of three
target points to reach the object�XT = { �X′

O −
�C, �X′

O, �X′
O + �C}, where �C is a fixed distance hand–

object (seeSection 3); (3) reaching each of the tar-
get points in sequence by inverse kinematics:1 Θ′ =
f−1(X′

O).

4.2.2. Level 3: reproducing the hand–object
relationship

The dataset consists of the trajectories of the hand
and of the objectsD(U) = { �X, �XO}. The constraints
are �X′

O = �XO and �X′ = �X (the constraints can also

1 The inverse kinematics on the robot arm’s seven degree of
freedoms is solved by numerical iterations, based on the method
pseudo-inverse with optimization (see[18]). The optimization cri-
teria minimizes the distance to a set of rest positions.
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include an equality between the velocities and the ac-
celerations, which give an implicit measure of torque).
The metric is expressed as

J = w1&2 · J1&2( �XO, �X′
O) + w3 · J3( �X, �X′),

where

J3 = || �X − �X′||, w1&2 =
∑2

i=1
∑

j P(sij )∑3
i=1
∑

j P(sij )

and

w3 =
∑

j P(s3j )∑3
i=1
∑

j P(sij )
.

The imitation control strategy consists, then, of (1)
calculating the distance hand–object�Z = �X− �X′

0; (2)
defining a set of three target points around�Z, as in
levels 1–2 (cf.Section 4.2.1); (3) reaching each of the
target points in sequence by inverse kinematics.

4.2.3. Level 4: reproducing gestures
The gestures are encoded in a set of discrete Hid-

den Markov Models withN states andM observation
symbols[13]. Each joint angle trajectoryi ∈ [1, I] is
segmented intoN time intervals�tn of equal length
and mapped into a set ofM angles (the observations).
Fig. 5 shows an example of trajectory segmented into
N = 7 fixed intervals andM = 5 angles. Each seg-
mentation point is referred to byθin with n ∈ [1, N].

The dataset consists, then, ofI series ofN angles
D(U) = {θin}. The constraints are:∀n and∀i, θin =
θ′
in

. The metric is expressed as

J =
I∑

i=1

w4i · J4i ({θi}n, {θ′
i}n),

whereI is the number of joint angles,w4i the maximal
log-likelihood over all the Markov sequences gener-
ated by all the HMMs associated with the joint trajec-
tory i (seeSection 5) and

J4i =
N∑

n=1

||θin − θ′
in
||.

The imitation control strategy consists, then, of (1)
generating the most likely sequences ofθ′

in
by com-

bining the most likely sequences generated by each

HMM; (2) determining the whole joint angle trajec-
tory by applying a third order spline fit on the points
given by the sequence; (3) going to each angular po-
sition by inverse dynamics.

5. Results

The model was first tested in simulation, with the
avatar playing in turn the role of demonstrator and
imitator. The model could correctly disambiguate be-
tween all strategies of imitation, see the example of
Fig. 7. The same was confirmed using video data of
human demonstration and implementing the reproduc-
tion on the ATR DB robot2 (seeFig. 2).

Imitation of the fourth level of imitation, i.e. recog-
nition and reproduction of a gesture, was conducted
separately on human data recorded with the Xsens
recording system. Sixteen HMM models were trained
to encode 4 gestures, consisting of drawings of the
stylized letters A, B, C and D. Each gesture was pre-
sented four times to increase the generalization of each
model. Each model’s ability to recognize a trajectory
was measured by calculating the likelihood that the
observed trajectory could be generated by this model.3

A model is said to be a good predictor, when its output
likelihood is higher than a threshold. The threshold
gives a measure of tolerance of noise and was deter-
mined experimentally. When training a model with
randomly generated sequences, with the same length,
number of states, and number of observation symbols
as those used to encode the gestures, we observed that
the log-likelihood decreased quasi-linearly when in-
serting errors4 in the sequence (seeFig. 8). We chose
a threshold of−0.3 in log-likelihood, correspond-
ing to approximately 30% of noise. The threshold is
used, also, to determine whether a new model should
be created to account for a newly presented gesture,

2 Note that reproduction of strategiess21 and s22 could not be
tested, as only the left arm of the DB robot was functional during
our visit at ATR.

3 Note that the likelihood returned by an HMM is highly depen-
dent on the length of the observation sequence and the number of
states. In order to compare successfully the likelihoods returned
by the models, we applied a normalization in time and angular
amplitude (seeFig. 5).

4 The introduction of errors or noise consisted of changing ran-
domly the value taken by one of the states of the sequence.
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Fig. 7. Top left: incrementation of the counters recording the number of times each box is touched. In this example, box 1 is moved
frequently, while box 2 is touched only once and very briefly, and box 3 is not touched at all. The pie chart represents the distribution of
probability of each of the three possible strategies that could have accounted for that particular example.

and, thus, gives a measure of the metric of imitation
performance. Reproducing each gesture consists of
generating the most likely sequence, using the Viterbi
algorithm. The trajectory reproduced by the model
(and subsequently by the robot) is, then, a generaliza-
tion over the different training samples (seeFig. 9).

The system learned and recognized correctly the
four stylized letters A, B, C and D (seeTable 1).
The HMM encoding of the gestures is a parameter
free representation, seeSection 4.2.3, that is normal-
ized in time and amplitude. This allows us to vary
the amplitude and speed of the gesture at will during
reproduction.

However, because storage depended on a fixed
segmentation of the trajectories in time, strong dis-

nb of errors

LL

0         1 2         3 4         5          6
-0.64

-0.00

Fig. 8. Log-likelihood of an HMM when trained with randomly
generated sequences of a fixed length of 7. The likelihood decreases
quasi-linearly with the number of errors inserted in the sequence.

Fig. 9. Thin lines: Cartesian trajectories of the demonstrator’s
hand used to train the Hidden Markov Models (HMMs); bold
line: trajectory reproduced by the robot, generalization over the
different training samples and most likely trajectory generated by
the different HMMs.

Table 1
Imitation performance for the different levels of imitation

Levels of
imitation

Robot
learning (%)

Simulation
retrieval (%)

1 10 0
2 – 0
3 5–30 –
4 5 0

The error (cost function averaged over the trials) is given in
percentage.
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tortions from the demonstrated trajectories could be
observed in both the learned and reproduced trajecto-
ries. In order to overcome this problem, current work
re-implements the model using continuous Hidden
Markov Models and a feature-based segmentation
method, based on zero-velocity crossing, as done in
[4].

6. Conclusion

We addressed the problem of determining which
features of a manipulation task are relevant and
should be imitated. We proposed a metric of imitation
performance that determines the optimal imitation
strategy, based on a measure of probability of ob-
serving a particular manipulation strategy. The metric
uses a linear combination of probabilities to compare
the results of different algorithms for feature extrac-
tion, applied to different datasets. The model was
successfully applied to the reproduction of manipu-
lation and drawing tasks in a dynamic simulator and
on a humanoid robot, using kinematic data of human
motion.

Each of the methods used for discovering regulari-
ties in the data is not novel nor optimal. The novelty
of this work lies in the combination of these methods
to extract a higher-level form of redundancy in the
datasets, that no single method could extract alone, in
order to determine a general imitation metric.

The work remained simple in the manipulation tasks
it addressed. We considered only planar motions of
the objects, manipulation sequence of no more than
three time steps, and simple gestures. This simplicity
was necessary in order to validate the approach. Fu-
ture work will consider more complex sets of data.
Presently, we are conducting a systematic evaluation
of the method for extracting strategies in joint space,
over a larger dataset of gestures.

Although we attempted to give to the imitation met-
ric a general definition, a number of assumptions on
its form remained task-specific and should be revisited
in future work. The linear combination of sub-metrics
might not be valid in tasks where sub-metrics are
correlated. Sub-metrics should be less dataset-specific
and should specify classification algorithms that ex-
tract the nature (probabilistic, sequential) of correla-
tion across any dataset.
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