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Chapter 59

Robot Programming by Demonstration

Observation of multiple

demonstrations

Reproduction of a generalized

motion in a different situation

Figure 59.1: Left: A robot learns how to make a chess move (namely
moving the queen forward) by generalizing across different demonstra-
tions of the task performed in slightly different situations (different
starting positions of the hand). The robot records its joints’ trajecto-
ries and learns to extract what-to-imitate, i.e. that the task constraints
are reduced to a subpart of the motion located in a plane defined by
the three chess pieces. Right: The robot reproduces the skill in a
new context (for different initial position of the chess piece) by finding
an appropriate controller that satisfies both the task constraints and
constraints relative to its body limitation (how-to-imitate problem),
adapted from [1].

59.1 Introduction

Robot Programming by demonstration (PbD) has be-
come a central topic of robotics that spans across general
research areas such as human-robot interaction, machine
learning, machine vision and motor control.

Robot PbD started about 30 years ago, and has grown
importantly during the past decade. The rationale for
moving from purely preprogrammed robots to very flex-
ible user-based interfaces for training robots to perform
a task is three-fold.

First and foremost, PbD, also referred to as imitation
learning, is a powerful mechanism for reducing the com-
plexity of search spaces for learning. When observing
either good or bad examples, one can reduce the search
for a possible solution, by either starting the search from
the observed good solution (local optima), or conversely,

by eliminating from the search space what is known as a
bad solution. Imitation learning is, thus, a powerful tool
for enhancing and accelerating learning in both animals
and artifacts.

Second, imitation learning offers an implicit means of
training a machine, such that explicit and tedious pro-
gramming of a task by a human user can be minimized
or eliminated (Figure 59.1). Imitation learning is thus
a “natural” means of interacting with a machine that
would be accessible to lay people.

Third, studying and modeling the coupling of percep-
tion and action, which is at the core of imitation learning,
helps us to understand the mechanisms by which the self-
organization of perception and action could arise during
development. The reciprocal interaction of perception
and action could explain how competence in motor con-
trol can be grounded in rich structure of perceptual vari-
ables, and vice versa, how the processes of perception
can develop as means to create successful actions.

PbD promises were thus multiple. On the one hand,
one hoped that it would make learning faster, in contrast
to tedious reinforcement learning methods or trials-and-
error learning. On the other hand, one expected that the
methods, being user-friendly, would enhance the appli-
cation of robots in human daily environments. Recent
progresses in the field, which we review in this chapter,
show that the field has made a leap forward during the
past decade toward these goals. In addition, we antici-
pate that these promises may be fulfilled very soon.

59.1.1 Chapter Content

The remaining of this chapter is divided as follows. Sec-
tion 59.2 presents a brief historical overview of robot Pro-
gramming by Demonstration (PbD), introducing several
issues that will be discussed later in this chapter. Sec-
tion 59.3 reviews engineering approaches to robot PbD
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2 CHAPTER 59. ROBOT PROGRAMMING BY DEMONSTRATION

Demonstration Reproduction

Extraction of a subset 
of keypoints

Figure 59.2: Exact copy of a skill by interpolating between a set of
pre-defined keypoints, see e.g., [2].

with an emphasis on machine learning approaches that
provide the robot with the ability to adapt the learned
skill to different situations (Section 59.3.1). This Section
discusses also the different types of representation that
one may use to encode a skill and presents incremental
learning techniques to refine the skill progressively (Sec-
tion 59.3.2). Section 59.3.3 emphasizes the importance
to give the teacher an active role during learning and
presents different ways in which the user can convey cues
to the robot to help it to improve its learning. Section
59.3.4 discusses how PbD can be jointly used with other
learning strategies to overcome some limitations of PbD.
Section 59.4 reviews works that take a more biological
approach to robot PbD and develops models of either
the cognitive or neural processes of imitation learning in
primates. Finally, Section 59.5 lists various open issues
in robot PbD that have yet been little explored by the
field.

59.2 History

At the beginning of the 1980s, PbD started attracting
attention in the field of manufacturing robotics. PbD
appeared as a promising route to automate the tedious
manual programming of robots and as way to reduce the
costs involved in the development and maintenance of
robots in a factory.

As a first approach to PbD, symbolic reasoning was
commonly adopted in robotics [2, 3, 4, 5, 6], with pro-
cesses referred to as teach-in, guiding or play-back meth-
ods. In these works, PbD was performed through manual
(teleoperated) control. The position of the end-effector
and the forces applied on the object manipulated were
stored throughout the demonstrations together with the
positions and orientations of the obstacles and of the tar-
get. This sensorimotor information was then segmented
into discrete subgoals (keypoints along the trajectory)
and into appropriate primitive actions to attain these
subgoals (Figure 59.2). Primitive actions were commonly
chosen to be simple point-to-point movements that in-
dustrial robots employed at this time. Examples of sub-
goals would be, e.g., the robot’s gripper orientation and

Figure 59.3: Early approaches to Robot Programming by Demon-
stration decomposed a task into functional and symbolic units. Tem-
poral dependencies across these units were used to build a hierarchical
task plan that drove the robot’s reproduction of the task [7].

position in relation to the goal [4]. Consequently, the
demonstrated task was segmented into a sequence of
state-action-state transitions.

To take into account the variability of human motion
and the noise inherent to the sensors capturing the move-
ments, it appeared necessary to develop a method that
would consolidate all demonstrated movements. For this
purpose, the state-action-state sequence was converted
into symbolic “if-then” rules, describing the states and
the actions according to symbolic relationships, such
as “in contact”, “close-to”, “move-to”, “grasp-object”,
“move-above”, etc. Appropriate numerical definitions
of these symbols (i.e., when would an object be con-
sidered as “close-to” or “far-from”) were given as prior
knowledge to the system. A complete demonstration
was thus encoded in a graph-based representation, where
each state constituted a graph node and each action a
directed link between two nodes. Symbolic reasoning
could then unify different graphical representations for
the same task by merging and deleting nodes [3].

Muench et al [8] then suggested the use of Machine
Learning (ML) techniques to recognize Elementary Op-
erators (EOs), thus defining a discrete set of basic motor
skills, with industrial robotics applications in mind. In
this early work, the authors already established several
key-issues of PbD in robotics. These include questions
such as how to generalize a task, how to reproduce a
skill in a completely novel situation, how to evaluate a
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reproduction attempt, and how to better define the role
of the user during learning. Muench et al [8] admitted
that generalizing over a sequence of discrete actions was
only one part of the problem since the controller of the
robot also required the learning of continuous trajecto-
ries to control the actuators. They proposed that the
missing parts of the learning process could be overcome
by adapting them to the user who had taken an active
role in the teaching process.

These early works highlighted the importance of pro-
viding a set of examples that the robot can use: (1) by
constraining the demonstrations to modalities that the
robot can understand; and (2) by providing a sufficient
number of examples to achieve a desired generality. They
noted the importance of providing an adaptive controller
to reproduce the task in new situations, that is, how to
adjust an already acquired program. The evaluation of a
reproduction attempt was also leveraged to the user by
letting him/her provide additional examples of the skill
in the regions of the learning space that had not been
covered yet. Thus, the teacher/expert could control the
generalization capabilities of the robot.

In essence, much current works in PbD follows a con-
ceptual approach very similar to older work. Recent
progresses affected mostly the interfaces at the basis of
teaching. Traditional ways of guiding/teleoperating the
robot were progressively replaced by more user-friendly
interfaces, such as vision [9, 10, 11], data gloves [12],
laser range finder [13] or kinesthetic teaching (i.e., by
manually guiding the robot’s arms through the motion)
[1, 14, 15].

The field progressively moved from simply copying the
demonstrated movements to generalizing across sets of
demonstrations. Early work adopted a user-guided gen-
eralization strategy, in which the robot may ask the user
for additional sources of information, when needed. As
Machine Learning progressed, PbD started incorporating
more of those tools to tackle both the perception issue,
i.e., how to generalize across demonstrations, and the
production issue, i.e., how to generalize the movement
to new situations. These tools include Artificial Neural
Networks (ANNs) [16, 17], Radial-Basis Function Net-
works (RBFs) [18], Fuzzy Logic [19], or Hidden Markov
Models (HMMs) [20, 21, 22, 23, 24].

As the development of mobile and humanoid robots
more animal-like in their behaviors increased, the field
went towards adopting an interdisciplinary approach. It
took into account evidence of specific neural mechanisms
for visuo-motor imitation in primates [25, 26] as well as
evidence of developmental stages of imitation capacities
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at a symbolic level
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Figure 59.4: Illustration of the different levels of representation for
describing the skill.

in children [27, 28]. Eventually, the notion of ”Robot Pro-
gramming by Demonstration” was replaced by the more
biological labelling of ”Imitation Learning”.

New learning challenges were, thus, set forth. Robots
were expected to show a high degree of flexibility and ver-
satility both in their learning system and in their control
system in order to be able to interact naturally with hu-
man users and demonstrate similar skills (e.g., by mov-
ing in the same rooms and manipulating the same tools
as humans). Robots were expected more and more to
act ”human-like” so that their behavior would be more
predictable and acceptable.

Thanks to this swift bioinspiration, Robot PbD be-
came once again a core topic of research in robotics
[29, 30, 31, 32]. This after the original wave of robotic
imitation based on symbolic artificial intelligence meth-
ods lost its thrust in the late 1980s. Robot PbD is now
a regular topic at the two major conferences on robotics
(IROS and ICRA), as well as at conferences on related
fields, such as Human-Robot Interaction (HRI, AISB)
and Biomimetic Robotics (BIOROB, HUMANOIDS).

59.3 Engineering-oriented Ap-
proaches

Engineering-oriented and Machine Learning approaches
to robot PbD focus on developing algorithms that are
generic in their representation of the skills and in the
way they are generated.
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Table 59.1: Advantages and drawbacks of representing a skill at a symbolic/trajectory level.

Span of the generaliza-
tion process

Advantages Drawbacks

S
y
m

b
o
li
c

le
v
e
l Sequential organization

of pre-defined motion el-
ements

Allows to learn hierar-
chy, rules and loops

Requires to pre-define a
set of basic controllers
for reproduction

T
ra

je
c
to

ry

le
v
e
l

Generalization of move-
ments

Generic representa-
tion of motion which
allows encoding of
very different types of
signals/gestures

Does not allow to repro-
duce complicated high-
level skills

Current approaches to represent a skill can be broadly
divided between two trends: a low-level representation
of the skill, taking the form of a non-linear mapping be-
tween sensory and motor information, which we will later
refer to as “trajectories encoding”, and, a high-level rep-
resentation of the skill that decomposes the skill in a
sequence of action-perception units, which we will refer
to as “symbolic encoding”.

The field has identified a number of key problems that
need to be solved to ensure such a generic approach
for transferring skills across various agents and situa-
tions [33, 34]. These have been formulated as a set of
generic questions, namely what to imitate, how to imi-
tate, when to imitate and who to imitate. These ques-
tions were formulated in response to the large body of
diverse work in Robot PbD that could not easily be uni-
fied under a small number of coherent operating princi-
ples [35, 36, 18, 37, 38, 39]. The above four questions
and their solutions aim at being generic in the sense of
making no assumptions on the type of skills that may
be transmitted. Who and When to imitate have been
largely unexplored sofar. Here we essentially review ap-
proaches to tackling What and How to imitate, which
we refer to as “learning a skill” (what to imitate) and
“encoding a skill” (how to imitate). See Figure 59.5 for
an illustration.

59.3.1 Learning a Skill

As mentioned in Section 59.2, early approaches to solv-
ing the problem of how to generalize a given skill to
a new/unseen context consisted in explicitly asking the
teacher for further information (Figure 59.6).

Another way of providing further information to the
robot without relying on symbolic/verbal cues consists
in doing part of the training in Virtual Reality (VR) or
Augmented Reality (AR) and providing the robot with
virtual fixtures, see Figure 59.7 and [43, 44, 45, 46].

Demonstration Reproduction in a

different situation

(use of a different

object)

Reproduction using

a different

embodiment (use of

robots with different

limbs size)

Figure 59.5: Illustration of the correspondence problems.

Demonstration Model of the skill
Ambiguities in the

reproduction context?

Query the user

Reproduction

Yes

No

Application to
a new context

Figure 59.6: Learning of a skill through a query-based approach,
see e.g., [8].

Demonstration Model of the skill
Virtual reality 

representation
of the skill

Manipulation of 
virtual fixtures 

by the user

Reproduction

Application to
a new context

Figure 59.7: PbD in a Virtual Reality (VR) setup, providing the
robot with virtual fixtures. VR acts as an intermediate layer of in-
teraction to complement real-world demonstration and reproduction,
adapted from [40].
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Figure 59.8: Use of a metric of imitation performance to evaluate a
reproduction attempt and find an optimal controller for the reproduc-
tion of a task (here, to displace the square in a 2D world). The figure
is reproduced from [41].

Demonstration Model of the skill Reproduction

Extraction of  the 
task constraints

Application to
a new context

Figure 59.9: Generalization of a skill by extracting the statistical
regularities across multiple observations, see e.g., [42].

Additionally, one sees further methods of learning a
skill by allowing a robot to automatically extract the
important features characterizing the skill and to look
for a controller that optimizes the reproduction of these
characteristic features. Determining a metric of imita-
tion performance is a key concept at the bottom of these
approaches. One must first determine the metric, i.e. de-
termine the weights one must attach to reproducing each
of the components of the skill. Once the metric is deter-
mined, one can find an optimal controller to imitate by
trying to minimize this metric (e.g., by evaluating sev-
eral reproduction attempts or by deriving the metric to
find an optimum). The metric acts as a cost function
for the reproduction of the skill [33]. In other terms, a
metric of imitation provides a way of expressing quanti-
tatively the user’s intentions during the demonstrations
and to evaluate the robot’s faithfulness at reproducing
those. Figure 59.8 shows an illustration of the concept
of a metric of imitation performance and its use to drive
the robot’s reproduction.

To learn the metric (i.e., to infer the task constraints),
one common approach consists in creating a model of
the skill based on several demonstrations of the same
skill performed in slightly different conditions (Figure
59.9). This generalization process consists of exploit-
ing the variability inherent to the various demonstra-
tions and to extract the essential components of the
task. These essential components should be those that
remain unchanged across the various demonstrations
[42, 47, 48, 49, 1, 50, 51, 52].

Figure 59.4 presents a schematic of the learning pro-
cess by considering either a representation of the skill at a

Figure 59.10: Left: Training center with dedicated sensors. Right:
Precedence graphs learned by the system for the ’setting the table’ task.
(a) Initial task precedence graph for the first three demonstrations.
(b) Final task precedence graph after observing additional examples.
Adapted from [50].

Figure 59.11: Extraction of the task constraints by considering a
symbolic representation of the skill. The figure is reproduced from [52].

symbolic level or at a trajectory level (these two schemas
are detailed versions of the tinted boxes depicted in Fig-
ure 59.9). Table 59.1 summarizes the advantages and
drawbacks of the different approaches.

Next, we review a number of specific approaches to
learning a skill at the symbolic and trajectory levels.

Symbolic Learning and Encoding of Skills

A large body of work uses a symbolic representation of
both the learning and the encoding of skills and tasks [8,
53, 22, 49, 50, 52, 54, 55]. This symbolic way of encoding
skills may take several forms. One common way is to
segment and encode the task according to sequences of
predefined actions, described symbolically. Encoding and
regenerating the sequences of these actions can, however,
be done using classical machine learning techniques, such
as HMM, see [22].

Often, these actions are encoded in a hierarchical man-
ner. In [49], a graph-based approach is used to generalize
an object’s transporting skill by using a wheeled mobile
robot. In the model, each node in the graph represents
a complete behaviour and generalization takes place at
the level of the topological representation of the graph.
The latter is updated incrementally.

[50] and [52] follow a similar hierarchical and incremen-
tal approach to encode various household tasks (such as
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setting the table and putting dishes in a dishwasher),
see Figure 59.10. There, learning consists in extracting
symbolic rules that manages the way each object must
be handled, see Figure 59.11.

[54] also exploits a hierarchical approach to encoding
a skill in terms of pre-defined behaviours. The skill con-
sists in moving through a maze where a wheeled robot
must avoid several kinds of obstacles and reach a set of
specific subgoals. The novelty of the approach is that it
uses a symbolic representation of the skill to explore the
teacher’s role in guiding the incremental learning of the
robot.

Finally, [55] takes a symbolic approach to encoding hu-
man motions as sets of pre-defined postures, positions or
configuration and considers different levels of granular-
ity for the symbolic representation of the motion. This a
priori knowledge is then used to explore the correspon-
dence problem through several simulated setups includ-
ing motion in joint space of arm links and displacements
of objects on a 2D plane (Figure 59.8).

The main advantage of these symbolic approaches is
that high-level skills (consisting of sequences of symbolic
cues) can be learned efficiently through an interactive
process. However, because of the symbolic nature of
their encoding, the methods rely on a large amount of
prior knowledge to predefine the important cues and to
segment those efficiently (Table 59.1).

Learning and Encoding a Skill at Trajectory-
Level

Choosing the variables well to encode a particular move-
ment is crucial, as it already gives part of the solution
to the problem of defining what is important to imitate.
Work in PbD encodes human movements in either joint
space, task space or torque space [56, 57, 58]. The en-
coding may be specific to a cyclic motion [14], a discrete
motion [1], or to a combination of both [59].

Encoding often encompasses the use of dimensionality
reduction techniques that project the recorded signals
into a latent space of motion of reduced dimensional-
ity. These techniques may either perform locally linear
transformations [60, 61, 62] or exploit global non-linear
methods [63, 64, 65], see Figure 59.14.

The most promising approaches to encoding human
movements are those that encapsulate the dynamics of
the movement into the encoding itself [66, 67, 68, 69, 59].
Several of these methods are highlighted below.

Skill encoding based on statistical modeling

Figure 59.12: Learning of a gesture through the Mimesis Model
by using Hidden Markov Model (HMM) to encode, recognize and re-
trieve a generalized version of the motion [70]. Top-left: Encoding of
a full-body motion in a HMM. Top-right: Representation of different
gestures in a proto-symbol space where the different models are posi-
tioned according to the distance between their associated HMM rep-
resentations. Bottom-left: Retrieval of a gesture by using a stochastic
generation process based on the HMM representation. Bottom-right:
Combination of different HMMs to retrieve a gesture combining differ-
ent motion models.

Figure 59.13: Schematic illustration showing continuous constraints
extracted from a set of demonstrations performed in different con-
texts (namely, different initial positions of objects). Each set of signals
recorded during the demonstration is first projected into different la-
tent spaces (through an automatic process of reduction of the dimen-
sionality, such as Principal Component Analysis (PCA) or Indepen-
dent Component Analysis (ICA)). Each constraint in this constricted
space is then represented probabilistically through Gaussian Mixture
Regression (GMR) (see Table 59.2). In order to reproduce the task,
each constraint is first re-projected in the original data space and a tra-
jectory satisfying optimally all constraints is then computed, adapted
from [71].
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Table 59.2: Probabilistic encoding and reproduction of a skill through Gaussian Mixture Regression (GMR).

A dataset ξ = {ξj}N
j=1 is defined by N observations ξj ∈ RD of sensory data changing through time (e.g., joint angle trajectories,

hand paths), where each datapoint ξj = {ξt, ξs} consists of a temporal value ξt ∈ R and a spatial vector ξs ∈ R(D−1). The
dataset ξ is modelled by a Gaussian Mixture Model (GMM) of K components, defined by the probability density function

p(ξj) =
KX

k=1

πkN (ξj ; µk, Σk),

where πk are prior probabilities and N (ξj ; µk, Σk) are Gaussian distributions defined by mean vectors µk and covariance
matrices Σk, whose temporal and spatial components can be represented separately as

µk = {µt,k, µs,k} , Σk =

�
Σtt,k Σts,k

Σst,k Σss,k

�
.

For each component k, the expected distribution of ξs given the temporal value ξt is defined by

p(ξs|ξt, k) = N (ξs; ξ̂s,k, Σ̂ss,k),

ξ̂s,k = µs,k + Σst,k(Σtt,k)
−1

(ξt − µt,k),

Σ̂ss,k = Σss,k − Σst,k(Σtt,k)
−1

Σts,k.

By considering the complete GMM, the expected distribution is defined by

p(ξs|ξt) =
KX

k=1

βk N (ξs; ξ̂s,k, Σ̂ss,k),

where βk = p(k|ξt) is the probability of the component k to be responsible for ξt, i.e.,

βk =
p(k)p(ξt|k)PK
i=1 p(i)p(ξt|i)

=
πkN (ξt; µt,k, Σtt,k)PK
i=1 πiN (ξt; µt,i, Σtt,i)

.

By using the linear transformation properties of Gaussian distributions, an estimation of the conditional expectation of ξs given

ξt is thus defined by p(ξs|ξt) ∼ N (ξ̂s, Σ̂ss), where the parameters of the Gaussian distribution are defined by

ξ̂s =

KX
k=1

βk ξ̂s,k , Σ̂ss =

KX
k=1

β
2
k Σ̂ss,k.

By evaluating {ξ̂s, Σ̂ss} at different time steps ξt, a generalized form of the motions ξ̂ = {ξt, ξ̂s} and associated covariance

matrices Σ̂ss describing the constraints are computed. If multiple constraints are considered (e.g., considering actions ξ(1) and

ξ(2) on two different objects), the resulting constraints are computed by first estimating p(ξs|ξt) = p(ξ(1)
s |ξt) · p(ξ(2)

s |ξt) and
then computing E[p(ξs|ξt)] to reproduce the skill. See Figure 59.13 for an illustration of this method to learning continuous
constraints in a set of trajectories. Adapted from [71].
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One trend of work investigates how statistical learning
techniques deal with the high variability inherent to the
demonstrations.

For instance, Ude et al [56] use spline smoothing tech-
niques to deal with the uncertainty contained in several
motion demonstrations performed in a joint space or in
a task space.

In [42], using different demonstrators ensures variabil-
ity across the demonstrations and quantifies the accuracy
required to achieve a Pick & Place task. The different
trajectories form a boundary region that is then used to
define a range of acceptable trajectories.

In [48], the robot acquires a set of sensory variables
while demonstrating a manipulation task consisting of
arranging different objects. At each time step, the robot
stores and computers the mean and variance of the col-
lected variables. The sequence of means and associated
variance is then used as a simple generalization process,
providing respectively a generalized trajectory and asso-
ciated constraints.

A number of authors following such statistically-based
learning methods exploited the robustness of Hidden
Markov Models (HMMs) in order to encode the temporal
and spatial variations of complex signals, and to model,
recognize and reproduce various types of motions. For
instance, Tso et al [23] use HMM to encode and retrieve
Cartesian trajectories, where one of the trajectories con-
tained in the training set is also used to reproduce the
skill (by keeping the trajectory of the dataset with the
highest likelihood, i.e., the one that generalizes the most
compared to the others). Yang et al [57] use HMMs to
encode the motion of a robot’s gripper either in the joint
space or in the task space by considering either the po-
sitions or the velocities of the gripper.

The Mimesis Model [72, 73, 74, 75] follows an approach
in which the HMM encodes a set of trajectories, and
where multiple HMMs can be used to retrieve new gen-
eralized motions through a stochastic process (see Figure
59.12). A drawback of such an approach is that it gen-
erates discontinuities in the trajectories regenerated by
the system. Interpolation techniques have been proposed
to deal with this issue [76, 77, 78]. Another approach
consists of pre-decomposing the trajectories into a set
of relevant keypoints and to retrieve a generalized ver-
sion of the trajectories through spline fitting techniques
[79, 80, 81].

As an alternative to HMM and interpolation tech-
niques, Calinon et al [1] used Gaussian Mixture Model
(GMM) to encode a set of trajectories, and Gaussian
Mixture Regression (GMR) to retrieve a smooth gener-

Figure 59.14: Motion learning in a subspace of lower dimensionality
by using a non-linear process based on Gaussian Processes (GP) [63].
Left: Graphical model of imitation consisting of two pairs of Gaussian
Process regression models. In the forward direction, latent variable
models map from a low-dimensional latent space X to the human joint
space Y and robot joint space Z. In the inverse direction, a regression
model maps human motion data to points in the latent space, where
two similar human postures in the joint angle space produce two points
in the latent space that are close one to the other. Thus, the use of
generative regression models allows one to interpolate between known
postures in the latent space to create reasonable postures during the
reproduction. Right: The model provides a smooth certainty estimate
in the posture’s latent space it infers (shaded map from black to white),
where training data are represented with circles (here, a walking motion
is depicted). Once a latent variable model has been learned, a new
motion can be quickly generated from the learned kernels.

alized version of these trajectories and associated vari-
abilities (Figure 59.13 and Table 59.2).

Skill encoding based on dynamical systems
Dynamical systems offer a particularly interesting so-

lution to an imitation process aimed at being robust to
perturbations which is robust to dynamical changes in
the environment.

The first work to emphasize this approach was that
of Ijspeert et al [59], who designed a motor represen-
tation based on dynamical systems for encoding move-
ments and for replaying them in various conditions, see
Figure 59.15. The approach combines two ingredients:
nonlinear dynamical systems for robustly encoding the
trajectories, and techniques from non-parametric regres-
sion for shaping the attractor landscapes according to the
demonstrated trajectories. The essence of the approach
is to start with a simple dynamical system, e.g., a set
of linear differential equations, and to transform it into
a nonlinear system with prescribed attractor dynamics
by means of a learnable autonomous forcing term. One
can generate both point attractors and limit cycle attrac-
tors of almost arbitrary complexity. The point attractors
and limit cycle attractors are used to respectively encode
discrete (e.g. reaching) and rhythmic movements (e.g.
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drumming).
Locally Weighted regression (LWR) was initially pro-

posed to learn the above system’s parameters [82, 83, 84].
It can be viewed as a memory-based method combining
the simplicity of linear least squares regression and the
flexibility of nonlinear regression. Further work mainly
concentrated on moving on from a memory-based ap-
proach to a model-based approach, and moving on from
a batch learning process to an incremental learning strat-
egy [85, 86, 61]. Schaal et al [86] used Receptive Field
Weighted Regression (RFWR) as a non-parametric ap-
proach to incrementally learn the fitting function with
no need to store the whole training data in memory. Vi-
jayakumar et al [61] then suggested that one uses Locally
Weighted Projection Regression (LWPR) to improve the
way one approaches operating efficiently in high dimen-
sional space. Hersch et al [87] extended the above dy-
namical approach to learning combinations of trajecto-
ries in a multidimensional space (Figure 59.16). The dy-
namical system is modulated by a set of learned trajec-
tories encoded in a Gaussian Mixture Model, see Section
59.3.1.

The approach offers four interesting properties. First,
the learning algorithm, Locally Weighted Regression, is
very fast. It does one-shot learning and therefore avoids
the slow convergence exhibited by many neural network
algorithms, for instance. Second, the dynamical systems
are designed so that, from a single demonstration, they
can replay similar trajectories (e.g. tennis swings) with
the online modification of a few parameters (e.g. the
attractor coordinates). This is of great importance for
reusing the dynamical systems in new tasks, i.e. the
notion of generalization. Third, dynamical systems are
designed to be intrinsically robust in the face of pertur-
bations. Small random noise will not affect the attractor
dynamics. In the event of a large constraint (e.g. some-
one blocking the arm of the robot), feedback terms can
be added to the dynamical systems and accordingly mod-
ify the trajectories online. Finally, the approach can also
be used for movement classification. Given the temporal
and spatial invariance of the representation, similar pa-
rameters tend to adjust to trajectories that are topolog-
ically similar. This means that the same representation
used for encoding trajectories can also help classifying
them, e.g. it provides a tool for measuring the similari-
ties and dissimilarities of trajectories.

Ito et al [14] proposed another way to encode implic-
itly the dynamics of bimanual and unimanual tasks, us-
ing a recurrent neural networks. The model allows on-
line imitation. Of interest is that fact that the network
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Figure 59.15: Top: Humanoid robot learning a forehand swing from
a human demonstration. Bottom: Examples of time evolution of the
discrete (left) and rhythmic dynamical movement primitives (right).
Adapted from [88, 59].

can switch across those motions in a smooth manner
when trained separately to encode two different senso-
rimotor loops (Figure 59.17). The approach was vali-
dated for modelling dancing motions during which the
user first initiated imitation and where the roles of the
imitator and demonstrator could then be dynamically
interchanged. They also considered cyclic manipulation
tasks during which the robot continuously moved a ball
from one hand to the other and was able to switch dy-
namically to another cyclic motion that consisted of lift-
ing and releasing the ball.

59.3.2 Incremental Teaching Methods

The statistical approach described previously, see Sec-
tion 59.3.1, has its limitations though it is an interesting
way to autonomously extract the important features of
the task. In addition, it avoids putting too much prior
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Table 59.3: Imitation process using a dynamical system.

A control policy is defined by the following (z, y) dynamics which specify the attractor landscape of the policy for a trajectory
y towards a goal g

ż = αz(βz(g − y)− z), (59.1)

ẏ = z +

PN
i=1 ΨiwiPN

i=1 Ψi

v. (59.2)

This is essentially a simple second-order system with the exception that its velocity is modified by a nonlinear term (the
second term in (59.2)) which depends on internal states. These two internal states, (v, x) have the following second-order linear
dynamics

v̇ = αv(βv(g − x)− v), (59.3)

ẋ = v. (59.4)

The system is further determined by the positive constants αv, αz, βv, and βz , and by a set of N Gaussian kernel functions Ψi

Ψi = exp

�
− 1

2σ2
i

(x̃− ci)
2
�

, (59.5)

where x̃ = (x−x0)/(g−x0) and x0 is the value of x at the beginning of the trajectory. The value x0 is set each time a new goal
is fed into the system, and g 6= x0 is assumed, i.e. the total displacement between the beginning and the end of a movement is
never exactly zero. The attractor landscape of the policy can be adjusted by learning the parameters wi using locally weighted
regression [86].
The approach was validated with a 35-degrees-of-freedom humanoid robot, see Figure 59.15. Adapted from [88, 59].
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Figure 59.16: Dynamical systems provide a robust robot controller
in the face of perturbations during the reproduction of a learned skill.
First row: The robot is trained through kinesthetic demonstrations
by a human trainer (here, the skill consists of putting an object into
a box). During these different demonstrations (starting from different
positions for both hand and target), the robot records the various ve-
locity profiles its right arm follows. Second row: Handling of dynamic
perturbations during the reproduction. Here, the perturbations are
produced by the user who displaces the box during the reproduction
attempts. We see that the robot smoothly adapts its original general-
ized trajectory (thin line) to this perturbation (thick line). Adapted
from [87].

knowledge in the system. For instance, one can expect
that requesting multiple demonstrations of a single task
would annoy the user. Therefore, PbD systems should be
capable of learning a task from as few demonstrations as
possible. Thus, the robot could start performing its tasks
right away and gradually improve its performance while,
at the same time, being monitored by the user. Incre-
mental learning approaches that gradually refine the task
knowledge as more examples become available pave the
way towards PbD systems suitable for real-time human-
robot interactions.

Figure 59.19 shows an example of such incremental
teaching of a simple skill, namely grasping and placing
an object on top of another object, see [71] for details.

These incremental learning methods use various forms
of deixis, verbal and non-verbal, to guide the robot’s at-
tention to the important parts of the demonstration or
to particular mistakes it produces during the reproduc-
tion of the task. Such incremental and guided learning is
often referred to as scaffolding or moulding of the robot’s
knowledge. It was deemed most important to allow the
robot to learn tasks of increasing complexity [89, 54].

Research on the use of incremental learning techniques
for robot PbD has contributed to the development of
methods for learning complex tasks within the house-
hold domain from as few demonstrations as possible.
Moreover, it contributed to the development and appli-
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Figure 59.17: Dynamical encoding of the imitation process by using
recurrent neural networks. First row: Online switching between two
interactive behaviours, namely rolling a ball from one hand to the other
and lifting the ball. Second row: Prediction error distribution in the
parameters space representing the two behaviours. One can see how the
robot can switch smoothly across the behaviors by moving continuously
in the parameter space. Adapted from [14].
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Figure 59.18: Iterative refinement of the learned skill through
teacher’s support or through self-exploration by the robot.

cation of machine learning that allow continuous and in-
cremental refinement of the task model. Such systems
have sometimes been referred to as background knowl-
edge based or EM deductive PbD-systems, as presented
in [90, 91]. They usually require very few or even only
a single user demonstration to generate executable task
descriptions.

The main objective of this type of work is to build
a meta-representation of the knowledge the robot has
acquired on the task and to apply reasoning methods to
this knowledge database (Figure 59.10). This reasoning
involves recognizing, learning and representing repetitive
tasks.

Pardowitz et al [92] discuss how different forms of
knowledge can be balanced in an incrementally learning
system. The system relies on building task precedence
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Figure 59.19: Incremental refinement of movements coded in a
frame of reference located on the objects that are manipulated. The
task constraints are encoded at the trajectory-level. Left: Example
of a task consisting of grasping a cylinder and placing it on top of a
cube. Right: Refinement of the Gaussian Mixture Regression (GMR)
models representing the constraints all along the movement (see Table
59.2). After a few demonstrations, we see that the trajectories relative
to the two objects are highly constrained for particular subparts of
the task, namely when reaching for the cylinder (thin envelope around
time step 30) and when placing it on top of the cube (thin envelope
around time step 100). Adapted from [71].

graphs. Task precedence graphs encode hypotheses that
the system makes on the sequential structure of a task.
Learning the task precedence graphs allows the system to
schedule its operations most flexibly while still meeting
the goals of the task (see [93] for details). Task prece-
dence graphs are directed acyclic graphs that contain a
temporal precedence relation that can be learned incre-
mentally. Incremental learning of task precedence graphs
leads to a more general and flexible representation of the
task knowledge, see Figure 59.10.

59.3.3 Human-Robot Interaction in
PbD

Another perspective adopted by PbD to make the trans-
fer of skill more efficient is to focus on the interaction
aspect of the transfer process. As this transfer problem
is complex and involves a combination of social mech-
anisms, several insights from Human-Robot Interaction
(HRI) were explored to make efficient use of the teaching
capabilities of the human user.

The development of algorithms for detecting “social
cues” (given implicitly or explicitly by the teacher during
training) and their integration as part of other generic
mechanisms for PbD has become the focus of a large
body of work in PbD. Such social cues can be viewed as
a way to introduce priors in a statistical learning system,
and, by so doing, speed up learning. Indeed, several hints
can be used to transfer a skill not only by demonstrat-
ing the task multiple times but also by highlighting the
important components of the skill. This can be achieved
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Figure 59.20: Illustration of the use of social cues to speed up
the imitation learning process. Here, gazing and pointing towards in-
formation are used to select probabilistically the objects relevant for
different subparts of a manipulation skill. First row: Illustration of the
setup proposed in [94] to probabilistically highlight the importance of
a set of objects through the use of motion sensors recording gazing and
pointing directions. Second row: Probabilistic representation of the in-
tersection between the gazing/pointing cone and the table to estimate
where the attention of the user is focused on.

by various means and by using different modalities.
A large body of work explored the use of pointing and

gazing (Figure 59.20) as a way to convey the intention of
the user [95, 96, 97, 98, 99, 100, 44, 101]. Vocal deixis,
using a standard speech recognition engine, has also been
explored widely [102, 44]. In [50], the user makes vocal
comments to highlight the steps of the teaching that are
deemed most important. In [103, 104], sole the prosody
of the speech pattern is looked at, rather than the exact
content of the speech, as a way to infer some information
on the user’s communicative intent.

In [94], these social cues are learned through an imi-
tative game, whereby the user imitates the robot. This
allows the robot to build a user-specific model of these
social pointers, and to become more robust at detecting
them.

Finally, a core idea of HRI approach to PbD is that
imitation is goal-directed, that is, actions are meant to
fulfill a specific purpose and convey the intention of the
actor [105]. While a longstanding trend in PbD ap-
proached the problem from the standpoint of trajectory
following [106, 107, 108] and joint motion replication,
see [81, 109, 110, 88] and Section 59.3.1, recent works,
inspired by the above rationale, start from the assump-
tion that imitation is not just about observing and repli-
cating the motion, but rather about understanding the
goals of a given action. Learning to imitate relies im-
portantly on the imitator’s capacity to infer the demon-
strator’s intentions [111, 89]. However, demonstrations
may be ambiguous and extracting the intention of the
demonstrator requires building a cognitive model of the

Figure 59.21: Illustration of the use of reinforcement learning to
complement PbD. Top-left: The robot is trained through kinesthetic
demonstration on a task that consists of placing a cylinder in a box.
Top-right: The robot reproduces successfully the skill when the new
situation is only slightly different from that of the demonstration, us-
ing the dynamical system described in Figure 59.16. Bottom-left: The
robot fails at reproducing the skill when the context has changed im-
portantly (a large obstacle has been placed in the way). Bottom-right:
The robot relearns a new trajectory that reproduces the essential as-
pect of the demonstrated skill, i.e. putting the cylinder in the box, but
avoiding the obstacle. Adapted from [117].

demonstrator [51, 112], as well as exploiting other social
cues to provide complementary knowledge [89, 54, 113].

Understanding the way humans learn to both extract
the goals of a set of observed actions and to give these
goals a hierarchy of preference is fundamental to our
understanding of the underlying decisional process of
imitation. Recent work tackling these issues has fol-
lowed a probabilistic approach to explain both a goal’s
derivation and sequential application. The explana-
tion in turn makes it possible to learn manipulatory
tasks that require the sequencing of a goal’s subsets
[114, 92, 106, 115].

Understanding the goal of the task is still only half of
the picture, as there may be several ways of achieving
the goal. Moreover, what is good for the demonstrator
may not necessarily be good for the imitator [33]. Thus,
different models may be allowed to compete to find a
solution that is optimal both from the point of view of
the imitator and that of the demonstrator [116, 77].

59.3.4 Joint Use of Robot PbD with
Other Learning Techniques

To recall, a main argument for the development of PbD
methods was that it would speed up learning by pro-
viding an example of “good solution”. This, however,
is true in sofar that the context for the reproduction
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is sufficiently similar to that of the demonstration. We
have seen in Section 59.3.1 that the use of dynamical
systems allows the robot to depart to some extent from
a learned trajectory to reach for the target, even when
both the object and the hand of the robot have moved
from the location shown during the demonstration. This
approach would not work in some situations, for exam-
ple, when placing a large obstacle in the robot’s path,
see Figure 59.21. Besides, robots and humans may differ
significantly in their kinematics and dynamics of motion
and, although there are varieties of ways to bypass the
so-called correspondence problem (Figure 59.5), relearn-
ing a new model may still be required in special cases.

To allow the robot to learn how to perform a task
again in any new situation, it appeared important to
combine PbD methods with other motor learning tech-
niques. Reinforcement learning (RL) appeared particu-
larly indicated for this type of problem, see Figures 59.18
and 59.21.

Early work on PbD using RL began in the 1990s
and featured learning how to control an inverse pen-
dulum and make it swing up [83]. More recent efforts
[118, 119, 120] have focused on the robust control of the
upper body of humanoid robots while performing various
manipulation tasks.

One can also create a population of agents that copy
(mimic) each other so that robots can learn a con-
trol strategy by making experiments themselves and by
watching others. Such an evolutionary approach, using
for example genetic algorithms, has been investigated by
a number of authors, e.g. for learning manipulation skills
[121], navigation strategies [51] or sharing a common vo-
cabulary to name sensoriperception and actions [122].

59.4 Biologically-Oriented Learn-
ing Approaches

Another important trend in robot PbD takes a more bio-
logical stance and develops computational models of imi-
tation learning in animals. We here briefly review recent
progresses in this area.

59.4.1 Conceptual Models of Imitation
Learning

Bioinspiration is first revealed in the conceptual
schematic of the sensorimotor flow which is at the ba-
sis of imitation learning that some authors in PbD have
followed over the years.
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Figure 59.22: Conceptual sketch of an imitation learning system.
The right side of the figure contains primarily perceptual elements and
indicates how visual information is transformed into spatial and object
information. The left side focuses on motor elements, illustrating how
a set of movement primitives competes for a demonstrated behavior.
Motor commands are generated from input of the most appropriate
primitive. Learning can adjust both movement primitives and the mo-
tor command generator. Adapted from [123].

Figure 59.22 sketches the major ingredients of such a
conceptual imitation learning system based on sensori-
motor representation [123]. Visual sensory information
needs to be parsed into information about objects and
their spatial location in an internal or external coordi-
nate system; the depicted organization is largely inspired
by the dorsal (what) and ventral (where) stream as dis-
covered in neuroscientific research [124]. As a result,
the posture of the teacher and/or the position of the
object while moving (if one is involved) should become
available. Subsequently, one of the major questions re-
volves around how such information can be converted
into action. For this purpose, Figure 59.22 alludes to
the concept of movement primitives, also called “move-
ment schemas”, “basis behaviors”, “units of action”, or
“macro actions” [125, 34, 126, 127]. Movement prim-
itives are sequences of action that accomplish a com-
plete goal-directed behavior. They could be as simple as
an elementary action of an actuator (e.g., “go forward”,
“go backward”, etc.), but, as discussed in [123], such
low-level representations do not scale well to learning in
systems with many degrees-of-freedom. Thus, it is use-
ful for a movement primitive to code complete temporal
behaviors, like “grasping a cup”, “walking”, “a tennis
serve”, etc. Figure 59.22 assumes that the perceived ac-
tion of the teacher is mapped onto a set of existing prim-
itives in an assimilation phase, which is also suggested
in [128, 129]. This mapping process also needs to resolve
the correspondence problem concerning a mismatch be-
tween the teacher’s body and the student’s body [130].
Subsequently, one can adjust the most appropriate prim-
itives by learning to improve the performance in an
accommodation phase. Figure 59.22 indicates such a
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Figure 59.23: A human experimenter, a human imitator and a robot
imitator play a simple imitation game, in which the imitator must point
to the object named by the experimenter and not to the object which
the experimenter points at. The robot’s decision process is controlled
by a neural model similar to that found in humans. As a result, it expe-
riences the same associated deficit, known as the principle of ideomotor
compatibility, stating that observing the movements of others influ-
ences the quality of one’s own performance. When presented with
conflicting cues (incongruent condition), e.g. when the experimenter
points at a different object than the one named, the robot, like the
human subject, either fails to reach for the correct object, or hesitates
and later corrects the movement. Adapted from [132].

process by highlighting the better-matching primitives
with increasing line widths. If no existing primitive is
a good match for the observed behavior, a new primi-
tive must be generated. After an initial imitation phase,
self-improvement, e.g., with the help of a reinforcement-
based performance evaluation criterion [131], can refine
both movement primitives and an assumed stage of mo-
tor command generation (see below) until a desired level
of motor performance is achieved.

59.4.2 Neural Models of Imitation
Learning

Bioinspiration is also revealed in the development of neu-
ral network models of the mechanisms at the basis of im-
itation learning. Current models of Imitation Learning
all ground their approach on the idea that imitation is
at core driven by a mirror neuron system. The mirror
neuron system refers to a network of brain areas in pre-
motor and parietal cortices that is activated by both the
recognition and the production of the same kind of object
oriented movements performed by oneself and by others.
See [133, 26, 134] for recent reports on this system in
monkeys and humans, and its link to imitation.

Models of the mirror neuron system assume that some-
where, sensory information about the motion of others
and about self-generated motion is coded using the same
representation and in a common brain area. The mod-
els, however, differ in the way they represent this com-
mon center of information. Besides, while all models
draw from the evidence of the existence of a mirror neu-

ron circuit and of its application to explain multimodal
sensory-motor processing, they, however, go further and
tackle the issue of how the brain manages to process the
flow of sensorimotor information that is at the basis of
how one observes and produces actions. For a compre-
hensive and critical review of computational models of
the mirror neuron system, the reader may refer to [135].
Next, we briefly review the most recent works among
those.

One of the first approaches to explaining how the brain
processes visuomotor control and imitation was based
on the idea that the brain relies on Forward Models
to compare, predict and generate motions [129]. These
early works set the ground for some of the current neu-
ral models of the visuomotor pathway underlying imita-
tion. For instance, recent work by Demiris and colleagues
[128, 116] combines the evidence there is a mirror neuron
system which is the basis of recognition and production
of basic grasping motions and which proves the existence
of forward models for guiding these motions. These mod-
els contribute both to the understanding of the mirror
neuron system (MNS) in animals as well as its use in
controlling robots. For instance, the models successfully
reproduce the timing of neural activity in animals while
observing various grasping motions and reproducing the
kinematics of arm motions during these movements. The
models were implemented to control reaching and grasp-
ing motions in humanoid and non-humanoid robots.

In contrast, Arbib and colleagues’ models take a strong
biological stance and follow an evolutionary approach to
modeling the Mirror Neuron System (MNS), emphasiz-
ing its application to robotics in a second stage only.
They hypothesize that the ability to imitate we find in
humans has evolved from Monkeys’ ability to reach and
grasp and from Chimpanzees’ ability to perform simple
imitations. They develop models of each of these evolu-
tionary stages, starting from a detailed model of the neu-
ral substrate underlying Monkeys’ ability to reach and
grasp [136], extending this model to include the Monkey
MNS [137] and finally moving to models of the neural
circuits underlying a human’s ability to imitate [138].
The models replicate findings of brain imaging and cell
recording studies, as well as make predictions on the time
course of the neural activity for motion prediction. As
such, the models reconciliate a view of forward models of
action with an immediate MNS representation of these
same actions. They were used to control reaching and
grasping motions in humanoid robotic arms and hands
[139].

Expanding on the concept of a MNS for sensorimotor
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coupling, Sauser & Billard [140, 141] have explored the
use of competitive neural fields to explain the dynamics
underlying multimodal representation of sensory infor-
mation and the way the brain may disambiguate and
select across competitive sensory stimuli to proceed to
a given motor program. This work explains the princi-
ple of ideomotor compatibility, by which “observing the
movements of others influences the quality of one’s own
performance”, and develops neural models which account
for a set of related behavioral studies [142], see Figure
59.23. The model expands the basic mirror neuron cir-
cuit to explain the consecutive stages of sensory-sensory
and sensory-motor processing at the basis of this phe-
nomenon. Sauser et al [132] discuss how the capacity for
ideomotor facilitation can provide a robot with human-
like behavior at the expense of several disadvantages such
as hesitation and even mistakes, see Figure 59.23.

59.5 Conclusions and Open Is-
sues in Robot PbD

This chapter aimed at assessing recent progress in mod-
elling the cognitive or neural mechanisms underlying im-
itation learning in animals and the application of these
models to controlling robots, on the one hand. On the
other hand, it summarized various machine learning and
computational approaches to providing the necessary al-
gorithms for robot programming by demonstration.

Key questions remaining to be assessed by the field
are:

• Can imitation use known motor learning techniques
or does it require the development of new learning
and control policies?

• How does imitation contribute and complement mo-
tor learning?

• Does imitation speed up skill learning?

• What are the costs of imitation learning?

• Do models of human kinematics used in gesture
recognition drive the reproduction of the task?

• Can one find a level of representation of movement
common to both gesture recognition and motor con-
trol?

• How could a model extract the intent of the user’s
actions from watching a demonstration?

• How can we create efficient combinations of imita-
tion learning and reinforcement learning, such that
systems can learn in rather few trials?

• What is the role of imitation in human-robot inter-
actions?

• How to find a good balance between providing
enough prior knowledge for learning to be fast and
incremental, as in task/symbolic learning, and avoid
restricting too much the span of learning?

In conclusion, robot PbD contributes to major ad-
vances in robot learning and paves the way to the de-
velopment of robust controllers for both service and per-
sonal robots.
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