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nderwater manipulation is a challenging problem. The
U state of the art is dominated by Remotely Operated Vehi-
cles (ROV). ROV operations typically require an offshore crew
consisting of at least an intendant, an operator, and a navigator.
This crew often has to be duplicated or even tripled due to
work shifts. In addition, customer representatives often wish
to be physically present offshore. Furthermore, underwater in-
tervention missions are still dominated by a significant amount
of low-level, manual control of the manipulator(s) and of the
vehicle itself. While there is a significant amount of research
on Autonomous Underwater Vehicles (AUV) in general and
there are even already fieldable solutions for inspection and
exploration missions, there is still quite some room for adding
intelligent autonomous functions for interventions.

We present here work to reduce the amount of robot
operators required offshore - hence reducing cost and incon-
veniences - by facilitating operations from an onshore control
center and reducing the gap between low-level teleoperation
and full autonomy (Fig. 1). The basic idea is that the user
interacts with a real time simulation environment, and a
cognitive engine analyzes the user’s control requests and
turns them into movement primitives that the ROV needs to
autonomously execute in the real environment - independently
of communication latencies.

This article focuses on the results of intensive field trials
from 26th of June until 7th of July 2017 in the Mediteranean
Sea offshore of Marseille. Seven extended experimental dives
were performed with the ROV while being connected via
satellite to the command center in Brussels. Four different
sites were used with different water depths (8m, 30m, 48m,
100m).

I. SYSTEM COMPONENTS

A. Overview

The presented work is targeted at a high technology readi-
ness level (TRL) of 6, i.e., it is developed and validated
beyond just lab experiments. The research vessel JANUS II of
COMEX with a 2500 msw SubAtlantic Apache ROV is used
for this purpose (Fig. 2). For our research, the ship is equipped
with satellite communications (Sec. I-D) to allow the control
of the ROV by pilots who are located in a command center in
Brussels, Belgium (Sec. I-E). Furthermore, a skid is added to
the ROV to carry additional components used for our research,

namely an electric manipulator, respectively two manipulators
in a bi-manual setup (Sec. [-B) and a vision system (Sec. I-C).

B. The Underwater Manipulator(s)

Our manipulator has been designed starting from the Under-
water Modular Arm (UMA). Two kinds of electrically-driven
joints are available, with one, respectively two motion axes,
which are complemented by a set of links for connecting the
joints. Different kinematic configurations can be obtained by
varying the number of basic modules, i.e., joints and links,
and/or by varying the way in which they are interconnected.
The arm is characterized by 6 degrees of freedom (DOF),
which are obtained by connecting three modules with each one
with 2 DOF forming a pitch-roll configuration. The overall
length when totally stretched is slightly more than 1 meter.
However, the arm is also fully foldable, in order to minimize
its size when parked in the ROV skid during the navigation
phases. Both a single arm and a dual arm set-up can be used.
During the 2017 trials, a mock-up of grippers that are under
development were used.

C. The Vision System

An intelligent underwater vision system with computing
power on-board the ROV is used to minimize the traffic over
the umbilical cable from the ROV to the vessel. It is based
on high-resolution firewire (IEEE 1934b) cameras in pressure
housings connected to an embedded computer, which can be
used for vision processing and adaptive video compression
on-board of the ROV.

The firewire bus supports among others the synchronization
of the cameras. They can hence be used for stereo, respectively
multi-camera set-ups to generate depth information from dif-
ferent views with a known relative geometry. Due to payload
constraints of the Apache ROV, a stereo set-up with two
cameras is used in the 2017 trials. The compute bottle of the
vision system on-board of the robot also services the core
navigation sensors in form of a LinkQuest NavQuest 600P
Micro Doppler Velocity Log (DVL) and a Xsens MTi-300
Inertial Measurement Unit (IMU).

D. Satellite Communication

Satellite communications services for mobile offshore mar-
itime operations are associated with bandwidth limitations
(uplink and downlink), inherent delays, and disruptions and
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Fig. 1.

Underwater manipulation from an onshore control center lessens operation costs and eases the involvement of mission specific experts, but it requires

increased autonomous intelligent functions to compensate for latency and bandwidth constraints. An overview of our system components and their interplay

is shown here.

-

Fig. 2. The system tested in field trials consists of an Apache ROV extended with newly developed components including a dual arm set-up and an intelligent
vision system (left), which is deployed from the COMEX Janus II vessel (center) with a satellite connection to a control center in Brussels. A mockup panel

structure is used to test different application scenarios (right).

they require a complex stabilized satellite tracking antenna.
In the context of this research, a maritime VSAT solution is
employed from a service provider (Omniaccess) that includes
a Ku band Cobham Sailor 800 tracking antenna, its controller
and the related modems. The nominal data bandwidth for the
uplink from the vessel is 768 kb/s and the downlink to the
vessel is 256 kb/s with an inherent nominal round trip delay
of 620 ms.

E. The Control Center and the Exoskeleton

The onshore control center in Brussels consists of a moni-
toring and control room that features a double 7 DOF arm and

6 DOF hand force feedback exoskeleton. It is based in part
on a design for the European Space Agency (ESA) [1] that
was further improved in the EU-FP7 project ICARUS [2]. It is
designed as a modular solution, allowing each arm and hand
exoskeleton subsystem to be easily and conveniently connected
and removed from the rest of the setup. It features furthermore
a passive gravity compensation system that connects to the arm
exoskeletons, and that can be calibrated to compensate for the
full mass of the exoskeletons physical setups as well as the
mass of the user arms. The user is hence given the impression
to operate in neutral buoyancy, i.e., typically as a diver would.
This reduces users fatigue during the ROV operation.



F. A Test Panel for System Validation

A test panel was developed for validation, which also served
as target for the trials to emulate different scenarios, e.g.,
offshore oil&gas facilities or the handling of archeological
artifacts (Figs 2 and 3). The panel consists of three sides. Each
one is equipped with mockup elements. One side is used to test
functionalities in offshore oil&gas interfaces based on the ISO
13628 standard including, e.g., valves or wet-mate connectors.
Furthermore, a biologic panel including mockup corals and an
archeological box including mockup ceramics are included.

Fig. 3. The ROV and the test panel during the field trials.

II. DATA FLOWS BETWEEN THE VESSEL/ROV AND THE
CONTROL CENTER

To sustain effective remote ROV operations, multiple data
flows are required such as ROV commands, video streams,
pose updates, 2.5/3D environmental maps, status updates,
etc. between the onshore and offshore nodes, which need to be
transmitted via the satellite link. It is hence critical to optimize
the bandwidth usage by prioritizing data flows with specific
Quality of Service (QoS) information, shaping the traffic [3]
to avoid network overload and to ensure data reliability with
minimal overheads. To address the described challenges, DDS
OpenSplice (Prismtech) middleware is used to exchange data
between the onshore and offshore nodes over the bandwidth-
constrained satellite network.

The onshore control center and the ROV control and per-
ception framework embed command and data interfaces in
the Robot Operating System (ROS) through asynchronous
publish-subscribe mechanisms over named and type-specific
topics. A ROS2DDS bridge has been developed, which can be
configured to interface with existing ROS topics in a system.
For each ROS topic, the ROS2DDS bridge automatically
creates a corresponding DDS data reader, data writer and
named topics across the distributed nodes with associated QoS
policies according to the Object Management Group’s DDS
QoS specification.

The architecture of the bridge is scalable to deploy multiple
nodes with dynamic discovery of distributed ROS2DDS enti-
ties. The maximum burst sizes indicate the amount in bytes
to be sent at maximum every “resolution” milliseconds. With
reliable QoS, i.e., guaranteed data delivery, the maximum burst
values are typically set just below the maximum bandwidth
available for the uplink from the offshore side. For example, in

the presence of a 768 kb/s satellite uplink, the maximum burst
size of 650 kb/s, i.e., around 85% of the bandwidth, was found
to be efficient. The remaining bandwidth is made available
for retransmissions of data packets. In the case of best effort
QoS, i.e., it is not necessary to re-send or acknowledge any
received packets, the maximum burst size can be set to the
available bandwidth. During the marine trials, the satellite
link is shared between multiple data flows that are assigned
different priorities and the maximum burst sizes are adapted
proportionately.

III. MANIPULATION TASKS WITH THE COGNITIVE ENGINE

The main purpose of the Cognitive Engine (CE) is to
overcome teleoperator control delays in the face of satellite
communication latency. Prior to the mission, the teleoperator
first demonstrates a set of tasks (e.g., turning a valve, grasping
a handle, etc.) using the exoskeleton in the onshore control
center, which the CE encodes as statistical models. These
models are transferred to the offshore vessel, where control of
the ROV takes place. During mission execution, the offshore
model assists the teleoperator-guided manipulation such that
the tasks are replicated by adapting them to the current
environmental situations. This reduces the cognitive load on
the teleoperator, who can concentrate on selecting the tasks in
the virtual environment.

The CE can assist the teleoperator in two different modes
[4]:

Shared control: the teleoperator input is directly combined
with the motion predicted by the task model. The adaptation
is weighted based on the variability of the demonstrations in
the parts of the task that are currently executed. For parts of
the task requiring accuracy, the model assists the teleoperator
by correcting deviations from the original demonstrations. For
parts of the task allowing more variations, the teleoperator
is free to move within the regions corresponding to the
demonstrations.

Semi-autonomous control: the task is executed by generating
the most likely trajectory starting from the current pose of
the robot. This mode is particularly useful when delays or
interruptions from the satellite communication is expected. In
this control mode, the teleoperator visualizes and triggers the
execution of the movement, which is executed until a new
signal from the teleoperator is given [5].

In the following we give an overview on task learning and
how motions are reproduced in varying situations.

A. Learning adaptive tasks from demonstrations

Our application requires the CE to learn skills from only a
handful of demonstrations (typically up to 10). Additionally,
we require skills that can be reproduced in novel environ-
mental situations, for which no demonstration is available. To
achieve this goal, the CE relies on a Task-Parametrized Gaus-
sian Mixture Model (TP-GMM) [6] to encode demonstrations
executed in different situations (Fig. 4). The task parameters
are frames of references (coordinated systems with position
and orientation information) associated to virtual landmarks
or objects/tools in the environment. For example, in a valve
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Fig. 4. Overview of the learning approach used in the Cognitive Engine. a) Demonstrations are collected with different task parameters (frames of reference).
b) The demonstrations are transformed in each particular frame and a GMM is learnt in each frame. ¢) In a new situation, a new GMM is computed with
a product of linearly transformed Gaussians. d) The computed trajectory distribution provides a variance estimate for each set-point, which determines how

accurately the robot should pass through these set-points.

turning task, such frames may refer to the robot base frame,
the current valve pose and the targeted valve pose. Fig. 4
depicts the learning and retrieval process. First, demonstrations
are collected in varying situations (each time with different
task parameters). In order to capture the variance of the
demonstrations, Gaussian Mixture Models (GMMs) are learnt
in each task-relevant frame. Learning the models in each
individual frame allows the system to generalize the observed
tasks to new situations.

B. Task reproduction with adaptation to new situations

In a novel environmental situation, the Gaussian mixture
components are transformed using the newly observed task
parameters (Fig. 4.c). The retrieved GMM is exploited differ-
ently according to the selected control mode, both aiming at
reducing the cognitive load on the teleoperator when executing
a set of tasks.

In the shared control mode (Fig. 5), Gaussian Mixture
Regression (GMR) is used on both teleoperation and robot
sides to generate probabilistic trajectory distributions, repre-
sented as a tube in the figure. On the teleoperator side, this
tube is adapted locally to match the situation of the virtual
environment in which the user is immersed - here, the model
can for example be used for haptic corrections. On the robot
side, the same model adapts to the situation that is locally
detected. This situation can potentially differ with the one
currently experienced by the user, as depicted in the figure:
the two tubes have different shapes but share the same GMM
parameters.

In this way, the robot is provided with a fast adaptation
technique that can directly exploit the locally sensed informa-
tion, i.e., the tube is adapted online without passing through
the slow satellite communication. This type of assistance is
relevant to handle small transmission delays, i.e., to cope with
the discrepancy of situations due to the slow refreshing rate.
For longer delays, a semi-autonomous mode, as described
next, is usually preferred.

In the semi-autonomous control mode (Fig. 6), a Linear
Quadratic Tracking (LQT) controller in operational space is
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Fig. 5. Shared control mode with two frames of reference on each side. The
current poses of the teleoperator and robot are displayed with blue dots.

used to generate a reference trajectory starting from the current
robot pose. These acceleration commands in operational space
are used by the robot controller until the teleoperator decides
to abort the task or switch to another task. On the teleoperator
side, the retrieved trajectory is used for visualization purpose.
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Fig. 6. Semi-autonomous control mode, with acceleration commands and an
associated trajectory computed from any robot/teleoperator poses (displayed
as blue points) using the model.
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IV. ROV CONTROL FOR INTERVENTION MISSIONS WITH
COMMUNICATION LATENCIES

A. Task Priority Inverse Kinematics

From a control point of view, the DexROV system is much
more similar to an AUV than an ordinary ROV, in the sense



that it needs to take care of many control objectives on its
own, with high-level inputs coming from the user through the
cognitive engine.

For this reason, following an approach similar to the one
adopted for the TRIDENT [7] and MARIS [8] projects, the
developed control is a Task Priority Inverse Kinematics (TPIK)
algorithm that allows to set a priority order among several
tasks and to find the system velocity vector y that accom-
plishes them simultaneously at best, following the priority
order. Given a hierarchy composed by k tasks & . ..oy, the
target velocity ¢ can be computed as:

Y=y + N1y + -+ Nix-1Y; (D

where each y, is the velocity contribution of the task ¢ and
N ; is the null space of the augmented Jabobian matrices
from o, to o;. If there are conflicting tasks, the projection
of the velocity contribution of the lower priority tasks into
the null space of the higher priority ones guarantees that the
priority order is always respected. This control framework has
been extended to handle also set-based tasks [9], [10] like, for
example, arm joint mechanical limits or obstacle avoidance,
in which the control objective is to keep the task value above
a lower threshold or below an upper threshold. In order to
effectively and safely operate the system, it is useful to divide
all the tasks in three groups and to exploit this classification to
assign priority levels: 1) Safety tasks such as ROV autoaltitude,
mechanical joint limits, obstacle avoidance, that assure the
integrity of the system and of the environment in which
it operates. 2) Operational tasks that contain all the tasks
commanded by the user, such as ROV guidance from point A
to B, end-effector position or configuration. 3) Optimization
tasks, that contain all those tasks that are not strictly necessary
for the actual accomplishment of the operation, but they help
to do it in a more efficient way, e.g., the arm manipulability.
The hierarchy can be changed in terms of the number and the
order of priority of the tasks as a function of the action that
needs to be performed.

B. Experimental Validation

The developed control framework has been validated and
tested during the 2017 field trials. In the following, the results
of an experiment where only the manipulator is controlled with
the proposed TPIK algorithm are shown. Then, a simulation
showing the coordinated control of the vehicle and the arm is
described.

Regarding the field experiment, the chosen task hierarchy
is composed by two tasks: arm joint limits avoidance and
the end-effector position. The end-effector is commanded to
follow a simple circular trajectory, while the joint 3 upper
and joint 5 lower thresholds have been chosen in order to
get active during the motion of the end-effector, to test the
priority mechanism. Figure 7 shows the position error and
the joint values with the corresponding thresholds respectively.
The effectiveness of the control algorithm is clear, as the end-
effector follows the desired trajectory and the joint values
never exceed the desired upper and lower thresholds.

A simulation experiment further illustrates results of the
coordinated control. The task hierarchy is as follows:
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Fig. 7. The position error over time during the experiments shown on
top. The error is relatively high because the control gains were maintained
low for safety reasons during these tests. Below, the joint positions and the
minimum/maximum thresholds are shown (in red). The plots show how the
TPIK approach enforces the validity of the joint limits.

o Arm manipulability: a minimum value of 0.029 is set
for the measure of manipulability of the arm, in order to
avoid singular configurations

« Virtual box: a set of 6 virtual walls surrounding the arm
base frame that assures that the arm never tries to move
the end-effector outside its workspace

o End-effector configuration: a constant set-point for the
position and the orientation of the arm has been set.

Figure 8 shows the results. The system’s initial position is

set far away from the desired waypoint, and it moves both the
vehicle and the arm in order to reach it with a null error, while
the arm manipulability and the end-effector position expressed
in the arm base frame never exceed the desired thresholds.

As concerns the vehicle related tasks, the proposed solution

[11] builds on standard techniques leading to a proportional-
integral (PI) controller including an anti wind-up mechanism.

V. UNDERWATER PERCEPTION FOR MANIPULATION
A. Camera Calibration

For manipulation - with both teleoperation as well as with
autonomy - it is essential that the sensor system is well
calibrated to correctly capture the environment. We use a novel
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Fig. 8. Top: end-effector position expressed in the arm base frame with
the limits imposed by the virtual walls (red). Bottom: end-effector position
and orientation error and measure of manipulability with the corresponding
minimum threshold. All the set-based tasks stay within their limits while the
position and orientation errors reach a null value.

calibration and refraction correction process for underwater
cameras with flat-pane interfaces that is very easy and conve-
nient to use while providing very accurate rectification results
[12].

The correction is derived from an analysis of the axial
camera model for underwater cameras, which is physically
correct but which is among others computationally hard to
tackle. It can be shown how realistic constraints on the distance
of the camera to the window can be exploited, which leads to
an approach dubbed pinax model as it combines aspects of
a virtual pinhole model with the projection function from the
axial camera model. The pinax model is not only convenient
as it allows in-air calibration, it also outperforms standard
methods in accuracy [12].

B. 3D Mapping and Object Recognition

The data from the camera system with its stereo set-up is
online processed to generate dense 2.5D point-clouds, which
get integrated in 3D maps (Fig.9). The well known octree
data-structure is used for this purpose. More precisely, our
implementation builds upon the popular OctoMap library [13],
which is extended for differential update operations to support

an efficient, low-latency transmission of the 3D representation
over the satellite link to the onshore command center [14].
Furthermore, an efficient strategy for underwater color updates
is added.

Underwater images suffer from challenging light condi-
tions, especially wave-length dependent attenuation as well
as forward and back scattering. When coloring the octomap,
a very simple but efficient strategy is used: as attenuation is
wavelength and distance dependent, the brightest measurement
is used, which corresponds to the closest and hence most accu-
rate sample [14]. For substantial image enhancement - at much
higher computational cost - a new variant of the Dark Channel
Prior for underwater vision is used [15]. Even though there are
known adaptations of this method to underwater applications,
further improvements are made by reformulating the problem.
Bright regions in the dark channel appear in outdoor images
in air on non-sky regions due to the backscattering, which is
used in the original Dark Channel Prior. In contrast to other
methods adapting it to underwater applications, the estimation
of the “atmospheric” light is adjusted, which leads to clear
improvements [15].

Fig. 9.  When the vehicle (top left) approaches the mockup panel structure
(top center) Augmented Reality marker (top right) can be used to aid the
navigation, respectively to validate different navigation methods. Among
others, a 3D octomap (bottom left) is generated in real-time, which is
transmitted to the offshore control center. As the mockup panel structure is
- like in oil&gas operations - a priori known, perceived parts can be used to
determine its pose and to project the known model in the scene to aid the
execution of tasks (bottom right).

The core navigation of the vehicle is based on the data of
the according sensors connected to the vision compute bottle,
i.e., the NavQuest DVL and the Xsens IMU. This data is
fused in an Extended Kalman Filter (EKF). It can be aided
by the registration of the stereo scans and the tracking of
objects up to the level of full Simultaneous Localization and
Mapping (SLAM). The mockup panel structure is equipped
with Augmented Reality (AR) markers (Fig.9), which can
further aid the navigation, respectively which can be used for
the validation of the other navigation methods. The lower-
level image processing, i.e., the rectification and the image
enhancement, are important for the robust recognition of the
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Fig. 10. Top: As basis for (semi-)autonomous manipulation, the orientations
of the valves on the mockup structure are determined by an active contours
method with super-ellipse fitting in combination with a Hough transform.
Bottom: The errors in a single frame state detection are within a few degrees
and they behave very similar in the sea trials (real data) as in the high-fidelty
simulation of the system (simulation).

markers.

The 3D octomap can be run with a 2 cm grid cell resolution.
This is well suited for autonomous operations like collision
avoidance and path-planning, and it is also sufficient to give
human operators in the onshore command center an overview
of the environment including unexpected obstacles and the
terrain. To aid manipulation, the fact can be exploited that
in many application cases, e.g., for oil&gas operations, the
structures that are to be dealt with are known. The detailed
simulation framework that is used for component and system
validation [16] can in this context be used to provide a virtual
visualization of the real underwater operations (Fig.9), i.e.,
when the vision system of the ROV detects, respectively tracks
(parts of) the structure of interest, the structure’s pose is
transmitted to the onshore command center and the known
model can be projected into the scene. Furthermore, there
are dedicated vision processes to detect and localize crucial
objects as basis for (semi-)autonomous manipulation. For
example, the valves on the mockup structure are detected
and localized with an active contours method with super-
ellipse fitting. Their orientations are determined with a Hough
transform to estimate the predominate edges within the fitted
ellipses (Fig.10).

VI. CONCLUSIONS

An approach to underwater manipulation was presented,
which facilitates the use of a distant onshore control center
with an exoskeleton based on: 1) efficient transmission of

multiple data-streams over a satellite link, 2) a cognitive engine
to mitigate communication latencies by encoding statistical
models of manipulation tasks, 3) the vehicle control, which is
more oriented towards AUV than ROV operations, 4) an intel-
ligent vision system, which provides perception capabilities.
The approach was tested in July 2017 in a first field campaign
over two weeks in the Mediterranean Sea near Marseille.
Seven extended dives with about eleven hours of experimental
data were performed where the ROV interacted with a mockup
panel structure to validate the different system components and
their interplay.

The main lessons learned from the field trials are: 1) ROV
operation from an onshore control center via a satellite link
is in principle feasible despite latencies and low bandwidth,
2) but it is important that the system is capable of detecting
the operators intentions and uses this to (semi-)autonomously
carry out tasks, 3) there is no black or white with respect to
autonomy but there are different levels that can be useful or
even necessary depending on the communication conditions,
and 4) good situational awareness through constant update of
the onshore environment model is important.
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