
Learning adaptive movements from demonstration
and self-guided exploration

Danilo Bruno
Department of Advanced Robotics
Istituto Italiano di Tecnologia (IIT)

Via Morego, 30 - 16163 Genova - Italy

Sylvain Calinon
Idiap Research Institute

Rue Marconi 19, CH-1920
Martigny - Switzerland

Darwin G. Caldwell
Department of Advanced Robotics
Istituto Italiano di Tecnologia (IIT)

Via Morego, 30 - 16163 Genova - Italy

Abstract—The combination of imitation and exploration strate-
gies is used in this paper to transfer sensory-motor skills to
robotic platforms. The aim is to be able to learn very different
tasks with good generalization capabilities and starting from a
few demonstrations. This goal is achieved by learning a task-
parameterized model from demonstrations where a teacher shows
the task corresponding to different possible values of preassigned
parameters. In this manner, new reproductions can be generated
for new situations by assigning new values to the parameters, thus
achieving very precise generalization capabilities. In this paper
we propose a novel algorithm that is able to learn the model
together with its dependence from the task-parameters, without
specifying a predefined relationship or structure. The algorithm
is able to learn the model starting from a few demonstrations
by applying an exploration strategy that refines the learnt
model autonomously. The algorithm is tested on a reaching task
performed with a Barrett WAM manipulator.

I. INTRODUCTION

The aim of this paper is to implement an algorithm that
allows the transfer of sensorimotor skills to robotic platforms
in a fast and efficient manner, with robust generalization
capabilities. Usually humans develop these capabilities with
an incremental learning process, mostly based on the explo-
ration of many possible solutions [1]. This process is usually
performed by children with a random and playful attitude [2],
which allows them to discover very articulated solutions, but
the overall process can be too slow and time consuming for
robotics applications. A possible shortening of the process
can be obtained by demonstrating the task to the robot and
extracting the necessary information to restrict the exploration
process. In this case, the exploration strategy can be coupled
with a Learning by Demonstration strategy to allow the robot
to generalize the skill and reproduce the learnt task even
when the conditions change significantly with respect to the
demonstrations [3], [4].

One way of coping with generalization is to use a task-
parameterized model during the learning process. These mod-
els contain two different kinds of parameters, called model
parameters and task parameters. The first ones are common
to all the demonstrations and are inferred during the learning
phase by using a single inference process involving all the

This work was partially supported by the STIFF-FLOP European project
under contract FP7-ICT-287728.

demonstrations. The second ones are specific to each demon-
stration and distinguish each task instance from the other;
for example they can be the position of the end-effector of
the robot in task space, measured interaction forces with the
environment, positions of external objects and so on.

After learning, the task can be reproduced in different
situations by setting new values for task parameters, thus
providing the envisaged generalization.

Task parameterized models can be decomposed into two
broad categories. The first assumes a known relationship
between the task and the parameters [5], [6], such as lin-
ear transformations between two frames of reference. These
models are useful when the structure or task dependence is
manifest. They are usually quite efficient, since they need a
low number of demonstrations and have a good extrapolation
capability.

The other category assumes that the dependence of the task
on the parameters is unknown [7], [8], [9]. These models can
usually be applied to a wider range of situations. This comes
at the expense of a lower extrapolation capability, since the
dependence is learnt from the demonstrations; moreover, a
higher number of demonstrations is usually needed to build
an accurate model. If a sufficient number of demonstrations
is given, they usually work very well within the range of
observed parameters.

In this paper we propose a statistical task-parameterized
model that is able to learn the task together with the its rela-
tionship with the task parameters. The challenge is placed in
keeping the number of demonstrations low, while still allowing
the system to build a significant statistical model for new
values of task-parameters that are far from the demonstrations.

The idea is to let the robot autonomously refine the model
to gain a better precision during the reproduction of the task.

Instead of exploring the space of model parameters to
optimize some global cost function, it is proposed to explore
the space of task parameters to add new statistical points to
be used in the inference process. After several iterations, the
model parameters are updated based on the new samples, thus
increasing the accuracy of the statistical model as a result
of the addition of relevant datapoints during the exploration
phase.

The statistical model fits the joint distribution of trajectory
models and task parameters. A trajectory model is created

Fig. 1. The three steps of the algorithm explained. Left: demonstrations are
given and represented as points in an abstract space. Center: the red Gaussian
is built out of the points that are nearer to the desired parameter and a linear
regression technique is used to estimate the trajectory (red square). The black
star represents the actual value of the parameter after the execution of the task.
The first estimate is discarded and the correct point is added to the dataset.
Right: after a sufficient number of points have been explored, a final GMM
model is built. The dashed line represents the learnt dependence between task
parameters and trajectory models.

by representing each demonstration as a single point in an
abstract space, by using a tensorial Gaussian Mixture Model
(Section II-C). The task-parameterized model of the task is fit
in the extended space, obtained by associating to each point
representing a trajectory the corresponding value of the task
parameters as additional dimensions.

During the exploration phase (Section II-D), an elitist re-
gression technique is used to generate new trajectories for
new values of the task parameters. For each of these new
reproductions, the actual values of the task parameters is
measured on the real system, which are concatenated to the
trajectory model parameters and added to the previous set of
points. As a matter of fact, the inferred trajectories are not
considered as ”wrong” whenever they do not result into the
expected value of task parameters. They are instead considered
as correct trajectories with wrong values of the parameters.
This technique has links with random goal exploration [10]
and can be seen as an algorithmic implementation of such
strategy.

At the end of the exploration phase, a statistical model for
the joint distribution of model parameters and task parameters
is learnt and the points representing demonstrations and explo-
ration steps are discarded (Section II-E). As a result, the robot
is able to autonomously improve its ability, starting from a few
demonstrations and ending up, independently from additional
inputs from the user, with a usable statistical model that allows
the retrieval of trajectories from new values of task parameters
in a very fast manner and without external intervention. The
advantage of the proposed technique is placed in the fact that
the same code can be used to learn very different tasks.

II. PROBLEM SETTING

A. Notations

In the paper, lowercase bold letters (t) denote vectors,
uppercase bold letters (X) represent matrices and calligraphic
letters (X) stand for tensors of higher order. When referring to
components, parentheses are used, so that t(i) denotes the i-th

component of t and so on. The square brackets are used to de-
note sub-matrices and sub-vectors, e.g., X = [X [t]>,X [p]>]>.
Indices without parentheses are used to denote elements within
a collection of objects. Finally, dots in the place of indices
represent the full range of the given dimension (fiber) (e.g.
X (•,•,j) =Xj represents a collection of matrices obtained by
fixing an index of a third order tensor).

B. General overview of the method

The task-parameterized model is a statistical model repre-
senting the joint distribution of trajectory model parameters
and task parameters. Each datapoint consists of a vector
x = [x[t]>,x[p]>]>, where the vector x[t] is the model of
a demonstrated trajectory and x[p] is the value of the task
parameter associated to it. We call x the task vector. The
algorithm consists of three consecutive steps (Fig. 1), that are
detailed in the rest of the section:
1. a model of the demonstrated trajectories in a vector form
is calculated and augmented with the corresponding task
parameters (II-C);
2. given new values of the task parameters x[p], new trajectory
model parameters x[t] are calculated by using an elitist linear
regression technique; the new trajectory is reproduced on the
robot, the actual value x[p]

∗ of the task parameter is measured
and a new task vector x∗ = [x[t]>,x

[p]
∗
>
]> is added to the

previous points (II-D);
3. a statistical model is used to encode all the task vectors
x, which can then be discarded; the resulting model can be
used to infer new trajectory models for new values of task
parameters (II-E).

C. Trajectory model

Each demonstration is encoded separately from the others
(one for each task parameter value) by using Gaussian Mix-
ture Models (GMM), through a DS-GMR dynamical system
formulation (see [11] for details). In short, the trajectory is
generated by a virtual spring-damper system; for each point
an of the trajectory, a virtual attractor yn is calculated with

än = −KP (an − yn)−KV ȧn . (1)

The trajectory of the attractor, consisting of the datapoints
ξn = [tn,y

>
n]
>, is encoded into a statistical model in the form

of a Gaussian mixture model (GMM). The positions of the
attractor can be retrieved at each time step by using Gaussian
mixture regression (GMR) [12], using time as input. The
original trajectory can be reconstructed from the trajectory of
the attractors by using Eq. (1). This encoding of the trajectory
is stable to perturbations and can easily generate the correct
path, even if the starting position is not the same as the
demonstrated one.

In order to make the model of each trajectory comparable
with the others, we must be made up of the same number of
components and that the components are time aligned. In order
to perform both operations automatically, the demonstrations
are stored into a third order tensor X . In this representation,
each matrix X (•,•,j), obtained by fixing the third index, stores

a demonstration, consisting of a matrix, whose columns are
the datapoints ξn. The tensor X has dimensions (D,M,P),
where D is the dimension of each datapoint, M is the number
of datapoints for each demonstration and P is the number of
demonstrations. Typically, D is of the order of 3− 10, M of
200 and P of 10.

The dataset is encoded into a tensorial Gaussian Mixture
Model, by using a tensorial normal distribution representation
[13]. The distribution is fit over the matrices Xn = X (•,n,•),
representing the collection of datapoints for all demonstrations
at time step n.

The probability that each sample Xn is generated by the
envisaged model is

P(Xn) =

K∑
i=1

πi N (Xn|M i,Si) , (2)

where M i ∈ RD×P is a second order tensor representing
the mean of the distribution, Si ∈ RD×P×P×D is a fourth
order tensor encapsulating covariance information, and K is
the number of components of the GMM.

The tensor normal distribution is described as

N (X|M,S)=

√
|S|−1
(2π)DP

exp

−1

2

∑
ijrs

Z>(ij)(S−1)(ijrs)Z(rs)

 ,
where Z = X −M . For the details the reader is referred to
[13].

If we make the hypothesis that the information of each
demonstration is not correlated to the others, we can then
restrict the covariance tensor to be diagonal in the indices
running over demonstrations, i.e.,

S(ikkj) = Σ(ij) ∀i, j∈{1 . . . D} and ∀k ∈ {1 . . . P} ,
S(ikrj) = 0 ∀i, j∈{1 . . . D} and k 6= r∈{1 . . . P}.

(3)

In this case, the normal distribution can be written (up to
normalization) as

N (X|M ,S) ∝ exp

−1

2

∑
ijrs

Z>(ij)(S−1)(ijrs)Z(rs)

 =

=

P∏
j=1

exp

(
−1

2
(zj)>(Σ−1)jzj

)
∝

P∏
j=1

N (ξj |µj ,Σj),

(4)

where zj = ξj − µj = Z(•,j) and Σj = S(•,j,j,•).
Each component of Eq. (2) can be rewritten according to

Eq. (4), resulting in

P(Xn) =

K∑
i=1

πi

P∏
j=1

N (ξjn|µ
j
i ,Σ

j
i) , (5)

where µj
i and Σj

i represent the mean and the covariance matrix
corresponding to the component i and demonstration j, and
xj
n is the n-th datapoint of demonstration j. All the GMMs

share the same priors πi, as envisaged.

Taking the M datapoints into account and writing the
probability explicitly, we obtain that the likelihood for the
whole dataset is

P(X) =
M∏
n=1

K∑
i=1

πi

P∏
j=1

N (ξjn|µ
j
i ,Σ

j
i) . (6)

The model parameters can be estimated by maximizing
the log-likelihood of the dataset with respect to µj

i and Σj
i .

Skipping all the calculations, we have that

µj
i =

∑
n γn,iξ

j
n∑

n γn,j
, (7)

Σj
i =

∑
n γn,i(ξ

j
n − µ

j
i)(ξ

j
n − µ

j
i)
>∑

n γn,i
, (8)

πi =

∑M
n=1 γn,i
M

(9)

where

γn,i =
πi
∏P

j=1N
(
ξjn|µ

j
i ,Σ

j
i

)
∑K

k=1 πk
∏P

j=1N
(
ξjn|µ

j
k,Σ

j
k

) . (10)

The parameters encode a different trajectory for each value
of j. The resulting GMM is then turned into a single point in
an abstract trajectory model space. In this paper, we store the
mean vector µj

i and the principal vector wj
i of the covariance

matrix of every component of the GMM into the vector

x
[t]
j = [µj

1

>
,wj

1

>
, . . . ,µj

K

>
,wj

K

>
]> (11)

of dimension Nt = 2KD, where K is the number of
components of the tensor GMM. Each trajectory model vector
x
[t]
j is augmented with the Np-dimensional vector x[p]

j , con-
taining the value of the task parameters associated with the
demonstration. The resulting task vector xj = [x

[t]
j

>
,x

[p]
j

>
]>

represents all the information stored with each demonstration.
We denote by T = {x|x= [x[t]>,x[p]>]>} the space of task
instances. The priors πi are common to all trajectories and are
stored apart since they do not change.

D. The exploration process

A trajectory for a new value of the task parameters can be
obtained by using an inference technique, where each trajec-
tory model and associated task parameters are represented in
the form of output variables (trajectory model x[t]) and query
points (task parameter x[p]).

In this paper we follow an elitist approach: each time a
trajectory for a new task parameter value x[p] is required, the
set Ibest ⊂ {1 . . . P}, composed by the N = P/2 points
whose parameter value is closest to the enquired one, is
selected. A Normal distribution N (µ,Σ) is fit to the selected
points, with mean and covariance represented as

µ =
1

N

∑
i∈Ibest

xi , Σ =
1

N

∑
i∈Ibest

(xi−µ)(xi−µ)>+Σ0,

with

µ =

[
µ[t]

µ[p]

]
, Σ =

[
Σ[t] Σ[tp]

Σ[pt] Σ[p]

]
, (12)

where Σ0 is a small regularization term.
The best estimate for the trajectory model corresponding to

the desired task parameter x[p] is inferred by regression as the
mean for the conditional Gaussian N (x[t]|x[p]), i.e.

x[t] = (µ[t]|x[p]) = µ[t] +Σ[tp](Σ[p])−1(x[p]−µ[p]). (13)

The GMM encoding the trajectory attractors is reconstructed
back from the inferred point and the resulting trajectory is run
on the robot (or in simulation). In this paper the covariance
matrix is reconstructed by adding to the principal vector a
small fixed regularization term. The real values x[p]

∗ of the task
parameters achieved by the extracted trajectory are measured
and the point x = [x[t]>,x

[p]
∗
>
]> is added to the current dataset.

This exploration strategy differs from the one commonly
used in Reinforcement Learning, since it is not directly driven
towards an improvement of the policy by maximizing a cost
function. Instead, it is aimed at exploring the task parameters
space to increase the number of experimental points in a region
and, consequently, the accuracy of the model. In this paper,
the new task parameters are sampled from the distribution of
the demonstrated task parameters, that is fit over the values of
task parameters associated to the demonstrations.

An interesting aspect of this exploration strategy is to couple
it with active learning techniques, in order to determine what
are the areas of the space of task parameters where it is
necessary to sample to speed up learning. This strategy can be
also exploited to explore areas where no demonstration was
given, in order to improve the extrapolation capabilities of the
model. A discussion about this topic can be found in Section
IV.

E. The task-parameterized model

A statistical model of the task is built by using a Gaussian
Mixture Model (GMM) in the space T . If only one component
is used, the model corresponds to a linear regression problem;
if the dependence on the parameters is non-linear, a higher
number of components can be used to approximate the non-
linear behaviour with a locally linear one, provided a sufficient
number of components is used. The number of components
can be eventually learnt by using non-parametric statistical
models [14]. The posterior probability distribution of the
statistical model in the space T is

P(x) =
K∗∑
k=1

π∗kN(x|µ∗k,Σ
∗
k), (14)

where π∗i ,µ
∗
k,Σ

∗
k are the model parameters, x ∈ T is a

datapoint encoding a task instance and K∗ is the total number
of components. The model parameters π∗k,µ

∗
k and Σ∗k can be

obtained by using a standard EM algorithm.
New trajectories can be inferred from a new task parameters

value x[p] by using Gaussian Mixture Regression (GMR) [12],

which is fast and reliable in the reproduction phase (it can be
used online). If the model parameters are represented as

µ∗i =

[
µ
∗[t]
i

µ
∗[p]
i

]
, Σ∗i =

[
Σ
∗[t]
i Σ

∗[tp]
i

Σ
∗[pt]
i Σ

∗[p]
i

]
, (15)

a new value x[t] of the trajectory model can be obtained from
a parameter value x[p] as

x[t]=

K∗∑
i=1

hi

[
µ
∗[t]
i +Σ

∗[tp]
i (Σ

∗[p]
i)−1(x[p]−µ∗[p]i)

]
, (16)

with

hi =

K∗∑
i=1

π∗iN (x[p]|µ∗[p]i ,Σ
∗[p]
i). (17)

This approach works well within the explored task param-
eters space (as a matter of fact, any extrapolation outside the
space of task parameter explored by the robot is linear).

The data are now discarded and we are left with a parametric
probabilistic model of the task together with the parametric
dependence. This means that the information can be stored in
a compact parametric model, whence it can be fast retrieved
during the reproduction phase.

III. EXPERIMENTS
In this section we provide 2 experiments to show how the

method works. The algorithm is evaluated by the reproduction
error across the different steps of the algorithm, measured
as the distance between the predicted values of the task
parameters and the actual ones. The measurement is performed
by sampling new values of task parameters and evaluating the
average error produced over a fixed number of trials. In the
first step, only demonstrations are used to infer new trajectories
by using Eq. (13); in the second step, exploration points are
added before using Eq. (13); in the third step, the final GMM
is fit in T and GMR used for reproduction. The results are
averaged over a fixed number of runs of the whole procedure.
The results are shown in Figures 2 and 3.

A. Reaching task
The first example is a 3D reaching task. Bell-shaped trajec-

tories connecting a starting point P0 to an ending point P1 are
demonstrated in 3D space. The parameters of the task are the
starting and ending positions, resulting into a 6-dimensional
task parameter space. The trajectory model is fit by a GMM
with 4 components (K = 4), so the dimension of the trajectory
model space is Nt = 2KD = 32, resulting into 38 dimensions
for T . A total number of P = 12 trajectories is demonstrated.

Exploration is performed by sampling new initial and final
points from the distribution of demonstrated task parameters.
The final retrieved trajectories are shown in Fig. 2.

As we can see in Fig. 2, the initial estimates of the
trajectories using the demonstrations is quite poor (Step 1),
since too few points are present in the 38-dimensional space
where inference is performed. But we can see that during
exploration (Step 2), the precision improves and reaches a
small error once the final task-parameterized model is used
(Step 3).

−1
−0.5

0
0.5

1

−0.5

0

0.5

1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x
1x

2

x 3

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3

Step of the algorithm

T
as

k
pa

ra
m

et
er

 e
rr

or
 (

m
)

Fig. 2. Left: three final trajectories (in red) reproduced by using the task-
parameterized model for new values of task parameters. The grey trajectories
represent the demonstrations. Right: the error between the predicted and
measured value of the position of the final point in the reproduced trajectory is
used to evaluate the performance of the algorithm. Each boxplot corresponds
to a step of the algorithm. The exploration step (2) consists of 50 trials. The
results are averaged over 30 runs.

B. Joint space learning with a 4DOF WAM Arm

A 4DOF WAM arm is used to perform a reaching task. The
robot reaches a point in the 3D workspace placed either on its
left or right side. An obstacle is put in front of it, separating
the 2 areas, see Fig. 4. In order to avoid the obstacle with the
whole body, during the demonstrations, the elbow of the robot
is moved on the same side as the reaching point.

In this case, the task parameters are in Cartesian space
(target positions of the tip of the manipulator), while the
trajectory is encoded in joint space (the movement of the
elbow is part of the task to learn). Thus, the unknown relation
between the task parameters and the trajectory in joint space
needs to be discovered by the learning algorithm. In this
experiment, 10 demonstrations are given; the task parameter
space is 3-dimensional, while the trajectories model in joint
space are encoded by a 3-components GMM, resulting into
Nt = 2KD = 30 trajectory model parameters and a 33
dimensional space T .

During exploration, 30 trials are run in simulation with
the Matlab Robotics Toolbox [15]. In this case, the choice
of running the exploration in simulation is neither restrictive
nor compulsory. Since the trajectory is executed on the robot
by using a joint-space positional control, only the forward
kinematics is needed to evaluate the final position of the tip
of the robot from a given joint trajectory. So, the choice of
running the exploration in simulation is faster and reliable. In
order to validate the procedure, some trajectories were run on
the robot and the same value of the final task parameter was
measured.

The task-parameterized model consists of a 2 components
GMM (the choice was here made heuristically by knowing that
there were 2 different behaviours corresponding to the left and
right points). The model is used to generate trajectories on the
real robot. The reproduction error on the final position of the
end effector is shown in Fig. 3, which decreases along the steps
of the algorithm. The execution reliability is also improved,
as we can observe from the disappearance of outliers in the

0.035

0.04

0.045

0.05

0.055

0.06

0.065

1 2 3

Step of the algorithm

T
as

k
pa

ra
m

et
er

 e
rr

or
 (

m
)

Fig. 3. The error between the predicted and measured value of the position of
the final point in the reproduced trajectory is used to evaluate the performance
of the algorithm. Each boxplot corresponds to a step of the algorithm. The
exploration step (2) consists of 30 trials. The results are averaged over 30
runs.

last boxplot.

IV. DISCUSSION

The advantage of the proposed method is placed in its
combination of imitation and exploration mechanisms and in
its generality. Since no model of the dependence of the task
from the parameters is given, the only inputs needed are the
demonstrations of trajectories together with the corresponding
task parameters. So, the same code can be used independently
of the task and model encoding.

The encoding of each demonstrated trajectory into a single
point by storing the mean vector and the principal vector of the
covariance matrix for each component was an arbitrary choice,
used as a trade-off between being precise in the generation
of the trajectory and reducing the number of the parameters
to improve the learning speed. The whole covariance matrix
could be eventually used, but the reconstruction from new
parameters would need a higher number of exploration steps
to be performed correctly.

The exploration phase is the most interesting part of the
process. In this paper, it is performed by sampling from the
distribution of the task parameters that is learnt from the
demonstrations to improve the precision of the reproductions,
but other approaches are possible.

A link with active learning strategies can be established
to allow the robot to autonomously choose what are the
most interesting task parameters to explore. An interesting
overview of the possible techniques can be found in [16].
Examples of promising strategies include samplings directed
to areas showing the least exploration, to areas of highest
reproduction errors, or to areas where the learning curve is the
fastest. This paper thus has close links with exploration-driven
developmental robotics [10] and intrinsic motivation search
strategies [3]. Alternative choices can be given by a scaffolded
exploration strategy, where an additional supervision of the
user is added to guide the robot towards interesting unexplored
areas [3].

The paper shares similarities with other task-parameterized
approaches to robot learning. Stulp et al. in [8] use a learning
from demonstration approach to build a task-parameterized

Fig. 4. Execution of the task on the WAM arm. The red line represents the trajectory of the end-effector.

version of Dynamic Movement Primitives (possessing addi-
tional task parameters that can be used to generalize trajecto-
ries). The paper uses a similar regression technique to handle
the reproduction phase but does not provide an exploration
strategy, preventing the approach to extrapolate outside the
area of demonstrated task parameters.

Da Silva et al. in [17] uses an approach to exploration
framed within Reinforcement Learning that is similar to the
one we proposed, by adding the ”wrong” trajectories to the
demonstrations with the correct parameter value. The main
difference is placed in the representation of the parameterized
model, which uses a manifold approximator to encode the
task/parameter relationship. This choice makes the model quite
precise at reproduction but requires the encoding of different
manifolds in different areas of the task parameters space,
which is avoided in our approach by the use of the GMM.1

Finally, it can be underlined that the proposed approach can
also be used with multivalued task-parameters relationships,
where different trajectories correspond to the same task pa-
rameter. In this paper we make the hypothesis that a unimodal
distribution is retrieved through the GMR procedure and that
this is sufficient to describe the model-task dependence of the
experiments. But if needed, the same approach could be used
to retrieve a multimodal distribution.

V. CONCLUSION

We described a three step algorithm that learns a task-
parametrized motion model together with the dependence of
the motion from the task parameters. The algorithm reduces
the level of supervision needed to learn the task, initialized by
a set of demonstrations and the values of the corresponding
task parameters (without needing to specify their actual nature
or role within the task).

In order to reduce the number of demonstrations required to
correctly learn the task, an exploration phase is exploited by
the agent to explore the task-parameter space and improve the
precision of the model. The algorithm was tested on a WAM
arm manipulator in a reaching task.

REFERENCES

[1] J. Konczak and J. Dichgans, “The development towards stereotypic arm
kinematics during reaching in the first 3 years of life,” Exp. Brain Res.,
vol. 117, pp. 346–354, 1997.

1This representation can also be useful in future works to exploit the
covariance information to guide the exploration.

[2] L. Smith and M. Gasser, “The development of embodied cognition: six
lessons from babies,” Artificial Life, vol. 11, pp. 13–29, 2005.

[3] S. Nguyen and P.-Y. Oudeyer, “Properties for efficient demonstrations
to a socially guided intrinsically motivated learner,” in 21st IEEE Inter-
national Symposium on Robot and Human Interactive Communication,
Paris, France, 2012.

[4] C. Moulin-Frier, S. Nguyen, and P. Oudeyer, “Self-organization of
early vocal development in infants and machines: The role of intrinsic
motivation.” Frontiers in Cognitive Science, vol. 4, p. 1006, 2014.

[5] S. Calinon, T. Alizadeh, and D. G. Caldwell, “On improving the
extrapolation capability of task-parameterized movement models,” in
Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS),
Tokyo, Japan, November 2013, pp. 610–616.

[6] D. Herzog, A. Ude, and V. Krueger, “Motion imitation and recognition
using parametric hidden Markov models,” in Proc. IEEE Intl Conf. on
Humanoid Robots (Humanoids), Daejeon, Korea, 2008.

[7] T. Matsubara, S.-H. Hyon, and J. Morimoto, “Learning parametric
dynamic movement primitives from multiple demonstrations,” Neural
Networks, vol. 24, no. 5, pp. 493–500, June 2011.

[8] F. Stulp, G. Raiola, A. Hoarau, S. Ivaldi, and O. Sigaud, “Learning
compact parameterized skills with a single regression,” in Proc. IEEE
Intl Conf. on Humanoid Robots (Humanoids), Tokyo, Japan, November
2013, pp. 417–422.

[9] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific general-
ization of discrete and periodic dynamic movement primitives,” IEEE
Transactions on Robotics, vol. 26, no. 5, pp. 800–815, 2010.

[10] C. Moulin-Frier and P. Oudeyer, “Exploration strategies in develop-
mental robotics: a unified probabilistic approach,” in Proc. IEEE Intl.
Conf. on Developmental and Leraning and Epigenetic Robotics (ICDL-
Epirob), 2013.

[11] S. Calinon, Z. Li, T. Alizadeh, N. G. Tsagarakis, and D. G. Caldwell,
“Statistical dynamical systems for skills acquisition in humanoids,” in
Proc. IEEE Intl Conf. on Humanoid Robots (Humanoids), Osaka, Japan,
2012, pp. 323–329.

[12] Z. Ghahramani and M. I. Jordan, “Supervised learning from incomplete
data via an EM approach,” in Advances in Neural Information Process-
ing Systems, J. D. Cowan, G. Tesauro, and J. Alspector, Eds., vol. 6.
Morgan Kaufmann Publishers, Inc., 1994, pp. 120–127.

[13] P. J. Basser and S. Pajevic, “Spectral decomposition of a 4th-order
covariance tensor: Applications to diffusion tensor MRI,” Signal Pro-
cessing, vol. 87, pp. 220–236, 2007.

[14] D. Bruno, S. Calinon, and D. G. Caldwell, “Bayesian nonparametric
multi-optima policy search in reinforcement learning,” in AAAI Confer-
ence on Artificial Intelligence, Bellevue, Washington, USA, 2013.

[15] P. I. Corke, “Matlab toolboxes: robotics and vision for students and
teachers,” IEEE Robotics and Automation Magazine, vol. 14, no. 4, pp.
16–17, December 2007.

[16] P.-Y. Oudeyer and F. Kaplan, “What is intrinsic motivation? a typology
of computational approaches,” Frontiers in Neurorobotics, vol. 1, p. 6,
2007.

[17] B. da Silva, G. Baldassarre, G. Konidaris, and A. Barto, “Learning
parameterized motor skills on a humanoid robot,” in Proceedings of
the 2014 IEEE International Conference on Robotics and Automation
(ICRA 2014)., Hong Kong, China, 2014.

