Stochastic learning and control in multiple coordinate systems
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Abstract— A probabilistic interpretation of model predictive
control is presented, enabling extensions to multiple coordinate
systems. The resulting controller follows a minimal intervention
principle, by learning and retrieving movements through the
coordination of several frames of reference. When combined
with a generative model, the approach can be used in various
human-robot applications that are discussed in the paper.

I. INTRODUCTION

Model predictive control (MPC) encompasses a wide
range of techniques to control a robot with the ability to
anticipate future events. This is achieved by optimizing a
cost function over a finite time horizon, by implementing
the current timeslot, and by reiterating the operation at
desired time intervals. Linear MPC is used in the majority of
applications, where the system to control is defined in a linear
form (often through linearization over the operating range),
with the underlying feedback mechanism compensating for
prediction errors due to the mismatch between the model and
the process.

MPC is well known in control, but learning applications
can also benefit from the formalism of MPC and the associ-
ated algorithms. In particular, the most basic form of MPC
with a cost function composed of a sum of quadratic terms
has a representation that is linked to problems in statistics,
formulated as log-likelihoods of Gaussian distributions. In-
deed, solving a problem whose cost is a sum of quadratic
terms can alternatively be treated as a product of linearly
transformed Gaussians (see Appendix I), whose result is a
Gaussian with a center and covariance corresponding to the
average solution and an error that can be used as information
to determine how much we can move from the average while
still fulfilling the task constraints, see [1] for details.

From a learning perspective, a particularly interesting
feature of MPC is that it can exploit the covariance in-
formation contained in several examples of a movement to
find a controller achieving a minimal intervention strategy
[2]. The retrieved control commands comprise feedforward
and feedback components corresponding to a coordinated
tracking behavior with gains that can vary during the task.

For transferring skills through human-robot collaboration,
the combination of MPC with generative models in machine
learning provides a framework to handle both analysis and
synthesis challenges. Indeed, the controller will reflect the
observed correlational structures in the samples. This is for
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Fig. 1: Retrieval of control commands in a probabilistic form by
interpreting MPC as a product of Gaussians, and extending it to
the consideration of multiple coordinate systems that are simulta-
neously exploited for the reproduction of the task. The graph depicts
only the first two dimensions of control commands organized in a
lifted vector form of size RP7, see also Table I. The blue Gaussian
corresponds to the control cost, isotropic and centered at zero (no
acceleration is optimal for this part of the cost). The orange and red
Gaussians correspond to control commands tracking desired targets
expressed in two different coordinate systems. Each center depicts
the optimal command for the respective frame, with a covariance
depicting the required precision. The product of the three Gaussians
yields another Gaussian depicted in gray, representing the estimated
command, where the center is the set of control commands solving
the complete cost function, and the covariance depicts the potential
(co)variations around this estimate. The result is a trade-off between
acceleration and tracking accuracy in multiple frames of reference.

example important in learning from demonstration, where an
efficient transfer of skills is not characterized by the accurate
reproduction of a trajectory, but instead requires the robot to
take several sources of variations into account, including the
variations of the task (e.g., multiple options or redundancy
that do not influence task performance).

For skills transfer between living and artificial systems
(from a human to a robot, from a robot to another robot, or
from an internal simulator to the real robot), it is primordial
to take into account that being skillful does not mean being
accurate. Being skillful requires the system to exploit task
(co)variations so that perturbations can be rejected efficiently.
Precision is only a special case of skill requirements, which
is in practice usually required only in some parts of an
overall task, and which does not necessary apply to all task
variables (a task can require precision in some directions and
be loose in some others). Such constraints can often be better
described as coordination/synergy requirements instead of
considering each control variable individually.



Sym. Function Dim

D Dimension of position N

C Order of the controller N

T Horizon (nb of time steps) N

s {s1,82,...,87} NT

At time step t:

St State identifier N

x; Position RP

oy Velocity RP

¢t State ([}, a,ﬂT for C=2) RPC

m Desired target state RPC

uy Control command RP

Q. State tracking weights RPC*DC
R, Control weights RDPxP

In lifted vector/matrix form:

¢ [¢1.¢h, - ¢ RPOT

u [u{,ug,...,u}y RPT

pe (888 RPCT

Qs blockdiag(Qs,, Qs,, - - -, Qs,) RPCTXDCT
R, blockdiag(Rs,, Rs,, ..., Rs.) RPTXDT
Transfer matrices:

Ay State matrix RPCExDC
B, Input matrix RPCxD
S¢ Lifted state matrix RPCTxDC
Sy Lifted input matrix RPCT*DT
Normal distributions:

N (4, f)u) Control commands RPT
N(¢, flc) Reconstructed states RPCT

N o, I‘;1> Intermediary variables ~ RP7

TABLE I: Symbols, functions and dimensions used to de-
scribe the proposed approach.

II. A PROBABILISTIC INTERPRETATION OF MPC

A linear MPC problem with a cost function in a quadratic
form can be treated in a probabilistic manner with standard
linear algebra by exploiting two properties of multivariate
normal distributions: linear combination and product proper-
ties. Table I will be used as notation reference to describe the
proposed approach. Uppercase letters in normal typeface de-
scribe dimensions. Bold uppercase letters describe matrices.
Bold lowercase letters describe vectors.

The problem is that of estimating a controller u; for the

discrete linear dynamical system

Ci+1 = ACi + Bruy, (D

with state variable ¢; = [x], wI]T €RPC (we use here C =
2, corresponding to a state variable up to the first derivative),
and a position x; described by a vector of dimension D. The
problem is formulated as the minimization of the cost

T
€= Z ((Ht*Ct)TQt(ut*Ct) + uy Ry Ut)
t=1
= (ps — C)TQs (ms —¢) + u'Rsu, )

with ¢, uw and ps describing respectively the evolution of
the state, control and target variables for a time window of
size T, organized in a lifted vector form, see Table I for
details. Q5 and R, represent the evolution of the required
tracking precision and cost on the control inputs. A linear
unconstrained MPC problem can be solved with simple linear
algebra, by expressing all future states {; as an explicit
function of the state ¢;. In a matrix form, we get

¢ =S¢C + Syu, 3)

where S¢ and S,, are transfer matrices, see Appendix II for
details. Substituting (3) into (2), we get the cost function

¢ = (pu — u) Tou(pu — u) + u' Rou, “)

where p, = gu(us — 8¢¢) and T, = S,Q,S, are
introduced for notation~convenience, with S’u defined for
commodity so that S, S, = I (no explicit computation is
required).

Because c in (4) can be expressed as a weighted sum of
quadratic error terms, the minimization of (4) corresponds to

the product of Gaussians (see Appendix I)
N(a, Eu) ~ N(uu, 1“;1) N(o, R;l), )

with 3, = (T +R,) "
= (SuQsSu+Rs)",
u = Euruﬂu
= 2u8,Qs (ks — 5c61).

Fig. 1 illustrates the process. The product in (5) shows
the role of R, as a regularization term in the process
(prior information defining the importance of having a low
cumulated sum of acceleration commands).

Alternatively to the above computation, differentiating
with respect to u and equating to zero provide the same
sequence of control inputs 4, corresponding to a weighted
least squares estimate with Tikhonov regularization (ridge
regression). The error on the ridge regression estimate can
then be used to compute a covariance 3., in control space.

By using the linear relation in (3) and the linear transfor-
mation property of Gaussians (see Appendix I), the distribu-
tion N (4, f]u) in control space can optionally be converted
to a distribution N(C, 33¢) in feature space with parameters

{=8cCi + Sy,
e = Su(SLQsS. + Rs) ' S,



With the above interpretation, we can see that the most
basic form of MPC provides a convenient structure to syn-
thesize movements from a probabilistic generative model.
We will illustrate this with the example of a Gaussian
mixture model (GMM) to fit N samples {¢;}Y, with K
Gaussians of parameters { gy, Ek}szl, with centers pj and
full covariance matrices ;. We define a sequence of discrete
latent variables s indicating for each time step the Gaussian
component corresponding to the motion state (e.g., s =
{1,1,2,2,2,3,..., K}). The evolution of a complete move-
ment ¢ can then be represented with a stepwise reference
defined as p; = ps, and a full precision matrix defined by
Q=3

By providing a control cost (e.g., with R, = pI and p
set in regard to the desired smoothness), the above linear
quadratic tracking problem can be solved in closed form, and
provides a sequence of commands that can be used for further
processing or to reconstruct a trajectory. This approach has
links with trajectory models used in the field of speech
processing [3], but the MPC approach provides a more
powerful formulation with a direct link to the generative
process (it can retrieve a controller instead of a trajectory).

We can thus easily associate a probabilistic representation
such as GMM with a cost function typical to MPC, where the
methods developed for MPC can be used for both control and
motion synthesis. The probabilistic representation provides
a way to automatically determine the tracking weights and
references in the cost function, notably in the form of
full precision matrices @, which would be too difficult to
design manually. It also offers a Bayesian perspective to
MPC, by enabling the resulting controller to be viewed as
a distribution over control commands (or over a trajectory
after reconstruction), whose error terms propagate from the
compact mixture model to the resulting controller.

When combined with statistical learning techniques, the
most basic form of MPC, as in the above, already shows
great promises for planning and control. Several extensions
can further be considered, such as extending the problem
to inequality constraints, extending the distribution to more
powerful generative models such as hidden Markov models,
Gaussian processes or other forms of trajectory distributions
[4], extending the representation to subspace clustering [1],
or sharing components through the use of semi-tied covari-
ances [5].

III. EXTENSION TO MULTIPLE COORDINATE SYSTEMS

We discussed in the above the exploitation of variability
and coordination information in MPC, but we did not discuss
in which coordinate system the analysis and retrieval should
take place.

Skillful movement planning and control require the or-
chestration of multiple coordinate systems that can have
varying levels of importance along the task [6]. Typical
examples are movements in object-, body-, head-, or gaze-
centered frames of reference that can collaborate in various
manners for the different phases of a task. Invariance and
coordination extraction in movements are also closely linked

to the coordinate systems in which the analysis takes place
[7].

Our work takes inspiration from these lines of work to
build an extension of GMM to encode movements from
the perspective of multiple frames of reference, where the
statistical analysis is simultaneously conducted in each coor-
dinate system by replacing the standard GMM with a tensor-
variate version of GMM. Such model corresponds to a set
of Gaussians encoding the variations and coordinations in
each frame, see [1] for details. With this representation, the
orchestration and transition between a set of P coordinate
systems can be learned from data samples and applied to
new situations by extending the cost function (4) to

P
=3 (1Y) =€) QY (WY —¢) + wReu

=1

with control commands then becoming
r . N —1
N(a, zu) ~ N(o, R;l) HN(;L;J), Ty )
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where ug) = S‘u(ugj) — S¢¢1) and I‘g) = SLng)Su,
thus extending (5) to the consideration of targets in multiple
coordinate systems.

IV. APPLICATIONS AND FUTURE WORK

The approach of considering multiple frames of reference
to extract relevant features and re-use those in new situations
can be exploited in various learning and control applications.

Thus far, it was exploited in [4] for adaptation to new
configurations of the environment by considering coordinate
systems representing objects or virtual landmarks in the
environment. In this application, a grasping movement is
observed from the perspective of two coordinate systems
corresponding to the robot and to the object to grasp. During
reproduction, the robot generalizes the grasping movement
to new situations (new locations of object) by smoothly
switching from a natural pose in the robot workspace to an
appropriate movement to approach and grasp the object.

A preliminary version of the approach was exploited in
[8] for adaptation to the user in collaboration skills. Here,
the collaborative tasks of transporting objects and assembling
furnitures were considered. In the latter, the robot needs to
hold the tabletop stiffly when the operator screws one of



the table leg, but needs to remain compliant in other phases
of the collaboration, in order to allow the user to reorient
and move the table for a comfortable and ergonomic work,
which is learned by the robot based on observations of the
collaborative task executed by two persons.

The approach was also used in [5] to handle shared
autonomy and semi-autonomous behaviors in teleoperation.
Here, the challenge is to exploit previous recordings of a
teleoperated valve turning operation to adapt the skill to
new situations (including different operating ranges), while
allowing the teleoperator to take part in the operation by
exploiting the multiple frames of reference mechanism as a
trade-off between autonomous behaviors (when the task is
well known) and assisted teleoperation (when the task has
multiple options or variants that should be determined by the
user).

Finally, it was exploited in [1] to study task priority learn-
ing and retrieval with a bimanual reaching example. Here,
the goal is to exploit the frames of reference mechanism
to provide a set of candidate nullspace projection operators
(which are locally linear). The robot then determines from
statistical analysis of the set of observations (projected in
different nullspaces) in which manner the priority levels are
organized and change during the task. This information can
then be used to generalize the task to new situations while
maintaining the demonstrated prioritization behavior.

The applications above illustrate the capability of com-
bining probabilistic models with MPC for planning purpose,
but many other perspectives can stem from this approach.
Promising directions of research include the use of Gaussian
conditioning to provide contextual information to the system,
so that other modality such as force information can be used
as additional inputs to drive the system. The probabilistic
form of the underlying representation and the retrieved
controller readily enable such computation.

An extension to subspace clustering can also be employed
to handle sensory data of potentially high dimension. Mod-
els such as mixture of factor analyzers (MFA) appear as
interesting candidates for reduced motion models preserving
the property described above. In the context of MPC, these
techniques could for example be used to encapsulate the most
salient correlational information and to simplify the search
by guiding the exploration toward preferred coordination
patterns.

Another important property offered by the probabilistic
treatment of MPC is that the resulting distributions can
be used for stochastic sampling of new movements. The
generated samples will emulate the characteristics of the
original samples used to train the model. This approach
provides a way to search for new solutions, in a boundary
that remains adapted to the initial set of demonstrations.

As a more general remark, combining learning, planning
and control in robotics often has the pernicious effect of
passing information from one subproblem to the other by
keeping only an average and, thus, by discarding higher order
statistics. This is typically the case when a single trajectory
is used as a reference to be tracked, while, as discussed in

the above, most skills are better described by coordination
patterns or by variations allowed by the task. For some
skills, one can argue that the covariance is more informative
than the mean of the distribution, which is the case when a
coordination pattern needs to be maintained or when some
directions are not relevant for the task (e.g., holding a filled
glass requires two out of three Euler angles to be tracked to
remain horizontal).

Keeping a distribution of control commands with an un-
derlying sparse representation thus appears as advantageous,
and is particularly relevant when combining MPC with other
processes. It is in particular important for applications in
which the user is in close proximity to the robot (including
collaborative robots, assistive robots or prosthetics), where
the robot needs to quickly adapt to changes in the environ-
ment and to remain compliant when it is appropriate.

APPENDIX I
MULTIVARIATE NORMAL DISTRIBUTIONS

The product of two Gaussians A (), 3M) and
N(p®,3®) is defined by

N, =) ~ NpM, 20) N(p®,5®),
(2(1)_1 +2(2)_1)_1,

-1 -1
p = 2(2(1) pV 4 5@ u(”)-

with Y =

In the above, 1 minimizes the quadratic cost
c=(@-p®) 2O @ - )
+(@—u®) 2O (@ - u?),

with 3 the error on the estimate.

Another important property of Gaussians is that if © ~
N(p,X), the linear transformation Az + c follows the
distribution

Az +c ~ N(Ap+c, AZAT).
APPENDIX II
TRANSFER MATRICES IN LIFTED VECTOR FORM

The transfer matrices can be retrieved by expressing all
future states ; as an explicit function of the state ;. In
the special case of Ay = A and B; = B,Vte{l,...,T},
which is for example the case when considering a canonical
double integrator system, we can write
¢2 = A1 + Buy,

Cg = AC2 —+ B’LLQ = A(AC1 —+ Bul) + B’u,g,

¢r = AT, + AT2Buy + AT 3Buy + - + Bur_1,

which can be organized in a matrix form as

G I 0 0 0 0

u
G A B 0 0 0 1
G| | A || AB B 0 of "
: %71 Tiz T—:3 B ; ; ur
Cr A A™?B A™B ... B 0]

< Se Su



Similar transfer matrices can be computed for a time
horizon T in which A; and B; are local linearization of
the system.
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