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Abstract

Learning in humanoids is challenging due to the unpredictable

environments these robots have to face during reproduction. Two

sets of tools are relevant for this purpose:

1) Probabilistic machine learning methods that can extract and
exploit the regularities and important features of the task.

2) Dynamical systems that can cope with perturbation in real-time
without having to re-plan the whole movement.

We present a learning by imitation approach combining the two
benefits. It is based on a superposition of virtual spring-damper
systems to drive a humanoid robot's movement. The method relies
on a statistical description of the springs attractor points acting in

different candidate frames of reference. It extends dynamic
movement primitives models by formulating the dynamical
systems parameters estimation problem as a Gaussian mixture
regression problem with projection in different coordinate systems.

The robot exploits local variability information extracted from
multiple demonstrations of movements to determine which frames
are relevant for the task, and how the movement should be
modulated with respect to these frames. The approach is tested
on the COMAN compliant humanoid with time-based and time-
invariant movements, including bimanual coordination skills.

Nonlinear motion encoding with linear systems
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Some examples:
» Gaussian Mixture Regression (GMR)

[CALINON £7.4z, RAM 17(2), 2010]
* Stable Estimator of Dynamical Systems (SEDS) [KHANSARI av0 BILLARD, TRO 27(5), 2014]

* Dynamic Movement Primitives (DMP) [13SPEERT £7 4, IROS’04] [HOFFMANN £7 41, ICRA‘2009]
* Correlated Dynamic Movement Primitives [CALINON, SARDELLITTI avo CALDWELL, IR0S’2040]
* Takagi-Sugeno (TS) fuzzy model [1aKAGI avo SUGENO, IEEE TRANS. SMC 15(1), 1985]

Gaussian mixture regression (GMR)

Automatic trade-off
selection through
Gaussians products

P(fz, fo) encoded in GMM, P(folfz) retrieved through GMR.

Example for time-based trajectories: §I =1, §O = .
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* Learning the model depends linearly on the number of datapoints,
while prediction is independent on this number, which makes the
approach an interesting alternative to kernel-based regression
methods (GMR can retrieve control commands in real-time,
independently on the number of datapoints in the training set).

* In GMR, there is no distinction between input and output
components when learning the model (any subset of input-output
dimensions can be selected, and expectations on the remaining
dimensions can be computed in real-time).

[CALINON, GUENTER 4o BILLARD, IEEE SMC-B 37(2), 2007]

[HERSCH, GUENTER, CALINON 4a~o BILLARD, IEEE TRANS. ON ROBOTICS 24(6), 2008]
’ p ’ AND ’ AND ’
[CALINON, D'HALLUIN, SAUSER, CALDWELL BILLARD, IEEE ROBOTICS AUTOMATION 17(2), 2010]

Dynamical systems (DS)

Core idea of dynamic movement primitives (DMP):

ri = wor—a] =K+ f(1), f(t)=D _hi()f:

Nonlinear force modulating a point-to-point
movement to reproduce a desired trajectory

Original formulation:

TL = KP[CL‘T—CE] — KT+ f(9), f(S):S[fT—ZUO]th(S)fi

TS = —QS [1ISPEERT, NAKANISHI 4v0 SCHAAL, IR0S’2001]
Variant of DMP based on mechanical springs analogy:
K
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Additional sets of virtual springs bringing local
corrective terms that can swiftly react to
perturbations during reproduction

[HOFFMANN, PASTOR, PARK 4a~vo SCHAAL, ICRA’2009]
[CALINON, D’HALLUIN, CALDWELL 4n0 BILLARD, HUMANOIDS2009]

DS-GMR model
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An illustrative view of the problem is to estimate the trajectory of a boat
pulling a water-skier such that the water-skier follows a desired path,
with the rope acting as a spring of given stiffness and damping.

* DS-GMR estimates the path of the attractor point, together with
its variability in the form of a covariance matrix.
The changing stiffness profile can be estimated as being inversely
proportional to the variation in the movement.

[S. CALINON, 1. SARDELLITTI 470 D.G. CALDWELL, “LEARNING-BASED CONTROL STRATEGY
FOR SAFE HUMAN-ROBOT INTERACTION EXPLOITING TASK AND ROBOT REDUNDANCIES”, IR0S’2010]

Advantages of the proposed statistical dynamical system:

* DS-GMR automatically adapts the span and position of the
activation weights while learning the movement.

* DS-GMR does not only provide a single estimate for each virtual
attractor but a Gaussian with full covariance, which can be
exploited: 1) to provide additional information when several
demonstrations are available; 2) to encapsulate the local
relationships between the variables of the task; 3) to regenerate
movements with a natural variability that follows the essential
characteristics of the task (e.g., for stochastic exploration).

* |t extends the approach to models in machine learning compatible

with GMM representations, opening up a host of new possibilities
(HMM, PHMM, IGMM, DP, etc.).

Extension to task-parameterized skill learning

Projection of a Gaussian in
/ a new frame of reference
defined by an offset vector b
and a transformation matrix A
corresponding to a rotation

and elongation along the first
axis.
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(d) Illustration of the reproduction process
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Reproduction through products of Gaussians:
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Model parameters estimation with expectation-maximization (EM):
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Comparison with parametric hidden Markov model

Standard PGMM Proposed formulation of PGMM

~

M = Z: [9 1]Ta 2 = Eg

(covariance matrices are shared)

L _ by T
pn, =AZ;+b, X, =AZ An,j
(covariance matrices are parameterized)

[A.D. WILSON 4~o A.F. BOBICK, “PARAMETRIC HIDDEN MARKOV MODELS FOR GESTURE RECOGNITION,
IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 21:9, 1999]

COMAN compliant humanoid

Joints used for
- skill learning
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Joint DOF \\\ Joints used for
Neck 2 | stabilization
Shoulder 3 / \\‘/

Elbow 1 ;‘ |

Waist 3 E E

Hip 3 ‘\\ ’f

Knee 1 \ ,’,

Ankle 2 /

Total 25

* The arms are controlled with an admittance controller to let the user
physically interact with the robot by grasping and moving its arms.

* The legs and torso are controlled to let the robot stand by reacting
to perturbations with a stabilization control scheme exploiting the
intrinsic and controlled compliance of the robot.

[Z. L1, B. VANDERBORGHT, N.G. TSAGARAKIS, L. COLASANTO 4vp D.G. CALDWELL, ""STABILIZATION FOR THE
COMPLIANT HUMANOID ROBOT COMAN EXPLOITING INTRINSIC AND CONTROLLED COMPLIANCE", ICRA’2012]

Candidate frames of reference

Right hand control Left hand control

Optitrack system

xRobot frame 0'
K

Hand frame

—

Object frame

* A set of candidate frames of reference is predefined, remaining
valid for a wide range of tasks (e.g., hands relevant for most
manipulation skills). The role of the robot is to autonomously figure
out which frames of reference matter along the task, and in which
way the movement should be modulated with respect to these
frames.

 Consistent demonstrations will result in stronger springs, while
irrelevant connections will vanish.

Experimental results of bimanual skills learning
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* Hands clapping: The robot extracted that the important aspect of
the task is to keep the motion of the hands coordinated (hand
frames are extracted as the most important). The robot does not
react to the motion of the box (candidate frame irrelevant for the
task). If the user grasps one hand of the robot and moves it to a
new position, the robot reacts by adapting the movement of the
other hand.

* Tracking task: the robot learned to smoothly switch from one to two
hands reaching (depending on the position of the box used as
inputs of the GMR), and to bring back the unused hand to a natural
pose. When the box is at reachable distance by the two hands, the
relations hand-hand and hand-box are detected to be important for
the task (both object frame and hand frame matter).

» Sweeping task: The robot correctly extracted that the movement of
the two hands requires bimanual coordination, and that the task can
be generalized to different positions in the robot's frame, as long as
vertical constraints are satisfied.

Contact: sylvain.calinon@iit.it  Source codes:



