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Teaching a Humanoid Robot to Recognize and Reproduce Social Cues

Sylvain Calinon and Aude Billard*

Abstract� In a Robot Programming by Demonstration frame-
work, several demonstrations of a task are required to gen-
eralize and reproduce the task under different circumstances.
To teach a task to the robot, explicit pointers are required to
signal the start/end of a demonstration and to switch between
the learning/reproduction phases. Coordination of the learning
system can be achieved by adding social cues to the interaction
process. Here, we propose to use an imitation game to teach
a humanoid robot to recognize communicative gestures, which
then serve as social signals in a pointing-at-objects scenario. The
system is based on Hidden Markov Models (HMMs) and use
motion sensors to track the user's gestures.

I. INTRODUCTION

Robot Programming by Demonstration explores novel
means of teaching a robot new skills by showing directly
to the robot how to perform a task. Such mechanism pro-
vides user-friendly means for the end-user to re-program
the robot in a natural way, without any needs of program-
ming/engineering skills. In previous work, we developed
a probabilistic system capable of extracting the important
characteristics of a task from multiple trials [1]�[3]. The
system requires to produce different demonstrations of the
same task, while collecting human motion data using mo-
tion sensors and vision. Then, the robot generalizes over
the different demonstrations to reproduce the task under
different situations. Thus, the robot can learn new skills
in a fast and ef�cient way and reproduce them under new
circumstances without the intervention of the user. However,
explicit pointers are required to guide the scenario, i.e. to
signal the start/end of a demonstration and to switch between
the learning/reproduction phase. These explicit pointers are
currently performed by pressing keys on a keyboard. This
work aims at exploring possible solutions that could be used
for coordinating our learning system, i.e. to conduct a simple
interactive scenario between the user and the robot.

Humanoid robots are endowed with multiple sensors
recording highly-dimensional multimodal signals and acti-
vated by complex redundant manipulators. They are faced
with an incoming stream of data from which they must �gure
out what are relevant to a speci�c task. Imitation learning
has been applied as an ef�cient way to narrow this search
space and to estimate a control policy by observing the
user's performance at resolving the task [4]. By extracting
the redundancies and important characteristics of the task,
the learning problem becomes signi�cantly more tractable.
In our work, the salient aspects of the task are determined by
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Fig. 1. Experimental setup. The user is pointing at an object while the
robot is observing his gesture using motion sensors.

a probabilistic approach combining different Machine Learn-
ing tools [5]. These tools usually rely on many demonstra-
tions to infer the task structure. In contrast, the availability
of data is limited by the patience of the user. Here, we
are looking for solutions to enhance the speed convergence
of our statistical algorithms by exploiting additional social
cues extracted during the teaching process. Indeed, explicit
cues such as pointing gesture or gaze direction can guide
the teaching process, by narrowing the search space for the
selection of the important features to reproduce the task.
Finally, the social interaction also aims at entertaining the
user during the process (teaching the task), the interaction,
and the result (executing the task once taught), see e.g. [6].

Several robots have been developed to explore the use of
natural pointing and gazing cues to convey the intention of
the user [7]�[13]. In the majority of these works, the user's
gaze and pointing directions are extracted from cameras,
with classi�ers designed carefully to detect the occurrence
of these cues. The natural pointing behavior is characterized
by the gaze moving to the target �rst, and the arm/hand
pointing to the target in a second phase, while maintaining
the gaze to the target until the �nal arm/hand posture has
been reached. During a goal-directed pointing movement,
gazing preparation toward a new visual target is inhibited.
Indeed, experiments showed that subjects were not able to
initiate a saccade to a new target when the hand was reaching
for a �rst target, i.e. subjects postponed the initiation of
a new saccade until pointing was completed [14]. A well
coordinated motion pattern can thus be observed during goal-
directed arm movements, which can be encoded ef�ciently
in a Hidden Markov Model (HMM). In this paper, we are
interested in: 1) Testing a robust sensory solution based on
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motion sensors to track the gestures of the user with a low-
computational process, 2) Using HMM to learn automatically
the essential user-dependent features of different commu-
nicative cues through an imitation game, 3) Incorporating
the information extracted from these social cues to other
statistical learning methods.

II. EXPERIMENTAL SETUP

A. Experimental scenario
The experimental setup and teaching scenario of the

experiment are presented in Fig. 1 and 2, where the user
brings the robot's attention to different objects on a table.
During a �rst phase of the interaction, the user imitates
the robot's behaviors, building a representation of the cor-
respondence between its gestures and the user's gestures.
The robot produces a gesture and observes the correspond-
ing user's gesture. During a �xed time interval ∆t, joint
angles trajectories are collected from the motion sensors.
The imitation game stops when the different gestures have
been collected. During the second phase, the human uses
this common understanding of basic behaviors to bring the
robot's attention to locations of relevant objects. At each
time step t, the signals collected during the time interval
{t − ∆t, t} are compared to the different gesture models.
When a pointing gesture is detected, information concerning
gazing and pointing directions are collected until detection of
a turn-yielding cue. At this time, the robot points at the object
with highest probability and request an evaluation from the
user. By shaking or nodding the head, the user can then point
again at the object to clarify his/her selection or �nish the
scenario.

A preliminary calibration phase is performed of�ine by
a user pointing at the corners of the table and at the
different objects placed on this table, in order to initialize
their position. The robot is then taught through kinesthetic
learning how to point at the objects, and how to perform
different communicative gestures. The robot is then provided
with a database of gestures, but at the beginning of the
scenario, it can not recognize any gesture and starts with
only few a-priori on the communicative gestures (only a
maximum time interval is de�ned). The robot learns the
relevant features characterizing the different gestures through
an imitation game played with the intervening user. Each
person can then provide his/her own version of the gesture,
that can have different characteristics than the one performed
by the robot.

B. Motion sensors
In [15], we explored different means of conducting an

interaction between a human user and a humanoid robot
using speech and vision. Although these modalities are im-
portant a-priori, they require heavy computation and may be
technically cumbersome. Expectations about these systems
are often overestimated when compared to the human ability
to process visual and vocal information, which can lead
to dissatisfactory results considering the computer resource
involved. In [5], we explored the use of motion sensors

attached to the body of the demonstrator to convey infor-
mation about human body gesture. Although these sensors
are not directly related to human-like sensory abilities, they
measure robust information about body posture, and can be
used easily in different environment, independently of the
sound, lighting and occlusion conditions. The main drawback
is that these sensors must be attached to the body of the
demonstrator1.

In this work, we explore the use of x-sens motion sensors
to process communicative gestures and to record human
motion data for learning purpose. Gestures are recorded by 5
x-sens motion sensors attached to the torso, right upper-arm,
right lower-arm, right hand and on the back of the head.
Each sensor provides the 3D absolute orientation of each
segment, by integrating the 3D rate-of-turn, acceleration and
earth-magnetic �eld, at a rate of 100Hz with a precision of
1.5 degrees. A rotation matrix is de�ned as the orientation
of a distal limb segment expressed in the frame of reference
of its proximal limb segment. The kinematics motion of the
different joints can then be computed by decomposing the
rotation matrix into joint angles. Thus, 8 joint angles are
recorded, corresponding to the degrees of freedom (DOFs)
of our robot (1 DOF for the torso, 2 DOFs for the head, 3
DOFs for the shoulder and 2 DOFs for the elbow).

C. Gesture recognition

Communicative gestures are characterized by cultural and
personal differences. Turn-taking and attention mechanisms
can present subtle differences from one individual to an-
other. Previous attempts at parameterizing manually the
characteristics of the different communicative cues showed
that the solutions require �ne tuning and are often user-
dependent. Here, we suggest to learn automatically these
parameters through an imitation game, using Hidden Markov
Models (HMMs). The robot can then robustly extract the
characteristics of different head/arm gestures, and use these
characteristics for recognition purpose, see e.g. [17], [18].

Although pointing and gazing cues are often related to
static poses, useful information is contained in the estab-
lishment of these poses. It is supported by the literature
on human development indicating that infants imitate facial
expressions when the adult adopts the expression, but do not
imitate when this expression is presented statically. Thus, the
movement preceding a stable expression is a clue used by
infants to notice a facial expression that is worth imitating
[19]. Encoding of the temporal information is performed
robustly by HMMs and allows to recognize a gesture even in
presence of non-linear temporal distortion. The correlations
between the different signals, along the motion, are also
learned automatically by HMMs. It is relevant for pointing
gesture because of the coupling between the gaze and the
arm motion, see e.g. [20].



Fig. 2. Experimental scenario. First line: The user gazes at the robot to attract its attention (turn-taking cue). Then, he looks and points at an object in
the environment. The robot follows his/her gaze, and observes the pointed object. The user gazes at the robot again (turn-yielding cue). Second line: The
robot takes its turn, gazes and points at an object, while the user looks at the selected object. The robot gazes at the user again to request an evaluation
of its selection (turn-requesting cue). Finally the user signals to the robot whether the correct object has been selected by nodding/shaking his/her head.

Fig. 3. Communicative gestures used by the robot (mutual gaze, turn-taking
signal, object selection and request for clari�cation).

D. Humanoid robot
The experiments are conducted with a Fujitsu HOAP-2

humanoid robot with 25 DOFs, of which only 11 DOFs are
used (2×4 DOFs for the arms, 1 DOF for the torso, 2 DOFs
for the head). The remaining DOFs of the legs are set to a
constant position, so as to support the robot in an upright
posture, facing a table. In the experiments reported here, the
robot is previously taught gestures through kinesthetics, i.e.
by the demonstrator moving its arms and head. To achieve
this, the robot's motors are set in a passive mode, whereby
each limb can be moved by the human demonstrator. The
kinematics of each joint are recorded at a rate of 1000Hz.
The robot is thus able to perform several communicative
behaviors, see Fig. 3.

III. DATA PROCESSING

A. Hidden Markov Models
To avoid making assumptions on the spatio-temporal vari-

ability of the dataset, a fully-connected continuous HMM
with full covariance matrix describing the output variables
distribution is used2. Using such a model requires the es-
timation of a large set of parameters, which is optimally
achieved when the dataset is large. In a Programming by
Demonstration framework, the user should not have to pro-
duce more than a few demonstrations. This means that the
set of parameters to learn is often quite large compared to
the amount of training data. In the experiments presented
here, we let the user choose the number of demonstrations
that he wants to provide. If this number is below 5 (which is
often the case), additional examples are generated and added

1Note that similar requirements also appear when using head-mounted
microphone or visual markers, and that the recent development of clothes
encapsulating sensors could lower this constraint, see e.g. [16].

2People unfamiliar with HMM should refer to [21]

to the training set, by adding Gaussian noise to the provided
samples. Thus, even with a single trial, the system is still
able to build a rough generalization of the gesture (i.e. by
allowing a �xed variation on the data).

Expectation-Maximization (EM) algorithm is used to es-
timate the HMM parameters. It starts from initial estimates,
and converges to the nearest local maximum of the likelihood
function. Thus, initialization highly affects the model perfor-
mance. To better estimate the state distribution of the HMM,
we perform �rst a rough clustering of the data using k-means,
as in [3]. Next, we estimate a Gaussian Mixture Model
(GMM) by EM, using the k-means clusters at initialization.
Finally, the dynamics, i.e. transitions across the states, are
encoded in a HMM created with the GMM state distribution.

A dataset of N data of dimensionality D, X = {xj}N
j=1

with xj ∈ RD, is modeled by a Gaussian mixture of K-
components:

p(xj) =
K∑

k=1

πk N (xj ; µk, Σk)

where πk ∈ R is the prior probability and N (xj ; µk,Σk) is
the D-dimensional Gaussian density of component k, with
µk ∈ RD and Σk ∈ RD×D the mean and covariance matrix.

To determine the number of states in a HMM, heuristic
methods are often used, sometimes not adequately tuned for
HMM. In our approach, model selection is performed in the
GMM initialization phase. Multiple GMMs are estimated,
the best model is selected, and a single HMM estimation
is performed. Bayesian Information Criterion (BIC) [22] is
used to select the optimal number of components K:

SBIC = −L+
n

2
log(N)

where L is the log-likelihood of the model, n is the number
of parameters required for a mixture of K components, i.e.
n = (K − 1) + K

(
D + 1

2D(D + 1)
)
. N is the number

of D-dimensional datapoints. The �rst term of the equation
measures how well the model �ts the data, while the second
term is a penalty factor that aims at keeping the total number
of parameters low. In our experiments, as the gestures are
quite simple, we compute a set of candidate GMMs with up
to 5 states and keep the model with the minimum score (2
components are found for most gestures).
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Fig. 4. Extraction of the gaze direction. The table and the 3 objects
are represented with dotted lines and circles. The ellipse represents the
intersection of the vision cone and the plane de�ning the table. O0x0y0z0,
O1x1y1z1, O2x2y2z2, O3x3y3z3 and O4x4y4z4 are respectively the
world, neck, gaze and table frames of reference.

Similarly to GMM, HMM uses a mixture of Gaussians to
describe the distribution of the data, but it also encapsulate
the transitions probabilities between the Gaussians. It offers,
thus, a way of describing probabilistically the temporal
variations of the data. Let {Π, A, B} be, respectively, the
initial state distribution, the transition probabilities between
the states and the output distribution. {Π, A} are computed
by Baum-Welch algorithm, and B = {µk, Σk}K

k=1 are the
distributions previously found by GMM.

Once trained, the model can recognize gestures by es-
timating the likelihood that the observed data could have
been generated by the model. An absolute threshold and a
relative threshold (difference between the �rst two highest
log-likelihoods) are used to determine whether a gesture is
recognized or not. The aim of the absolute threshold is to
select gestures sharing enough similarities with the model,
while the aim of the relative threshold is to select a gesture
belonging to a model only if the gesture is suf�ciently distant
from the other models.
B. Extracting pointing and gazing information

Pointing and gazing directions are modeled as cones with
vertex point and directions de�ned by the hand/gaze frames
of reference, see Fig. 4. The intersections of the cones with
the table provide information about the object selected by the
user, using a probabilistic approach (see the full description
of the algorithm in Appendix).

IV. EXPERIMENTAL RESULTS

20 volunteers (mainly students with a mean age of 20)
were contacted to test the system. The aims of this prelimi-
nary study were: 1) To evaluate the recognition capabilities
of the system when faced with untrained user, 2) To com-
pare the ef�ciency and conviviality of the teaching process
presented here with the one used in our previous work,
i.e. to see how much perceptive and active communicative
behaviors present advantages in a Programming by Demon-
stration scenario. Each person was instructed to wear the

TABLE I
RECOGNITION RESULTS FOR THE TWO TEACHING CONDITIONS.

S ,Es ,Ei ,Ed AND R STAND FOR THE NUMBER OF SAMPLES,
SUBSTITUTION, INSERTION, DELETION ERRORS, AND RECOGNITION

RATE.

CONDITION A (NATURAL GESTURES)
S Es Ei Ed R

Gazing and pointing 26 0 0 3 88%
Mutual gaze 26 0 3 1 84%
Head nods 26 0 1 0 96%
Head shakes 26 0 1 0 96%
Object selection 26 3 0 0 88%

CONDITION B (KEYBOARD)
S Es Ei Ed R

Gazing and pointing 26 4 0 0 84%
Mutual gaze 26 4 0 0 84%
Head nods 26 0 0 0 100%
Head shakes 26 0 0 0 100%
Object selection 26 4 0 0 84%

Attentive Friendly Appropriate Efficient Enjoyable Natural Easy

1

2

3
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Fig. 5. Results of the questionnaire. For the different attributes, the mean
and standard deviation are represented in black for experiment A (natural
condition), and in grey for experiment B (keyboard condition).

motion sensors and to proceed along the teaching scenario
depicted in Fig. 2, under two different teaching conditions
(order chosen randomly): A) Natural condition: The robot
recognizes the natural turn-yielding cues, turn-taking cues
and yes/no answers of the user, and produces communicative
gestures as feedback (both perceptive/active behaviors). B)
Keyboard condition: The participants use keys to signal turn-
yielding cues, turn-taking cues and yes/no answers, with
the feedback displayed on a screen (no perceptive/active
behavior).

The participants were �lmed during the instruction and
interaction with the robot. Recognition results using the two
teaching conditions are reported in Table I. Of course, the
natural teaching condition leads to insertion/deletion errors
that do not happen when using a keyboard, i.e. gestures
are sometimes recognized without the intention of the user
(insertion) or nothing is recognized when the user produces
the gesture (deletion). Substitution errors are mainly biased
by the production of social cues by the robot to indicate
the steps in the scenario. In the natural teaching condition,
the robot looks at the table or at the user to signal turn-
taking or to request an evaluation, which helps the user
produce the required gesture at the right moment during
the interaction process, still looking at the table. Substitution
errors in condition B are due to this lack of social feedback,



i.e. the user can not look simultaneously at the table and at
the screen, and loses track of the interaction more easily, i.e.
does not produce coherent signals for turn-yielding and joint
attention.

After the interaction, questionnaires were given to the
participants to rank the interaction process with a 5 point
scale (5=very much, 4=somewhat, 3=average, 2=a little,
1=not at all): 1) Did the robot look attentive? 2) Did the
robot look friendly? 3) Did the robot have appropriate
reactions? 4) Did the interaction appear ef�cient? 5) Did the
interaction appear enjoyable? 6) Did the interaction appear
natural? 7) Was the teaching process easy?

Results of the questionnaire are presented in Fig. 5. For
all attributes, the scores for the natural condition are higher.
A signi�cant difference (ANOVA, p < 0.01, F1,38 > 7.2)
between the two conditions are detected for attributes atten-
tive, friendly, enjoyable, and natural (attributes 1,2,5,6). For
attributes appropriate, ef�cient, and easy (attributes 3,4,7),
there is no evidence of a difference between the two teaching
conditions, which is comforting since the natural teaching
condition is less robust, see Table I.

V. DISCUSSION

The questionnaire and the additional remarks noted by the
participants showed that adding social cues to our previous
Programming by Demonstration framework can present ad-
vantages, even if the teaching process is less robust and lasts
longer than the use of a keyboard. The process did not seem
more ef�cient nor easier, but the social factor increased the
mutual attention and enjoyment felt during the interaction
with the robot. In the natural teaching condition, a few users
had signaled to the robot that it committed a mistake even
if it was not the case, in order to play again with the robot.
This never happened in teaching condition B, where the use
of a keyboard seemed often boring to the user. In condition
B, several participants compared the keys actions as a data
collecting process (start/stop recording) instead of the social
cues depicted by these keys, even if they were not instructed
that the robot was collecting data. In the natural teaching
condition, the users did not notice that the turn-taking and
turn-yielding gestures were aimed at starting/stopping the
data collecting process.

In the natural teaching condition, substitution errors for
the gazing and pointing motion and for the joint attention
motion were mainly due to the high similarity of head
poses. As the user was close to the robot, the joint angles
collected when looking at the table and when looking at the
robot differed only of a few degrees. Indeed, extracting gaze
information by measuring only the orientation of the head
is a strong assumption in our system. Head orientation can
not be considered directly as a social cue, but it affects gaze
following, i.e. the head is naturally turned towards a goal
when there is no other constraint.

VI. CONCLUSION

In this paper, we presented a gesture recognition system
using motion sensors, we described a method to extract

pointing and gazing information in a probabilistic manner,
and we suggested the use of an imitation game to make the
teaching process more enjoyable. We showed that incorpo-
rating basic social behaviors to our existing Programming by
Demonstration framework produced life-like behavior which
was more enjoyable and intuitive for an untrained user.
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APPENDIX
ALGORITHMS FOR COMPUTING THE DIRECTION OF THE

USER'S HEAD AND HAND

The extraction of the pointing and gazing direction are
conducted in a similar way. Here, we describe the process
for the gaze information. The gaze is modeled by a cone
of vision, de�ned by vertex point t1 = O0O3, direction
d1 = O3x3 and half-cone angle θ, see Fig. 4. The pointing
direction is de�ned in a similar way by using the hand frame
of reference. A point x on the cone satisfy the condition:

d1

(
x− t1
|x− t1|

)
= cos(θ)

which can be re-written in a matrix form as:
(x− t1)T M(x− t1) = 0 (1)

with M = d1d
T
1 − (cos(θ))2 I

where I is the identity matrix.
The table is de�ned by a plane with origin t2 = O0O4,

�rst direction d21 = O4y4 and second direction d22 = O4z4,
see Fig. 4. A point x on the plane must satisfy the condition:

x = t2 + x1 d21 + x2 d22 (2)
By combining (1) and (2), we �nd the intersection of the

cone and the plane, which is de�ned by:
c1 x2

1 + 2c2 x1x2 + c3 x2
2 + 2c4 x1 + 2c5 x2 + c6 = 0

with t12 = t2 − t1, c1 = dT
21Md21, c2 = dT

21Md22, c3 =
dT
22Md22, c4 = tT12Md21, c5 = tT12Md22 and c6 = tT12Mt12.
It de�nes a quadratic equation representing a conic, that

can be re-written in an homogenous matrix form:
xT Cx = 0 with x = (x1, x2, 1)T (3)

and C =




c1 c2 c4

c2 c3 c5

c4 c5 c6




=
(

CR Ct

CT
t Cδ

)
∈

(
R2×2 R1×2

R2×1 R1×1

)

The intersection of a cone and a plane can form either an
ellipse, parabola or hyperbola. We are interested in elliptical
intersection, which happens iff:

|C| 6= 0 ,

∣∣∣∣
(

c1 c2

c2 c3

)∣∣∣∣ > 0 ,
|C|

c1 + c3
< 0



In such situation, we determine the canonical form of
the conic Cc by transforming the conic matrix C through a
rotation R and a translation t, i.e. by applying an Euclidean
transformation H:

Cc =




Cc1 0 0
0 Cc2 0
0 0 Cc3


 = HT CH

with H =
(

R t
0T 1

)
(4)

Cc de�nes the canonical conic Cc1x
2
c1+Cc2x

2
c2+Cc3 = 0,

that can be re-written as an ellipse equation:
x2

c1

a2
+

x2
c2

b2
= 1 (5)

with a =
√
−Cc3

Cc1
, b =

√
−Cc3

Cc2

To �nd the homogenous transformation H , the �rst step
is to diagonalize CR to �nd the rotation R aligning the
conic to the canonical frame. This is achieved by Principal
Component Analysis, i.e by calculation of the eigenvalues of
CR:

CR = RΛRT (6)

The translation t centering the ellipse to the canonical
frame is calculated using (3), (4) and (6):

t = −RΛ−1RT Ct

Using (5), the ellipse in the canonical form can be repre-
sented as a covariance matrix:

Σc =
(

a2 0
0 b2

)

Finally, the conic with an elliptical form can be
represented as a 2D Gaussian distribution {µ, Σ} =
{t, R Σc RT }. With that representation, we de�ne the
probabilistic measure of interest (level of saliency) for an
object at position xo by computing the Gaussian density:

N (xo; µ, Σ) =
1√

(2π)2|Σ| e−
1
2 ((xo−µ)T Σ−1(xo−µ)) (7)

By taking the logarithm of (7) and meaning over all the
collected samples, the object with highest log-likelihood is
selected.
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