
Whole Body Model Predictive Control with a Memory of Motion:
Experiments on a Torque-Controlled Talos

Ewen Dantec a,b,*, Rohan Budhiraja a, Adria Roig c, Teguh Lembono d, Guilhem Saurel a, Olivier Stasse a,b,
Pierre Fernbach e, Steve Tonneau f, Sethu Vijayakumar f, Sylvain Calinon d, Michel Taix a, Nicolas Mansard a,b

Abstract— This paper presents the first successful experiment
implementing whole-body model predictive control with state
feedback on a torque-control humanoid robot. We demonstrate
that our control scheme is able to do whole-body target
tracking, control the balance in front of strong external
perturbations and avoid collision with an external object. The
key elements for this success are threefold. First, optimal
control over a receding horizon is implemented with Crocoddyl,
an optimal control library based on differential dynamics
programming, providing state-feedback control in less than
10 ms. Second, a warm start strategy based on memory
of motion has been implemented to overcome the sensitivity
of the optimal control solver to initial conditions. Finally,
the optimal trajectories are executed by a low-level torque
controller, feedbacking on direct torque measurement at high
frequency. This paper provides the details of the method, along
with analytical benchmarks with the real humanoid robot Talos.

A video of the experiment is available at
https://peertube.laas.fr/videos/watch/cbc25927-337c-
4635-a1bc-153b9aeb4135

I. INTRODUCTION

Model predictive control (MPC) [1] has become a widely
used tool in the robotics community because of its ability to
handle non-linearity, constraints and system dynamics [2].
MPC formulation has been implemented for a great number
of robotics and industrial applications: torque control of
4-legged robot [3], path planning for autonomous vehicle
[4], quadrotor control [5] or industrial processes [6].

MPC typically involves the prediction of the future robot
behaviour over a receding finite-time horizon, based on a
mathematical model of the system dynamics [7], [8]. At
each control cycle, the state of the system is estimated and a
new optimal control problem (OCP) is solved, starting from
the state estimate, for a finite horizon in the future shifted
from one sampling period. This OCP typically features a
non-linear cost function describing the tasks to achieve and
the constraints to satisfy. Application of MPC in robotics
has yet been limited by computational limits, as complexity
scales at least with the cube of the system dimension.
Moreover, non-linearities in the robot model make the OCP
non-convex, which first increases the computational load but

a LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
b Artificial and Natural Intelligence Toulouse Institute, France
c PAL Robotics, Barcelona, Spain
d Idiap Research Institute, Switzerland
e TOWARD, Toulouse, France
f IPAB, The University of Edinburgh, Scotland
*corresponding author: edantec@laas.fr
This work is supported by the European project MEMMO (GA-780684)

and the FLAG-ERA JTC 2016 RobCom++ project.

Fig. 1: The humanoid robot Talos 1 performing reactive
collision avoidance while following a moving target, driven
by a MPC at 100 Hz.

may also trap the MPC in improper local minimum [9].
MPC has thus been mostly applied to systems with small
numbers of degrees of freedom [10], [11], [12] or to reduced
dynamics [13], [14]. First attempts in the direction of
controlling the robot from an OCP have led to hierarchical
control architectures where an OCP solver is used at low
frequency to replan the trajectory which is then tracked by
a dedicated controller [10].

Several challenges have to be tackled in order to use
a whole-body MPC directly as the main robot controller.
Independently from the particular OCP formulation, we
first need an efficient numerical optimal control algorithm
able to work at high frequency [15], [16], [17]. Direct
transcription methods [18] [19], in which both state and
control are treated as variables, are common to solve
such problem. Others transcriptions of the OCP are now
considered to be more suitable to MPC, in particular shooting
methods like Differential Dynamics Programming (DDP)
[20], [21]. Efficient solvers based on DDP have already been
implemented [22], [23] and are able to deal with non linear
costs, constraints and dynamics.

A second challenge is to reduce the number of iterations
needed by the solver to converge. This can be done either by
formulating the DDP as a more convex problem [24], or by
providing to the solver a good initial guess. A conventional

mailto:edantec@laas.fr


heuristic in non-linear MPC consists in building such a warm
start from the solution computed at the previous control
cycle [25]. This is a good heuristic but may fail in front
of sudden disturbances. A more generic solution has been
proposed by learning offline some approximation of the
optimal behavior. In [26] such an initialization is learned by
reinforcement learning on simple systems. In [27], several
regression algorithms for learning a good warm start from
some pre-computed database of motions are compared in
the context of locomotion. We refer here to such a learned
initialization as memory of motion.

Finally, a third challenge is to decide at which level the
MPC should be connected to the lower servo controller of
the robot. In our opinion, it should be connected as low as
possible, yet this implies that the MPC has to be evaluated
at a compatible high frequency. In particular, if the MPC
should directly work with a low-level torque controller [28],
[29], it implies it has to be updated every 10 ms (to maintain
a torque control frequency of 100 Hz at least).

In this paper, we propose a transversal answer to these
three challenges and report the first complete demonstration
of a whole-body MPC on the torque-controlled humanoid
robot TALOS [30]. We performed a reactive manipulation
task involving 28 degrees of freedom, contacts, balance and
collision avoidance over a frequency rate of 100 Hz. To
this end, we relied on several key components: first, an
efficient OCP solver, tailored for robot dynamics, enables us
to evaluate the MPC at 100 Hz. Then, a memory of motion
is used in parallel to predict a good warm start and helps
the solver to handle non-convexities. The robot servo control
implements a torque control running at 2.3 kHz and is able to
robustly apply the control references produced by the MPC.

The paper is structured as follows. Section II discusses the
basic formulation of optimal control for whole body motion
with contact. Section III explains the construction of the
memory of motion and how it improves the convergence
of DDP. The implementation details are given in Section IV.
Section V presents the experimental results on the humanoid
robot TALOS.

II. WHOLE BODY OPTIMAL CONTROL WITH CONTACT

A. Contact-Constrained Rigid body dynamics

Given a rigid body system with nj joints and P
rigid contacts with the environment, the dynamics of this
constrained multi-body system is described in [15] and [31]
by: [

M J>c
Jc 0

] [
q̈
−λ

]
=

[
S>τ − b
−J̇cq̇

]
(1)

where M is the joint-space inertia matrix, b the generalized
non-linear forces, q ∈ SE(3)×Rnj the configuration vector
which accounts for the nj actuated joints position and the
free-flyer joint, q̇ the velocity vector laying in the tangent
space of SE(3) × Rnj , q̈ the acceleration vector, S the
motion freedom matrix selecting the actuated joints, τ the
joint torques, λ = [λ1 · · ·λP ]

T and Jc = [J1 · · ·JP ]
T the

concatenation of vectors of contact forces and concatenation
of contact Jacobian matrices.

In this context, forces λ abstractly represents either 3D
forces for punctual contacts or spatial 6D forces for planar
contacts, expressed in their respective contact frame. They
have to respect the contact model described by the cone Kp:

∀p = 0..P, λp ∈ Kp. (2)

We then classically consider the state of the robot to be x =
(q, q̇) and the control to be u = τ . In [31], we showed
that with this formulation, forces become consequences of
the state (q, q̇) and the control τ , and thus our dynamics
becomes independent from these variables. Consequently, (1)
leads to the following force-free partial derivative equation:

ẋ =

[
q̇
q̈

]
= f(x,u), (3)

where q̈ is deduced from (q, q̇) and τ using (1).

B. Optimal control for legged robots

Based on (3), we can formulate the OCP as:

min
x,u

T−1∑
t=0

`(x(t),u(t), t)dt+ `T (x(T ))

s.t. x(0) = f0

∀t ∈ [0, T ], ẋ(t) = f(x(t),u(t), t)

(4)

where T is the horizon time, over which we want to make
our prediction; ` and `T are the running and terminal cost
functions, used to define the tasks the robot has to perform
(goal tracking, center of mass tracking, etc.) and to regularize
state and control trajectories; and f0 is the initial state.
An optimal control problem for locomotion often contains
admissibility constraints on state and control. However, OCP
with constraints are difficult (and slower) to solve. Thus, we
formulate these constraints as penalties of various forms in
our cost function, and describe them in Section IV.

OCP (4) should be transcripted into a nonlinear program in
order to be solved. We used a multiple-shooting formulation,
as it combines efficiency of shooting formulations [32] with
numerical stability [33].

C. Solving the OCP with DDP

DDP provides a fast and efficient way to numerically solve
a discretized transcription of (4). As we used a multiple
shooting transcription, we quickly describe here the classical
DDP and how it is modified to handle it.

At each solver iteration the OCP is discretized with time
step δt = T

N and then linearized around an initial discretized
trajectory (xt,ut),∀t = {0, · · · , N −1}. This problem then



becomes:

min
∆x,∆u

(N−1∑
t=0

1

2

[
∆x>,∆u>

] [Lxx Lxu

Lux Luu

] [
∆x
∆u

]
+
[
Lx Lu

] [∆x
∆u

]
+

1

2
∆xTLxx∆xT +Lx∆xT

)
s.t. ∆x0 = f0

∀t = {0, · · · , N − 1},
∆xt+1 = Fx∆xt + Fu∆ut + ft+1

(5)

where Lx,Lu and Lxx,Lxu,Luu are the gradients and
Hessians of the cost function (indices t have been dropped
for simplicity). Similarly, Fx and Fu are the Jacobians of the
dynamics computed at each (xt,ut). We write ft the drift
in dynamics, which represents the change in state when the
control is 0. Note that ft is typically omitted in DDP, but is
introduced here to handle our multiple shooting transcription.

DDP solves (5) by using Bellman’s principle [34], which
naturally exploits the sparsity of the Markovian nature of
the dynamics constraints. Eventually, each optimal step in a
DDP iteration can be produced by an iterative scheme that
computes the descent direction in a backward pass (going
from N to 0), and then finds the optimal step along this
direction in a forward pass (going from 0 to N ). While
this approach requires that the initial point of linearization
is feasible, a multiple-shooting variant by our team, namely
FDDP [35], allows us to relax this requirement and start from
an infeasible trajectory. For more details, readers are referred
to [36] [37] for DDP and [35] for FDDP schemes.

III. CREATING THE MEMORY OF MOTION

A. Building the memory dataset

As the transcription of (4) is non-convex for complex
robots, the behavior of the OCP solver cannot be guaranteed:
it may get stuck in a poor local minima if the initialization
is bad. The MPC is then augmented with an external
process to infer candidate initialization. The problem of
inferring the warm start is formulated as a regression problem
g(θ) = y where the input task consists of the current
robot state and goal location, and the output y consists
of the corresponding state and control trajectories. Such a
memory of motion [27], [38] has been shown to improve the
convergence of DDP significantly. It relies on a dataset of
optimal trajectories built off-line and encoded by machine
learning.

We build the dataset in two steps: the first step uses
a sampling-based planner to create an initial dataset of
trajectories, ensuring that a solution is obtained if it
exists; in the second step we optimize the first dataset
using a local optimizer. We used Constrained Bi-directional
Rapidly-Exploring Random Tree (CBIRRT) [39], [40] for
the first step and the same OCP problems than at run-time,
solved by DDP for second step. The dataset is stored in the
format {θi,yi},∀i ∈ {1, . . . , Nm} where Nm = 1000.

Given a new task θ̂, we use nearest neighbor (NN)
algorithm to compute the closest θi to θ̂ in the dataset

Fig. 2: Comparison of convergence speed of the OCP solver
(left) with and (right) without warm-start, for a grid sampling
of the target position, while the initial configuration is
always the same. The metric is the number of iterations to
convergence, with an upper limit of 100 iterations. The arm
initial position is on the bottom left corner of each picture.
The obstacle (a pole) is highlighted in yellow.

and output the corresponding yi as the warm start. We
use the Euclidean metric and the efficient K-D tree as data
structure [41] for the NN algorithm.

Gaussian Process Regression (GPR) was shown in [27]
to perform much better than NN in producing DDP warm
starts for unimodal tasks. Yet the task considered in this work
is multimodal, i.e., there are several qualitatively different
trajectories to achieve one task. For such problem, GPR
performs poorly as observed in [38], hence we choose NN
in this work instead.

B. Evaluating the impact of memory warm-start

In order to understand how the initialization improves the
behavior of the DDP solver in the case of a non-convex
problem, let us consider an end-effector reaching task
problem involving an obstacle (see 1). In simulation, this
OCP has been solved several hundred times with slightly
different target positions: while the x position of the targets
remains at coordinate 0.07, the y and z positions are bound
to go respectively from 0.2 to 0.5 and from -0.2 to 0.2 (in
the robot frame). The obstacle is a 2 cm diameter vertical
pole set at coordinate (x = 0.6, y = 0.3).

This set of problems is solved in two ways: first with
a memory warm-start corresponding to the current target
position, secondly with a static initialization identical for all
target positions. The number of iterations until convergence
has been chosen as a metric to compare the behavior of
the solver with and without memory. The results of this
experiment is presented in Fig. 2.

As the arm starts from the bottom left corner, the left target
configurations are easier to reach. When the target is located
at the right side of the obstacle, the solver barely finds a
path around it in less than 100 iterations, meaning that it
cannot find the optimal solution of the non-convex problem
in reasonable time. So when the target is on the wrong side,
the MPC absolutely needs the memory initialization. Even
when the target is on the good side, the memory is beneficial.

At run time, a good initialization is frequently inferred
from the memory, then refined (as examplified by Fig. 2))



and finally provided to the MPC as detailed in the following
section.

IV. MPC IMPLEMENTATION WITH MEMORY OF MOTION

A. An OCP for reaching, balancing and avoiding collisions

The OCP is implemented with a running cost composed
of the sum of five terms: squared distance to the target,
penalization of the CoM drift, penalization enforcing joints
limits, state and control regularization. A last term is added
to take into account the environment collisions: given a pair
of collision between bodies A and B, we write dAB,t as
the minimal distance between these two objects at time t.
Let us define dmin as distance threshold for the activation of
the cost, and ccol, a weight for the cost. Then the collision
penalization in the cost function is written as:

lcol,t =

{
ccol(dAB(t)− dmin)

2 if dAB(t) < dmin

0 otherwise
(6)

where the distance dAB(t) is computed from the two body
placements using standard proximity algorithm [40]. In
order to simplify the problem, we only consider collision
between the end effector (left arm of the robot) and a fixed
obstacle in the environment (see Fig. 1), while modeling
both the arm and the obstacle by dedicated capsules.

One could notice that we do not implement friction cone
constraints as described in equation (2). This is possible by
adding a barrier cost with high weight, but it has not been
done in this paper because the performed tasks don’t require
it, and the robot is able to keep its balance without it.

B. Warm start using temporal coherence and memory

Every 10 ms the OCP is updated by setting the initial
state to the latest estimated state xm, and by updating
some environment parameters (e.g. position of the target to
reach). In order to produce a desired control in less than
10 ms, only one DDP iteration is performed each time the
OCP is recomputed, so a warm-start close to the optimal
solution is needed. A first way to warm-start the solver
is to heuristically update the previous optimal trajectory
{(x∗0,x∗1, · · · ,x∗N ), (u∗0,u

∗
1, · · · ,u∗N−1)}. This trajectory is

shifted by one knot and xm is used as the initial state. The
resulting warm start follows [25]:{

xguess,uguess
}
=
{
(xm,x

∗
2, · · · ,x∗N ,x∗N ),

(u∗1,u
∗
2, · · · ,u∗N−1,u∗N−1)

}
.

(7)

This initialization is acceptable for simple problems like
reaching a target in a collision-free environment. Yet it can
only track the previous optimum if it is continuously moving
across time, not if it suddenly jumps e.g. because the target
has shifted too far away. We see clearly from Fig. 2 that it
becomes problematic when dealing with obstacles, since the
robot may get stuck in poor local minima despite the fact
that a better trajectory exists.

The memory of motion described in Sec. III is
implemented to give to the MPC a look-ahead and provide

Fig. 3: Diagram of the ROS implementation with all 3
nodes. (xm, targetpos) are the initial state and current target
position sent to the memory node; (x∗, τ∗) are the current
optimal state and control trajectories produced by the MPC;
(x∗m, τ

∗
m) are the warm start trajectories computed by the

memory of motion..

alternative trajectories when the previous warm-start strategy
is not sufficient. Given a target to reach, obstacle positions
and state estimate, the memory infers the corresponding state
and control trajectory and further refines this candidate by
several DDP iterations, using the same DDP solver as for
the MPC. In order to output a good refined warm start in a
reasonable amount of time (less than 0.1 s), we chose to limit
the refinement computation to 10 iterations. Once refined, the
cost of the warm start is compared against the cost of the
current MPC trajectory. The memory warm start is accepted
by the MPC if its cost is lower.

C. Low-level control

The optimal torques computed by the DDP are decoupled
for each joint and sent as reference to the low-level torque
control running at 2 kHz. This control is a PD+ that
reads the values from the torque sensors and uses an
observer to estimate the intrinsic dynamics of the joint
which are not considered in the model. The objective is to
compensate this unexpected dynamics such as the inertia of
the motor, the high friction produced by the high reductions
in the mechanical transmission or the inner flexibility of the
harmonic-drive, so that it behaves as an ideal joint.

D. ROS architecture

The implementation needs three parallel processes to run
simultaneously (see Fig. 3): the MPC, the memory and the
low-level torque control. We used one full CPU for each
process. ROS publisher-subscriber architecture is used to
build the communication framework between all running
processes to synchronize their different frequencies. Thus,
every ROS node uses the latest available data on the topics
it subscribes to, and publishes the output once computation
is done.



Fig. 4: Positions and torques for the 4 joints of the left arm
in whole body experiment.

V. EXPERIMENTAL RESULTS

A. Experimental setup

The experimental setup aims at answering two main
questions: can the OCP be solved in real time for non-convex
problems, typically path planning with obstacles problems?
And how does the memory help to solve non-convex
problems? In order to answer these questions, three different
experimental protocols were tested on our robot Talos, each
of them using the same version of the MPC algorithm.

B. Lower body squat in contact

First, we performed an experiment with only lower body
in contact: 12 joints are controlled in torque (legs only) and
the DDP cost function takes into account a state and control
regularization cost (weights 10−2 and 6× 10−3), a center of
mass regularization cost (weights 103) and a joint limit cost
(weights 103). The CoM target to track goes up and down
along the vertical axis, making the robot squat. We could
solve this problem in less than 10 ms using 100 shooting
nodes. The squat demonstration is shown in the companion
video.

C. Whole-body in contact

Secondly, we performed a goal tracking with whole-body
in contact experiment. In this setup, 22 joints are controlled
in torque (arms, legs and torso) and the DDP cost function
takes into account a state and control regularization cost
(weights 2 × 10−2 and 4 × 10−4), a center of mass
regularization cost (weights 102), a joint limit cost (weights
103) and a goal tracking cost (weights 15). The target to
track goes along a circle in front of the robot, near enough
to be reached. Since this problem is harder to solve, we use
only 50 shooting nodes in order to compute the solution in
less than 10 ms.

The tracking of the moving target was achieved with the
whole body model at 100 Hz. As shown in Fig. 5, the end
effector properly follows the target while the robot keeps
its balance. Low target tracking gains have been chosen on
purpose, in order to reach a compromise between a good

Fig. 5: Tracking of a moving target with the left arm end
effector in whole body experiment.

Fig. 6: Time computation of one DDP iteration for the whole
body experiment. Mean value is 9.1 ms. The visible spikes
are isolated surges in time computation that do not impact
the overall behaviour of the system.

tracking and a good balance: indeed, increasing the tracking
weight tends to produce stiffer and more brutal control,
which can push the robot out of balance.

In Fig. 4, the actual positions and desired torques sent to
the low level control by the MPC are displayed. Although
desired torques appear noisy (reflecting the noise in state
estimation), joint positions are rather smooth, which leads to
a clean movement on the robot.

In Fig. 6, the computation time needed to solve the online
DDP is displayed. Only some time spikes are at more
than 10 ms (because we have chosen to not embed the
MPC in a real-time operating system) and the mean value
remains below 10 ms. This mean value does not changed
significantly when external disturbances are applied, since
only one iteration of DDP is performed in any case. Even if
some outputs are late from time to time, this does not impact
the whole behavior of the robot as the low-level control
will simply maintain the last received desired torque while
waiting for a new entry.

While running the experiment, the robot was sometimes
faced with external perturbations that it handled well (see
video). The arms, the legs and the torso were pushed
firmly with a stick while the MPC robustly handled the
disturbances.



Fig. 7: Positions and torques for the obstacle experiment.

D. Collision avoidance with memory

Finally, we performed a goal tracking and collision
avoidance experiment. In this setup, 6 joints are controlled in
torque (left arm and torso) and the DDP cost function takes
into account a state and control regularization cost (weights
10−2 and 10−2), a joint limit cost (weights 103), a goal
tracking cost (weights 20) and a collision avoidance cost
(weights 104) involving one pair of collision between the
arm and a fixed obstacle in the environment. This time, the
target to track goes along a line parallel to the ground and
behind a 2 cm wide vertical pole which plays the role of an
obstacle (see Fig. 1).

In this setting, the collision-free tracking control was
achieved on the robot at a frequency of 100 Hz with 100
shooting nodes. Because this problem is harder to solve,
we let the DDP perform at most 5 iterations instead of
just one, in order to get better solutions. As can be seen
in Fig. 9, the mean time computation of the OCP is way
below 10 ms, implying that a working frequency of 200 Hz
may be possible to reach for this particular experiment. Near
the obstacle, the problem takes more than one iteration to
converge, as the robot needs to reach its target while avoiding
the obstacle. Additionally, the time taken by the memory
warm-start refinement rises significantly near the obstacle,
taking up to 0.1 second to produce an efficient warm-start.
As the computation is done in parallel to the MPC, increased
memory time simply implies that the MPC will remain stuck
for a while in a local minimum.

Fig. 8 shows how the robot avoids the obstacle by letting
its arm down and going up again. The obstacle (a 2 cm
diameter vertical pole) is put at coordinates (x = 0.6, y =
0.3). As shown in Fig. 7, the memory switch implies some
control discontinuity, corresponding to a warm-start which
is very dissimilar to the previous solution. The discontinuity
could be smoothed by extending the preview window or
by enforcing stronger continuity constraints on the torque
trajectory.

VI. CONCLUSION

In this paper, whole body MPC in real time has
been proved to be feasible at a frequency rate of

Fig. 8: Tracking of a linear moving target with the left arm
end-effector in obstacle experiment.

Fig. 9: Time computation of at most 5 DDP iterations for
the obstacle experiment. Mean value is 4.98 ms.

100 Hz. This MPC formulation is based on a DDP
implementation with augmented KKT dynamic which allows
to efficiently compute a future trajectory of 0.5 second
for a 22 degree of freedom robot model. Our two-step
implementation, beginning with an offline DDP computation
until convergence and followed by an online refinement over
one iteration, produces a proper stable torque control able to
reject external perturbations and to handle various tasks, from
center of mass tracking to posture regularization.

Additionally, this paper introduces a strategy to
incorporate an efficient DDP initialization scheme based
on a memory of motion to the MPC implementation. This
scheme has been successfully implemented on the robot to
solve non-convex problems at a 100 Hz frequency. Collision
avoidance in real time has been performed on a reduced
model for a reaching task. In simulation, we also observed
that the MPC without memory cannot pass the obstacle and
instead remains stranded at local optima, waiting for the
target to return: this shows how the memory warm start is
essential to solving non-convex problems in path planning.

This is the first time DDP is used to control a complete
humanoid with state feedback. This first study concentrated
on analysing the behavior of our controller, which resulted
in good performance. The proposed tasks remain simple
benchmarks, but they pave the road for more elaborated
tasks. Our next step is to control the locomotion of Talos
using the proposed approach.



REFERENCES

[1] J. Rawlings, D. Mayne, and M. Diehl, Model Predictive Control:
Theory, Computation and Design. Nob Hill Publishing, 2017.

[2] M. Huba, S. Skogestad, M. Fikar, M. Hovd, T. A. Johansen,
and B. Rohal-Ilkiv, “Selected topics on constrained and nonlinear
controls,” STU Bratislava – NTNU Trondheim, 2011.

[3] R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, “Feedback mpc for
torque-controlled legged robots,” IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2019.

[4] C. Liu, S. Lee, S. Varnhagen, and H. E. Tseng, “Path planning for
autonomous vehicles using model predictive control,” 2017 IEEE
Intelligent Vehicles Symposium (IV), 2017.

[5] K. Alexis, C. Papachristos, G. Nikolakopoulos, and A. Tzes, “Model
predictive quadrotor indoor position control,” 19th Mediterranean
Conference on Control Automation (MED), p. 1247–1252, 2011.

[6] E. Fernandez-Camacho and C. Bordons-Alba, Model Predictive
Control in the Process Industry. Springer, London, 1995.

[7] J. Rawlings, E. Meadows, and K. Muske, “Nonlinear model predictive
control: A tutorial and survey,” IFAC Advanced Control of Chemical
Processes, 1994.

[8] R. Findeisen and F. Allgöwer, “An introduction to nonlinear model
predictive control,” 21st Benelux Meeting on Systems and Control,
2020.

[9] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[10] M. Neunert, C. De Crousaz, F. Furrer, M. Kamel, F. Farshidian,
R. Siegwart, and J. Buchli, “Fast nonlinear model predictive control
for unified trajectory optimization and tracking,” in IEEE international
conference on robotics and automation (ICRA), 2016.

[11] M. Geisert and N. Mansard, “Trajectory generation for quadrotor based
systems using numerical optimal control,” in 2016 IEEE international
conference on robotics and automation (ICRA). IEEE, 2016, pp.
2958–2964.

[12] B. Houska and M. Diehl, “Robustness and stability optimization of
power generating kite systems in a periodic pumping mode,” in 2010
IEEE International Conference on Control Applications. IEEE, 2010,
pp. 2172–2177.

[13] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in 2003 IEEE International Conference
on Robotics and Automation (Cat. No. 03CH37422), vol. 2. IEEE,
2003, pp. 1620–1626.

[14] D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic
quadruped locomotion via whole-body impulse control and model
predictive control,” arXiv preprint arXiv:1909.06586, 2019.

[15] R. Featherstone, Rigid Body Dynamics Algorithms. Springer US,
2014.

[16] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The pinocchio c++ library : A fast
and flexible implementation of rigid body dynamics algorithms and
their analytical derivatives,” System Integration (SII) 2019 IEEE/SICE
International Symposium, 2019.

[17] J. Carpentier and N. Mansard, “Analytical derivatives of rigid body
dynamics algorithms,” in Robotics: Science and Systems (RSS 2018),
2018.

[18] D. Pardo, L. Möller, M. Neunert, A. W. Winkler, and J. Buchli,
“Evaluating direct transcription and nonlinear optimization methods
for robot motion planning,” IEEE Robotics and Automation Letters,
vol. 1, no. 2, pp. 946 – 953, 2016.

[19] C. R. Hargraves and S. W. Paris, “Direct trajectory optimization using
nonlinear programming and collocation,” J. Guidance, vol. 10, no. 4,
p. 338–342, 2016.

[20] Y. Tassa, T. Erez, and W. D. Smart, “Receding horizon differential
dynamic programming,” Advances in Neural Information Processing
Systems, vol. 20, p. 1465–1472, 2008.

[21] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems,” 1st International Conference
on Informatics in Control, Automation and Robotics, 2004.

[22] T. A. Howell, B. E. Jackson, and Z. Manchester, “Altro: A fast
solver for constrained trajectory optimization,” IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019.

[23] R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, “Feedback mpc
for torque-controlled legged robots,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019,
pp. 4730–4737.

[24] A. Majumdar, G. Hall, and A. A. Ahmadi, “Recent scalability
improvements for semidefinite programming with applications in
machine learning, control, and robotics,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 3, pp. 331–360, 2020.

[25] M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme
for nonlinear optimization in optimal feedback control,” SIAM Journal
on control and optimization, 2005.

[26] N. Mansard, A. D. Prete, M. Geisert, S. Tonneau, and O. Stasse,
“Using a memory of motion to efficiently warm-start a nonlinear
predictive controller,” IEEE International Conference on Robotics and
Automation (ICRA), 2018.

[27] T. S. Lembono, C. Mastalli, P. Fernbach, N. Mansard, and S. Calinon,
“Learning how to walk: Warm-starting optimal control solver with
memory of motion,” IEEE International Conference on Robotics and
Automation (ICRA), 2020.

[28] B. Henze, A. Werner, M. A. Roa, G. Garofalo, J. Englsberger, and
C. Ott, “Control applications of toro—a torque controlled humanoid
robot,” in IEEE-RAS International Conference on Humanoid Robots,
2014.

[29] A. Herzog, L. Righetti, F. Grimminger, P. Pastor, and S. Schaal,
“Balancing experiments on a torque-controlled humanoid with
hierarchical inverse dynamics,” in International Conference on
Intelligent Robots and Systems, 2014.

[30] O. Stasse, T. Flayols, R. Budhiraja, K. Giraud-Esclasse, J. Carpentier,
J. Mirabel, A. D. Prete, P. Souères, N. Mansard, F. Lamiraux,
J.-P. Laumond, L. Marchionni, H. Tome, and F. Ferro, “Talos: A
new humanoid research platform targeted for industrial applications,”
IEEE-RAS 17th International Conference on Humanoid Robotics
(Humanoids), 2017.

[31] R. Budhiraja, J. Carpentier, C. Mastalli, and N. Mansard,
“Differential dynamic programming for multi-phase rigid contact
dynamics,” IEEE-RAS International Conference on Humanoid Robots
(Humanoids), 2018.

[32] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization
of complex behaviors through online trajectory optimization,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2012.

[33] H. G. Bock and K.-J. Plitt, “A multiple shooting algorithm for direct
solution of optimal control problems,” IFAC Proceedings Volumes,
vol. 17, no. 2, pp. 1603–1608, 1984.

[34] R. Bellman, “The theory of dynamics programming,” the Rand
Corporation, 1954.

[35] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud,
M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar, and
N. Mansard, “Crocoddyl: An efficient and versatile framework for
multi-contact optimal control,” International Conference on Robotics
and Automation, 2020.

[36] D. Q. Mayne, “Differential dynamic programming–a unified approach
to the optimization of dynamic systems,” Control and Dynamics
Systems, vol. 10, pp. 179–254, 1973.

[37] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” IEEE International Conference on Robotics
and Automation (ICRA), pp. 1168–1175, 2014.

[38] T. S. Lembono, A. Paolillo, E. Pignat, and S. Calinon, “Memory of
motion for warm-starting trajectory optimization,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 2594–2601, 2020.

[39] D. Berenson, S. Srinivasa, D. Ferguson, and J. Kuffner, “Manipulation
planning on constraint manifolds,” IEEE International Conference on
Robotics and Automation (ICRA), 2009.

[40] J. Mirabel, S. Tonneau, P. Fernbach, A. Seppälä, M. Campana,
N. Mansard, , and F. Lamiraux, “Hpp: A new software for constrained
motion planning,” International Conference on Intelligent Robots and
Systems (IROS), 2016.

[41] J. L. Bentley, “Multidimensional binary search trees used for
associative searching,” Communications of the ACM 18, 1975.


