
Reinforcement Learning for Imitating Constrained Reaching

Movements

Florent Guenter, Micha Hersch, Sylvain Calinon and Aude Billard

LASA Laboratory - Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

{florent.guenter, micha.hersch, sylvain.calinon, aude.billard}@epfl.ch

Abstract

The goal of developing algorithms for programming robots by demonstration is to create an easy

way of programming robots such that it can be accomplished by anyone. When a demonstrator

teaches a task to a robot, he/she shows some ways of fulfilling the task, but not all the possibilities.

The robot must then be able to reproduce the task even when unexpected perturbations occur.

In this case, it has to learn a new solution. In this paper, we describe a system to teach to the

robot constrained reaching tasks. Our system is based on a dynamical system generator modulated

by a learned speed trajectory. This system is combined with a reinforcement learning module to

allow the robot to adapt the trajectory when facing a new situation, for example in the presence of

obstacles.

keywords: Programming by Demonstration, Reinforcement Learning, Dynamical Systems, Gaussian

Mixture Model.

1 Introduction

As robots start pervading human environments, the need for more natural human-robot interfaces is

becoming more pressing. In particular, robots should be able to acquire new abilities through interactions

with humans. Imitation learning is a promising mechanism for conveying new know-how, and is widely

used in the animal kingdom [1]. Imitation learning has also been applied to robotics where it has also

been called programming by demonstration [4].

In order to program a robot by demonstration, there are two main problems to solve. The first one

is known as the “what to imitate” problem and consists in extracting the principal constraints that

appear in a demonstrated task. The second is known as the “how to imitate” problem and consists

in finding a solution to reproduce the demonstrated task inspite of the difference of embodiment or

situation [1]. In this paper, we address the “how to imitate” problem. More precisely, we investigate

how a robot can adapt its execution of a learned task when confronted with a new situation. The

robustness of dynamical system control to perturbations occurring in uncontrolled environments has

1



Figure 1: Programming a robot by demonstration means that a user demonstrates a task and the

robot has to extract the important features of the task in order to be able to reproduce it in different

situations. It might happen in some special cases that the robot encounters a new situation where the

demonstration does not help to fulfill the task. In this case, there are two possibilities, the first one is

to teach the robot how to handle the new situation and the second one is to let the robot learn by itself

how to fulfill the task. In this paper we implement the second possibility.

been demonstrated [5,18–20]. However, it can happen that the dynamical system alone is not sufficient

to handle the perturbation (for example when an obstacle appears on the trajectory generated by the

dynamical system). In those cases, an exploration process is needed, during which the robot will search

for new ways of accomplishing the task.

Reinforcement learning (RL) is particularly indicated for this type of problem, as it enables the robot

to learn its own new ways of acting, in order to improve its abilities. Reinforcement learning algorithms

have already been successfully implemented in robotic applications such as swinging up and controlling

an inverse pendulum [21], refining forehand and backhand tennis swing [22] or acquiring a dynamic

stand-up behavior [6, 23]. Reinforcement learning algorithms perform well in discrete environments

of small dimensionality. However, to use reinforcement learning on real robots, the algorithms have

to be adapted to tackle data of high dimensionality lying in continuous time and space. Bradtke &

Duff [24] have derived algorithms for continuous time semi-Markov Decision Problems, Doya [7] proposed

methods such as Q-Learning or Actor-Critic [2,8] for continuous time and space. To deal with the high

computing costs of the RL algorithms for higher dimensionality systems, Peters et al. [25, 26] proposed

the Natural Actor-Critic (NAC) algorithm which is based on function approximation and gradient

descent algorithms [9–13] More recently, studies on the effect of the reward function on the speed of

learning [27], on the effect of using inaccurate model [28] or on new efficient exploration process [29] have

been conducted in the RL field. In this paper, we will integrate a RL module in the dynamical system

that we have developed in [30] in order to allow the robot to learn new solutions if the demonstrations

do not provide a sufficient solution for the reproduction of the skill. This RL module will be based on

Jan Peters’ work on the NAC [26].

2



Figure 2: Schematic overview of the complete system. In this paper, the variable ξ contains the joint

angle of the robot arm. The speed trajectories ξ̇demo provided by the set of demonstrations are fed into

a learning system that trains a Gaussian Mixture Model (GMM) in order to build a probabilistic model

of the data. The parameters of the GMM are used in a Reinforcement Learning module for generating

a trajectory ξm that modulates a dynamical system with attractor ξg and output speed ξ̇d executed by

the robot. The simulation of the trajectory reproduced by the robot is given by ξ̇s and is tested to know

if it reaches the target or not. This is done by measuring the distance between the target and the last

point of the trajectory, this distance must be smaller than a given value to validate the task. If the task

fails, we use a reinforcement learning algorithm which produces a new trajectory ξ̇m in order to correct

the modulation and fulfill the task.

2 System Overview

Let ξ(t) ∈ Rs describe the complete state of the robot at each time step. In the application described

in the rest of this document, ξ consists of the joint angles of the robot arm.

The aim of the algorithm is to reproduce the qualitative features common to several demonstrated

trajectories, while being robust when the situation changes, for example in the face of different initial

conditions, target locations or obstacles on the path. The information flow of the algorithm is illustrated

in Fig. 2. After having being exposed to several demonstrations ξ̇demo(t) of the task, the algorithm

extracts a generalized form of the original demonstrations ξ̇m(t) using a probabilistic model. The

generalized trajectory is then used to modulate a dynamical system which produces a trajectory to

reach the target ξg. When facing important perturbations, such as an obstacle blocking the arm of the

robot, it may happen that the dynamical system alone does not find a satisfying solution to reach the

target. To avoid that type of problem, we have implemented a reinforcement learning module which

allows the robot to learn how to avoid the obstacles or other perturbations. The reinforcement learning

acts directly on the modulation of the dynamical system. This way, the convergence properties of the

dynamical system are preserved. Note that the system described below does not make any assumption

on the type of data and, thus, ξ could be composed of other variables, such as, for instance, the position

of the robot’s end effector or the data projected in a latent space as done in [14].

3



2.1 Probabilistic Encoding and Generalization

In this section, we briefly summarize the Gaussian Mixture Regression (GMR [15]) procedure used to

obtain a single “model” trajectory from several demonstrations. This application has been described

in details in [14, 16]. The principle of this method is to model the joint distribution of an “input”

and “output” variable as a Gaussian Mixture Model (GMM). In our case, the output variables are the

velocities ξ̇ and the input variable is the time t. If we join those variables in a vector υ =


 t

ξ̇


 it is

possible to model its probability density function as

p(υ) =
K∑

k=1

πkN (υ; µk,Σk), (1)

where πk is a weighting factor and N (υ; µk,Σk) is a Gaussian function with mean µk and covariance

matrix Σk:

N (υ;µk,Σk) =
1√

(2π)d|Σk|
e(− 1

2 (υ−µk)T Σ−1
k (υ−µk)), (2)

where d is the dimensionality of the vector υ. The mean vector µk and covariance matrix Σk can be

separated into their respective input and output components:

µk = [µT
k,t µT

k,ξ̇
]T (3)

Σk =


 Σk,t Σk,tξ̇

Σk,ξ̇t Σk,ξ̇


 (4)

This GMM can be trained using a standard E-M algorithm, taking the demonstrations as training

data. We thus obtain a joint probability density function for the input and the output. Because it is

a GMM, the conditional probability density function, i.e., the probability of the output conditioned on

the input is also a GMM. Hence, it is possible, after training, to recover the expected output variable

ξ̇m, given the observed input variable t.

ξ̇m(t) =
K∑

k=1

hk(t)
(
µk,ξ̇ + Σk,ξ̇tΣ

−1
k,t(t− µk,t)

)
, (5)

where the hk(t) are given by:

hk(t) =
πkN (t;µk,t,Σk,t)∑K

k=1 πkN (t;µk,t,Σk,t)
. (6)

The variance of this conditional probability distribution is given by:

Σξ̇(t) =
K∑

k=1

h2
k(t)

(
Σk,ξ̇ −Σk,ξ̇tΣ

−1
k,tΣk,tξ̇

)
(7)

Thus, in our application, after training, the GMM can be used to generate a movement by taking the

expected velocities ξ̇m(t) conditioned on time t. This movement is taken to be the one to imitate. This

method is illustrated in Fig. 3 on the left graphic, where one sees a set of trajectories (light gray lines),

4



Figure 3: Left: This graphic represents the Gaussian Mixture Model (described in 2.1) trained with the

26 kinesthetic demonstrations of the the box task. ξ1 to ξ4 are the four joint angles of the robot arm. The

thin lines represent the demonstrations and the thick lines the generalization ξ̇m retrieved by using the

GMR. The ellipses represent the Gaussian components of the joint probability distribution. Right: This

graphic represents different trajectories generated using the modulated dynamical system (described

in 2.2). The reproduced trajectories (dash-dotted line) are qualitatively similar to the modulation

trajectory ξm (solid line), although they reach the goal from different initial positions.

the Gaussian mixture components modeling them (ellipses) and the expected trajectory (thick line).

Moreover, the variances of the GMM can provide an indication about the variability of the observed

variables. At any given time, variables with low variability across demonstrations can be interpreted as

more relevant to the task than variables with high variability.

2.2 Dynamical System

The dynamical system that we use is a spring and damper system inspired by the VITE model of human

reaching movement (see [18]). It allows the robot to bring its arm smoothly to the target, following a

straight trajectory (in the absence of perturbation).

ξ̈(t) = α(−ξ̇(t) + β(ξg − ξs(t))) (8)

ξ̇(t) = ξ̇s(t) + ξ̈(t)∆t (9)

The constants α, β ∈ R[0,1] are control parameters, ξ̇ and ξ̈ are the current speed and acceleration of

the dynamical system, ξs is the simulated current position of the robot and ξg represents the target

position (the goal).

Because there are some tasks for which the robot must follow a specific trajectory to reach the goal

(for example putting a object in a box), we have to modulate the output of the dynamical system in

order to fulfill these tasks. Our solution is to give to the robot a weighted average between the output

of the dynamical system and a modulation speed as command.

ξ̇d(t) = (1− γ(t))ξ̇(t) + γ(t)ξ̇m(t) (10)

5



2

0.

6

8

Figure 4: Evolution of the parameter γ along time.

Figure 5: Evolution of the parameter L in function of ξd.

where ξ̇m is the desired speed used to modulate the system and ξ̇d is the speed command for the robot.

In order to ensure the convergence of the system on the target, we need to force the second term to zero

at the end of the task. To realize this, we modulate ξ̇m with the parameter γ which varies according to:

γ(t) = ((T − t)/T )2 (11)

Where T is the duration of the observed movement and γ(t) ∈ R[0,1]. Eq. 11 ensure a smooth decay to

zero for the modulation term ξ̇m(t) (see Fig. 4)

For security reason, we have implemented a system to avoid to reach the joint limits of the robot

HOAP3. For that, we use a parameter L in order to decrease the speed amplitude when we approach

of the joint limits. The position update is done as follow:

ξd(t + 1) = ξd(t) + Lξ̇d(t)∆t (12)

where

L =





F (ξd
t ) if ξd(t) ∈ [ξd

min, ξd
max]

0 if ξd(t) /∈ [ξd
min, ξd

max]
(13)

and

F (ξd) = 1− | arctanh(1.52 ∗ (
ξd(t)− ξmean

ξd
max − ξd

min

))10 | (14)

The shape of the L parameter within the joint limits [ξd
min, ξd

max] is shown in Fig. 5.

In the system described in [30], the modulation ξm is given by Eq. (5). For the system described in

this paper, this is available only for the first trial q = 1 (q denotes the trial number). During this first

trial, if the system fails to reach the target, the modulation can be changed by using the RL module.

6



2.3 Reinforcement Learning

In order to allow the robot to find a new solution, when it fails to reach the target, we have added in

our system a reinforcement learning module. This module acts on the dynamical system through the

modulation variable ξ̇m(t) by optimizing the means µk,ξ̇ of Eq. (1).

By default, for the first trial q = 1 (where q denotes the trial number), the means µk,ξ̇ are given by

the GMM model. Thus, we avoid interferences of the reinforcement learning module if the dynamical

system is sufficient to ensure the reproduction of the task. If the system fails to reach the target by using

the initial GMM, the RL is applied to learn a new set of means µk,ξ̇ for the GMM. The whole learning

process is done in simulation even though we will implement the system on the robot. It is indeed

not realistic to make 100 or 200 trials with the robot in a real environment. It is much more efficient

to simulate the process and to find a solution after a few seconds. The advantage of Reinforcement

Learning techniques over other direct path planning techniques is that it allows the robot to handle

different type of situation. The robot is able to learn by exploring the solution space and discovering

new solutions.

The algorithm we have used for the reinforcement learning module of our system is the episodic nat-

ural actor-critic (NAC) algorithm presented in [25,26]. The NAC is a variant of the actor-critic method

for reinforcement learning. In the critic part of the NAC, the policy is evaluated by approximating

the state-value function. For the approximation, an adaptation of a LSTD(λ) (Least Square Temporal

Difference) algorithm [9, 17] called LSTD − Q(λ) [25] is used (see Appendix). In the actor part, the

policy is improved by using the “natural” gradient descent [13] which is a steepest gradient descent algo-

rithm with respect to the Fisher information matrix. The use of approximation functions and “natural”

gradient descent makes this algorithm efficient enough to deal with multiple DOFs systems.

The first step is to define the policy of our system. In order to explore the space of the parameters,

we introduce a stochastic Gaussian control policy:

ρ(ξ̇r, ξ̇m,Σξ̇) =
1√

(2π)d|Σξ̇|
e
(− 1

2 (ξ̇r−ξ̇m)T Σ−1
ξ̇

(ξ̇r−ξ̇m)))
, (15)

where ξ̇m is the modulation speed of the dynamical system defined in Eq. (5), Σξ̇ is the covariance matrix

(see Eq. (7)) of the Gaussian control policy and ξ̇r is the noisy command generated by ρ(ξ̇r, ξ̇m,Σξ̇) and

used to explore the parameters space. We consider here that the demonstrations performed by the user

are sufficiently informative to allow the robot to reproduce the task in standard conditions. We thus

choose to keep the covariance matrix Σξ̇ in order to respect the constraints taught by the demonstrator

during the exploration process of the RL module.

The parameters of the policy that we want to optimize are the means µk,ξ̇ that represent the means

of the GMM model. By learning new means µk,ξ̇, we will be able to generate new trajectories ξ̇m
q that

will help the dynamical system to avoid the obstacle smoothly.

The episodic reward function used to evaluate the produced trajectory is defined as follows:

7



rq(ξ̇r, ξr) =
T∑

t=0

−c1|ξ̇r
t − ξ̇m

t,q=1| − c2|ξr
T − ξg|, (16)

where c1 > 0, c2 > 0 ∈ R are weighting constants, ξr is the simulated noisy command used to explore

the solution space, ξm
t,q=1 is the modulation speed of the first trial (see Eq. (7)) and ξg is the target

position. Thus the reward function is determined by a term that represents the similarity between

the current trajectory and the original modulation given by the GMM and a term that represents the

distance between the target and the last point of the tested trajectory.

The effect of the first term on the reward function is that rq tends to a maximum rq < 0 in most

of the cases. Because the trajectory ξm
t,q=1 is the expected output of the GMM and does not depend

on the target, it does not reach the target in most of the cases. Thus, after the learning, if the target

is reached, there is still a difference between the current trajectory ξm
t,q and the initial trajectory ξm

t,q=1

due to the deformation needed to reach the target.

The effect of the second term on the reward function is that rq tends to a maximum when ξm
t,q reaches

the target. The obstacle is implicitly represented in this term. During the learning, when the arm is

blocked by a obstacle, the last point of the trajectory ξs
T does not reach the target, thus the second term

of rq does not reach zero with a obstacle on the trajectory.

The following algorithm is applied separately on each µk,ξ̇ (described in 2.1). For ease of reading,

we will thus omit the index k in the following description. In the critic part of the algorithm, for the

policy evaluation, like in most RL algorithms, we evaluate the expected reward of a command ξ̇r for a

state ξ̇s. That is generally done by the evaluation of the Action-Value function defined as:

Qρ(ξ̇r, ξ̇s) = E
{ ∞∑

t=0

γtrt|ξ̇r, ξ̇s
}

(17)

where γ ∈ R[0,1] is a discount factor and rt is the immediate reward. Note that this model is for a non

episodic task. In the same way, we can define the Value function as:

V ρ(ξ̇s) = E
{ ∞∑

t=0

γtrt|ξ̇s
}

(18)

As shown in [25], these two expressions allow us to define an advantage function:

Aρ(ξ̇r, ξ̇s) = Qρ(ξ̇r, ξ̇s)− V ρ(ξ̇s), (19)

where Aρ(ξ̇r, ξ̇s) represents the advantage of action ξ̇r over the state ξ̇s. To adapt the NAC to an

episodic task, we formulate the discounted sum of the advantage function along one trial as:
T∑

t=0

γtAρ(ξ̇r, ξ̇s) = rq(ξ̇r, ξr) +
T∑

t=0

γt+1V ρ(ξ̇s
t+1)− V ρ(ξ̇s

t ) (20)

= rq(ξ̇r, ξr) + γT+1V ρ(ξ̇s
T+1)− V ρ(ξ̇s

0) (21)

Note that for a episodic task, γT+1V ρ(ξ̇s
t+1) = 0. In order to have an efficient algorithm we use a

linear approximation function for V ρ(ξ̇s):

V ρ(ξ̇s) ≈ φ(ξ̇s)′vq, (22)

8



where vq ∈ RT is a vector of weights and φ(ξ̇s)′ ∈ RT is the transpose of a feature vector. In our case,

since only V ρ(ξ̇s
0) in Eq. (21) has to be evaluated, we need only one basis function to approximate

V ρ(ξ̇s). Thus, we can arbitrary set φ(ξ̇s) = 1 and approximate the value function at time t = 0 by using

only the weight vq.

Following [25], we approximate the advantage function with:

Aρ(ξ̇r, ξ̇s) ≈ ∇µlnρ(ξ̇r, ξ̇m,Σξ̇)
T wq, (23)

where wq is a vector of weights that is equal to the approximation of the natural gradient of the expected

return. By introducing the approximation presented in Eq. (21), Eq. (22) and Eq. (23), we obtain:

T∑
t=0

γt∇µlnρ(ξ̇r, ξ̇m,Σξ̇)
T wq + vq ≈ rq(ξ̇r, ξr) (24)

To find the natural gradient w we will use a LSTD − Q(λ) algorithm (see Appendix). For that, we

have to define a new basis function by using Eq. (18) and Eq. (23):

φ̂ =
N∑

t=0

γt[1,∇µlnρ(ξ̇r, ξ̇m,Σξ̇)
T ]T (25)

With this new basis function, we can rewrite Eq. (24) in a vectorial form:

φ̂ · [vq,wT
q ]T ≈ rq(ξ̇r, ξr) (26)

By using LSTD −Q(λ) (see Appendix) we are then able to approximate w and v. For each trial q, we

compute the basis function φ̂ and the episodic reward rq(ξ̇s) to update the sufficient statistics Aq and

bq (see [9]).

Aq = Aq−1 + φ̂qφ̂
T
q (27)

bq = bq−1 + φ̂qrq (28)

At the initialization, A1 is set to I and b1 is set to 0. These sufficient statistics are then used to update

the critic parameters vq and wq:

[vq,wT
q ]T = A−1

q bq (29)

After multiple trials, wq converges to the natural gradient of the expected return. Thus, once w has

converged over a window h, i.e. ∀τ ∈ [0, ..., h], the angle between wq+1 and wq−τ ≤ ε, we are able to

update the parameters1 µq,ξ̇ in order to optimize the expected return:

µq,ξ̇ = µq−1,ξ̇ + αlearnwq, (30)

where αlearn ∈ R[0,1] is the learning rate. Once the parameters µξ̇ are updated, we have to forget a part

of the sufficient statistics A and b in order to approximate the new gradient w.

Aq ← βAq (31)

bq ← βbq, (32)
1For each Gaussian of the GMM separately.

9



where β ∈ R[0,1]. The algorithm converges then to an optimum with respect to the reward.

The goal of the RL part of the system is to produce a trajectory ξ̇m that will be used to modulate

the dynamical system according to Eq. (10). Thus, at each update of the means µk,ξ̇, we test the new

trajectory ξs produced by the dynamical system, in order to stop the learning as soon as a satisfying so-

lution is found. Because we are, for the time being, only interested in goal-directed reaching movements,

we test the distance between the last point of the trajectory ξs
T and the target. The task is considered

as fulfilled if |ξs
T − ξg| < d where d ∈ R represents the maximal distance we want to obtain.

3 Experiments

We have chosen two tasks for testing the algorithm. The first one consists in putting an object into

a box and the second one consists in grasping a chess queen on a table. The robot that we use is the

humanoid robot HOAP3 from Fujitsu. It has a total of 25 DOFs, but for the manipulation tasks of

this paper, we use only the 4 DOFs arm. To generate ξ̇m by training the GMM, we have performed

twenty-six kinesthetic demonstrations on the robot for each task. It means that, for each demonstration,

the demonstrator moved the robot arm to perform the task. The robot recorded the trajectories of its 4

DOFs using its own encoders. The specification of the demonstration for the first task was to raise the

hand in order to reach the box from above. For the second task, the specification was to grasp the chess

queen following either a vertical movement (to grasp it from above) or a horizontal movement that is

constraint by the need of a specific direction.

Once we have extracted the generalized speed ξ̇m of the first task, by using only the dynamical

system described in 2.2, the robot is able to reproduce the task with various starting points and for

various locations of the box (see [30]). However, the dynamical system alone is not able to find satisfying

solutions for the avoidance of possible obstacles obstructing the trajectory. In those experiments, we

have introduced such an obstacle. When the obstacle lies in the trajectory of the end effector of the

robot, the reinforcement learning module helps the robot reach the goal by avoiding the obstacle while

trying to still satisfy the constraints of the movement shown during the demonstrations (i.e. reaching

the goal with a bell-shaped trajectory).

For the second task, the constraint to fulfill is focused on the approach direction, in order to grasp

the chess queen without knocking it down. To model this constraint in simulation, we use a forbidden

volume around the chess queen. It means that, if the center of the hand penetrates this volume, we

consider that the chess queen is knocked down and thus that the reproduction of the task has failed.

The reinforcement learning is then used to grasp the chess queen without entering the forbidden volume.

3.1 The Box Task

This section provides the results of experiments aimed at evaluating the abilities of the RL module. In

the first part (3.1.1), the whole system is tested and the learning is stopped when a satisfying solution

10



Figure 6: Left: The dynamical system alone would have produced the trajectory represented by the

dotted line. By using the reinforcement learning module, the algorithm is able to find a different

trajectory that avoids the obstacle (in thick line). The trajectory produced by the modulation speed ξ̇m

(in thin line) does not reach the goal. The learning have been interrupted before the convergence because

a satisfying solution has been found for ξd. Right: Here, we can see that the trajectory produced by

ξ̇m reaches the goal. In this example, we use a convergence criterion to stop the learning, in order to

show the convergence of the reinforcement learning module.

has been found for ξs (as stated in 2.3). In the second part (3.1.2), we will use an other criterion to

determine the end of the learning, a convergence criterion. In this case, the learning is stopped only

when an optimal solution has been found for ξm. This is equivalent to a system which would reproduce

a trajectory only by reinforcement learning without using a dynamical system (in other words, we do

not consider ξd).

3.1.1 The whole system

Fig. 6 on the left represents a typical example of what we want to obtain with the reinforcement

learning. The target (represented by a small circle) lies on the top of the cubic box and the obstacle

is represented by the thinner box. The obstacle is placed in the middle of the trajectory generated

using the modulated dynamical system without any learning (dashed line). By using the reinforcement

learning module, the system has been able to find a solution for ξd (solid line) that avoids the obstacle.

We observe in Fig. 7 that it takes around 330 trials in simulation to find a solution. We can see that the

reward function tends to an optimum, but the learning is interrupted before the complete convergence

of the system (as soon as a satisfying solution for ξd is found). In Fig. 6 on the left, we can observe

the effect of the interruption on the modulation ξm (the thin line), ξm avoids the obstacle but does not

reach the goal.

To verify that the system is not sensitive to the particular choice of the obstacle location, we have

conducted a set of simulations whereby the obstacle position varies along a vertical plan that crosses

11



Figure 7: This Graphic represents the evolution of the reward function during the learning phase of the

two examples shown in Fig. 6. This curve is a mean over 12 runs of the system in identical situations.

The first vertical line (a) represents the average number of trials needed when the learning is interrupted

as soon as a satisfying solution is found (see 3.1.1). The second vertical line (b) represents the average

number of trials needed when the learning is interrupted by a convergence criterion as described in 3.1.2.

the trajectory. We thus obtain a mapping of the number of trials needed by the RL module to find a

solution as a function of the obstacle location. Because of the stochastic process used to explore the

parameters space, we have used the average on a few runs of the RL module at each point to have a

good representation of the different areas where the system has difficulties to find some solutions. Fig.

8 represents this mapping for an average on four runs at each point. We can observe that it can find

a solution for most locations in less than 300 steps. In simulation, it represents approximatively 40s

when the system runs on a PC equipped with a Pentium 4, 2.4 GHz processor. The area which still

causes some problem to the system is when the obstacle is placed at the lowest position. This can be

explained by the fact that the system tends to find a solution by passing under the obstacle (this is due

the reward function). Along the Y axis of the robot, we also observe more problems when the obstacle

gets far from the robot. This is due to the fact that the setup is not centered in the middle of the robot

workspace, thus when Y increases the robot tries to pass aside the obstacle and gets stuck because of

its joint angles limits.

3.1.2 The RL module

To show the convergence of the RL system (represented by ξm), we have changed the criterion to stop

the learning. We use here a convergence criterion, when rq(ξs) has converged over a window hr (i.e.

∀τ ∈ [0, ..., h], the mean difference between rq and rq−τ ≤ εr), the learning is stopped. By using the

convergence criterion, the learning continues until ξm reaches the goal. That can be observed in Fig. 6

on the right. In Fig. 7, we observe the convergence of the reward function to an optimum around −300

which is a higher value than in the first example, but we also need a average of 1370 trials to converge

12



Figure 8: This figure represents the average number of trials needed by the reinforcement learning

module to find a solution to reach the target in function of the middle point coordinate of the obstacle.

to this optimum.

By comparing the two graphics in Fig. 6, we can see that using the distance to the target or a

convergence criterion does not influence significantly the final result for ξs, but rather influences the

time needed to find a satisfying solution (see Fig. 7).

The other advantage to use the distance to the target as stopping condition can be seen in the case

of a trajectory that is not suddenly blocked by an obstacle. In this case, the distance criterion do not

enable the learning. If the criterion for stopping the learning is a convergence criterion, the learning is

done in every case even when a solution already exists.

3.1.3 The stochastic exploration process

In order to study the convergence property of the RL algorithm, we have conducted a series of tests to

have statistics on the number of trials that we need to converge to a solution. The box and the obstacle

have the same position for all the experiments, only the starting position is moving. We have defined

23 starting positions equally distributed along a vertical line. For each of these positions, we have made

22 runs of the RL algorithm without the help of the dynamical system. To limit the computation time,

we have limited the maximum number of steps to 10′000 steps.

Fig. 9 represents the statistics (mean and standard deviation) for the 23 starting positions. Position

number 1 is the lowest position on the vertical line while position 23 is the uppermost (see sample

trajectories in Fig. 10). We can see on Fig. 9 that the RL algorithm has more difficulties to find a

solution for the lower starting position. This is certainly due to the fact that it is more difficult to keep

the bell shape of the demonstrated trajectory while finding a way between the obstacle and the box

than satisfying the same bell shape by passing above the obstacle.

This phenomenon can also be observed in Fig. 10. These graphics represent the different trajectories

13



0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Trajectory Nb

N
b 

T
ria

ls

Figure 9: This graphic represents the statistics of the number of trials needed to converge to a solution.

As abscissa, we have the starting position (23 starting positions equally distributed along a vertical line,

the position number 1 is the lowest and the number 23 is the uppermost position). As ordinate, we have

the mean and standard deviation of the number of trials for each run of the RL algorithm. We observe

here that the solution seems to be more difficult to obtain with the lower starting points.

for 6 chosen starting positions 2. The big standard deviations we observe in Fig. 9 for the lower positions

are due to the failure of the RL algorithm.

3.2 The Chess Task

For this experiment, we have modified the episodic reward function in order to include a negative reward

if the reproduced trajectory penetrates the forbidden volume V .

rq(ξ̇s, ξs) =
T∑

t=0

−c1|ξ̇s
t − ξ̇m

t,q=1|+ c2P (ξ̇m
t,q)− c3|ξs

T − ξg| (33)

where

P (ξ̇m
t,q) =




−1 if ξ̇m

t,q ∈ V

0 if ξ̇m
t,q /∈ V

(34)

We have conducted the same series of experiments as for the Box Task. The position of the queen is fixed

and we have chosen 23 starting positions distributed along a horizontal line in front of the robot. The

first position is situated in front of the robot and the last position in the right. The task is reproduced

using the right arm. For this experiment, the stopping condition is that ξs
q has avoided V and that ξs

T,q

is on the target. Fig. 12 represents the trajectories for 6 selected starting positions. We observe that

when the starting position is not in front of the queen, the preferred solution is to grasp the queen from

above, but we observe some exceptions for starting positions 1, 9, 17, and 21.
2The trajectories for which the RL algorithm has not found a satisfying solution within the 10′000 trials are not shown

in those graphics.

14



Figure 10: We observe here the different trajectories for 6 selected starting positions. The number

for each graph corresponds to a position represented in Fig. 9. The number 01 represents the lowest

starting point and the 23 the uppermost. We have not represented the trajectories for which the RL

module haven’t found a solution within the 10′000 trials.

15



Figure 11: These figures represents the histogram of the number of trials needed to converge to a solution

for the 6 starting position shown in Fig. 10. As the number of trials was limited to 10′000. We observe

here that, for each starting point, there is at least one run where the RL algorithm has not found a

satisfying solution. Like in Fig. 10, we see that this problem is more important in the lower starting

positions.

16



Figure 12: This figure represents the trajectories for 6 starting point of the chess task.

Figure 13: This graphic represents the statistics of the number of trials needed to converge to a solution

for the chess task. As abscissa, we have the starting position (23 starting positions equally distributed

along a horizontal line from the center to the right of the robot). As ordinate, we have the statistics on

the number of trials needed to find a solution depending on the starting position.

17



Figure 14: This figure represents the histogram of the number of trials for each run for 6 selected starting

positions of the chess task.

Fig. 13 represents the statistics of 11 runs of the system for each starting point. As in the box task,

we observe cases of failure of the algorithm. This phenomenon is more accentuated for the leftmost

positions (from 1 to 9). This is due to the fact that we are near the joint angle limit for these starting

positions. For starting positions 10 to 14, the task is reproduced correctly at the first trial. These starting

positions are in front of the chess queen and then the dynamical system is sufficient for grasping the

queen. For starting position on the right, reinforcement learning is necessary but a solution is found in

a small number of trials, except for the two last positions that are near the joint limits.

4 Discussion

In Section 3, we have compared two ways of using reinforcement learning. The first one consisted in

evaluating the trajectory ξs and in interrupting the learning as soon as ξs reaches the goal. The second

solution was to learn the new ξm, to evaluate the RL until ξm reaches the goal while avoiding the

18



0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Trajectory Nb

N
b 

T
ria

ls

Figure 15: This graphic represents the statistics of the number of trials needed to find a solution with

the dynamical system associated to the RL algorithm. We observe that the mean increases when the

starting point goes up to point 16. For point 17 and upper, the obstacle is no more on the trajectory

and the system finds a solution at the first attempt.

obstacle.

From the reinforcement learning point of view, the second solution is the best solution because we

converge to an optimum for the modulation speed ξ̇m. But for our purpose, it is not needed. As shown

in section 3.1.2, the resulting trajectory ξs is similar, but the convergence to an optimum takes more

time, when learning the optimal ξm. We have seen in Section 3.1.1 that it takes around 40s to do 300

trials. By comparing Fig. 9 and Fig. 15, we observe important differences in the mean value of the trials

number needed to find a solution with the two systems. We have a total mean of 3495 trials for the RL

alone and a total mean of 1253 for the combination of the dynamical system and the RL algorithm. The

mean time needed by the two systems to find a solution while running on Matlab on a PC equipped

with a Pentium 4, 2.4 GHz processor is 7min 46s for the RL alone and 2min 47s for the combination

of the two.

This great difference in the mean computation time is mainly due to the cases where there is no

obstacle on the original trajectory. The dynamical system is sufficient to find a trajectory that reaches

the goal, thus the distance criterion validates the solution at the first attempt. If we choose to impose

the optimum convergence to stop the learning, we will have many learning steps (around 2500 as shown

in Fig. 9 for point 16 to 23), which will slow down the process even when the situation does not require

it. In other words, for each reproduction, even the simplest ones, we will have to wait a mean of 5min

33s before moving.

A limitation of the system is concerned with the function γ that managed the importance of the

modulation along time. If we want to guarantee that the system converges to the goal, γ has to be

equal to zero at the end of the movement. For this paper, γ is a fixed function and the influence of

the modulation decreases rapidly with t. Thus, if we have an obstacle at the end of the trajectory, the

19



current system may not find a solution. In further work, we will investigate ways to learn the function

γ and the possibility to use the RL without the dynamical system so solve such situations.

5 Conclusions

We have presented in this paper an algorithm for learning and reproducing goal-directed tasks with a

humanoid robot. At the first attempt to reproduce the task, the trajectory is generated using a dynam-

ical system modulated by a velocity profile generated by a GMM trained with a few demonstrations

performed by the user. If there are some perturbations that can not be handled by the dynamical system

alone, a reinforcement learning method is used in order to adapt the centers of the GMM components

that encode the modulation speed, and therefore find an other smooth solution.

We have tested the system on two different tasks. In the first task, an obstacle perturbs the trajectory

and the system has to find a new solution. In the second task, the goal is to grasp a chess piece. Due

to the morphology of the robot, it cannot grasp the chess piece from every direction. Here the system

can be used to optimize the task. The advantage of the reinforcement learning is that it can handle a

lot of different and unexpected situations.

While there is still room for improvements, the results presented here strengthen the idea that

imitation should not be considered as a passive repetition of a task, but rather as an active process,

in which exploration plays a significant and often underestimated role. They show that reinforcement

learning is a suitable paradigm for implementing such an explorative process.

Acknowledgment

The work described in this paper was partially conducted within the EU Integrated Project COGN-

IRON (”The Cognitive Companion”) and funded by the European Commission Division FP6-IST Future

and Emerging Technologies under Contract FP6-002020, and EU Project IST-2004-004370 RobotCub

(ROBotic Open-architecture Technology for Cognition, Understanding, and Behaviour). It was also sup-

ported by the Swiss National Science Foundation, through grant 620-066127 of the SNF Professorships

program.

REFERENCES

[1] K. Dautenhahn and C.L. Nehaniv, Imitation in Animals and Artifacts, The MIT Press (2001).

[2] R. S. Sutton and A. G. Barto, Reinforcement learning : an introduction. MIT Press, Cambridge,

MA (1998).

[3] D. Bertsekas and J. Tsitsiklis, Neuro-dynamic programming. Athena Scientific, Belmont, MA (1996).

20



[4] A. Billard and R. Siegwart, Robotics and Autonomous Systems, Special Issue: Robot Learning From

Demonstration, Elsevier, Amsterdam(2004).

[5] G. Schoner, M. Dose and C. Engels, Dynamics of behaviour: Theory and application for autonomous

robot architecture. Robotics and Autonomous Systems, vol. 16, pp. 213-245 (1995).

[6] J. Morimoto and K. Doya, Acquisition of stand-up behavior by a real robot using hierarchical

reinforcement learning. Robotics and Autonomous Systems, vol. 36, pp. 37-51 (2001).

[7] K. Doya, Reinforcement Learning in Continuous Time and Space. Neural Computation, vol. 12,

pp. 219-245 (2000).

[8] V.R. Konda and J.N. Tsitsiklis, Actor-Critic Algorithms. Adv. in Neural Information Process. Syst.,

12, pp. 1008-1015 (2000).

[9] A. Nedic and D. Bertsekas, Least-Squares Policy Evaluation Algorithms with Linear Function

Approximation. LIDS Report LIDS-P-2537, Dec. 2001, (2001).

[10] R. Williams, Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement

Learning. Machine Learning, vol. 8, pp. 229-256 (1992).

[11] R.S. Sutton, D. McAllester, S. Singh, and Y. Mansour, Policy Gradient Methods for Reinforcement

Learning with Function Approximation. Advances in Neural Information Processing Systems, 12,

(2000).

[12] A.G. Barto and S. Mahadevan, Recent Advances in Hierarchical Reinforcement Learning. Discrete

Event Dynamic Systems: Theory and Applications, vol. 13, pp. 343-379 (2003).

[13] S. Amari, Natural Gradient Works Efficiently in Learning. Neural Computation, vol. 10, pp. 251-276

(2000).

[14] S. Calinon, F. Guenter and A. Billard, On Learning, Representing and Generalizing a Task in a

Humanoid Robot. IEEE Trans. on Sys. Man and Cybernet. Part B. (Special issue on robot learning

by observation, demonstration and imitation) 37(2) (2007).

[15] Z. Ghahramani and M.I. Jordan, Supervised Learning from Incomplete Data via an EM Approach.

Advances in Neural Information Processing Systems, Morgan Kaufmann Publishers, vol. 6 (1994).

[16] A. Billard, S. Calinon and F. Guenter, Discriminative and adaptative imitation in uni-manual and

bi-manual tasks. Robotics and Autonomous Systems, 54:5 (2006).

[17] J.A Boyan, Technical Update: Least-Squares Temporal Difference Learning. Machine Learning,

vol. 49, pp. 233-246 (2002).

[18] M. Hersch and A. Billard, A biologically-inspired model of reaching movements, in Proc.

IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa,

(2006).

21



[19] I. Iossifidis and G. Schoner, Autonomous reaching and obstacle avoidance with anthropomorphic

arm of a robotics assistant using the attractor dynamics approach, in Proc. IEEE International

Conference on Robotics and Automation, New Orleans, (2004).

[20] L. Righetti and A. Ijspeert, Programmable central pattern generators: a application to biped

locomotion control, in Proc. IEEE International Conference on Robotics and Automation, Orlando,

(2006).

[21] C.G. Atkeson and S. Schaal,Learning tasks from a single demonstration, in Proc. IEEE International

Conference on Robotics and Automation, Albuquerque, (1997).

[22] S. Schaal, J. Peters, J. Nakanishi and A. Ijspeert, Learning Movement Primitives, in Proc. Inter-

national Symposium on Robotics Research (ISRR2003), Siena, (2003).

[23] S. Iida, M. Kanoh, S. Kato and H. Itoh, Reinforcement Learning for Motion Control of Humanoid

Robots, in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai,

(2004).

[24] S.J. Bratke and M.O. Duff, Reinforcement Learning Methods for Continuous-Time Markov Decision

Problems, in Proc. Neural Information Processing Systems Conference, Denver, (1994).

[25] J. Peters, S. Vijayakumar and S. Schaal, Reinforcement Learning for Humanoid Robotics, in Proc.

IEEE-RAS International Conference on Humanoid Robots (Humanoids2003), Muenchen, (2003).

[26] J. Peters, S. Vijayakumar and S. Schaal, Natural Actor-Critic, in Proc. 16th European Conference

on Machine Learning, Porto, (2005).

[27] G. Konidaris and A. Barto, Autonomous Shaping: Knowledge Transfer in Reinforcement Learning,

in Proc. International Conference on Machine Learning, Pittsburgh, (2006).

[28] P. Abbeel and M. Quigley, Using Inaccurate Models in Reinforcement Learning, in Proc. Interna-

tional Conference on Machine Learning, Pittsburgh, (2006).

[29] O. Simsek and A. Barto, An intrinsic Reward Mechanism for Efficient Exploration, in Proc. Inter-

national Conference on Machine Learning, Pittsburgh, (2006).

[30] M. Hersch, F. Guenter, S. Calinon and A. Billard, Learning Dynamical System Modulation for

Constraint Reaching Tasks, in Proc. IEEE-RAS International Conference on Humanoid Robots

(HUMANOIDS06), Genova, (2006).

APPENDIX

In this appendix we summarize the LSTD(λ) algorithm presented in [9, 17] and the LSTD − Q(λ)

derived from LSTD(λ) in [25].

22



To understand LSTD(λ) we have to begin with the temporal difference algorithm TD(λ). It has been

shown that TD(λ) converge to a good approximation of V ρ when a linear approximation is used (see

Eq. (22)). At each step t ∈ [0, T ] of one trial q ∈ [0, Q], we update the TD error as follow:

δt+1 = δt + zt(rt + (φ(ξ̇s
t+1)− φ(ξ̇s

t ))vq) (35)

zt+1 = λzt + φ(ξ̇s
t+1), (36)

where δ0 = 0 and z0 = φ(ξ̇s
0). zt represents the eligibility trace. At the end of the trial, we update the

weights vq as follow:

vq+1 = vq + αnδT , (37)

where αn is a learning rate. By rearranging Eq. (36) and Eq. (37), we observe that the update of the

weights v has the form:

vq+1 = vq + αn(d + Cvq + w) (38)

where

d = E
{ ∑Q

i=0 ziri

}
C = E

{ ∑Q
i=0 zi(φ(ξ̇s

t+i)− φ(ξ̇s
i ))

}
(39)

and w is a zero-mean noise. It has been shown in [3] that v converged to a fixed point vλ satisfying

d + Cvλ = 0. However, TD(λ) never explicitly compute d or C.

The idea of the LSTD(λ) algorithm is to explicitly compute from experience the matrix A and the

vector b as follow:

b =
∑t

i=0 ziri A =
∑t

i=0 zi(φ(ξ̇s
i )− φ(ξ̇s

i+1)) (40)

Thus, after n trials, b is an unbiased estimate of nd and A is an unbiased estimate of −nC and we are

then able to estimate vλ by computing A−1b. The LSTD − Q(λ) algorithm is the LSTD(λ) applied

to Eq. (26).

23


