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Abstract

Non-prehensile manipulation such as pushing is typically subject to uncertain, non-smooth dynamics. However,

modeling the uncertainty of the dynamics typically results in intractable belief dynamics, making data-efficient planning

under uncertainty difficult. This article focuses on the problem of efficiently generating robust open-loop pushing plans.

First, we investigate how the belief over object configurations propagates through quasi-static contact dynamics. We

exploit the simplified dynamics to predict the variance of the object configuration without sampling from a perturbation

distribution. In a sampling-based trajectory optimization algorithm, the gain of the variance is constrained in order to

enforce robustness of the plan. Second, we propose an informed trajectory sampling mechanism for drawing robot

trajectories that are likely to make contact with the object. This sampling mechanism is shown to significantly improve

chances of finding robust solutions, especially when making-and-breaking contacts is required. We demonstrate that the

proposed approach is able to synthesize bi-manual pushing trajectories, resulting in successful long-horizon pushing

maneuvers without exteroceptive feedback such as vision or tactile feedback. We furthermore deploy the proposed

approach in a model-predictive control scheme, demonstrating additional robustness against unmodeled perturbations.
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1 Introduction

Enabling robots to physically interact with the world is a

key challenge in robotics. In particular, the ability to move,

reorient or localize objects through contact is a fundamental

capability for robots to perform tasks in unstructured

environments. Model-based planning techniques aim to

synthesize robot control actions by using a given model

to reason over anticipated outcomes of actions. However,

there are two core challenges of model-based planning

through contacts. First, contact dynamics are inherently

discontinuous, i.e. a robot control action may have no

effect on the state of a target object if the robot does not

make contact. This translates into a vanishing gradient of

the associated manipulation objective, making traditional

gradient-based optimization difficult.

Second, the mechanics of non-prehensile contacts are

subject to uncertainty. This is due to the fact that

dynamic effects such as friction between surfaces are

difficult to predict, especially when manipulating objects

without knowing their physical properties, such as friction

coefficients or mass distribution (Lynch and Mason (1995);

Dogar and Srinivasa (2011); Ha et al. (2020)). Thus, when

generating open-loop plans by assuming an accurate model

of the dynamics, those plans are likely to fail as they do not

take into account the underlying uncertainty. In Rodriguez

(2021), this effect is described with an experiment of

repeatedly picking-and-placing a queen chess piece, which

fails if the queen is picked from the top. In contrast, picking

the queen from the side stabilizes the repeated pick-and-

place process. Uncertainty about physical parameters of

objects is particularly unavoidable when robots interact with

Figure 1. Our model-based optimization approach synthesizes

bi-manual pushing trajectories by controlling the variance of the

object configuration, without explicitly modeling contact modes.

We show that the robustness of the pushing trajectories is

sufficient to successfully push an object over long horizons. The

red cubes on the table and the yellow content of the can act as

additional perturbations to the contact dynamics.

objects for the first time. This raises the question of how to let

robots deal with this uncertainty autonomously. Deploying

deterministic models in fast feedback loops is an implicit
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approach to compensating for uncertain dynamics, such as

done in model-predictive control schemes. Yet they require

accurate sensory measurements and achieve robustness

against perturbations or modelling errors only by correcting

the observed control errors. Modeling uncertainties and

reasoning over an anticipated distribution of outcomes,

i.e. a belief, is a more explicit way of coping with

uncertain dynamics. Planning in belief-space enables open-

loop execution of plans while still exhibiting robustness

against modeled perturbations, thus not requiring sensors.

Moreover, control errors are anticipated at planning time

and can thus be prevented before they happen, potentially

making manipulation under uncertainty more efficient.

Closed-loop control in belief-space can then be achieved

by continuously updating the belief based on observations

and subsequent replanning, combining the benefits of

reactivity with respect to unmodeled perturbations and the

effectiveness of preventing control errors at planning time.

In this article, we present an approach for modeling

the uncertainty of contact dynamics in order to synthesize

robust manipulation behavior. Towards this end, we make the

following contributions:

i) We study how a belief over an object’s configuration

propagates through uncertain contact dynamics. We derive

a prediction of the variance of object configurations upon

contact, allowing us to anticipate the reduction of uncertainty

without sampling perturbations to the contact dynamics.

ii) We introduce a contact prior for sampling candidate robot

trajectories that are likely to create contacts between the

robot and the object.

iii) Last, we propose a sampling-based trajectory optimiza-

tion algorithm that constrains solutions to be robust based

on the predicted variance (i)). The informed trajectory distri-

bution (ii)) serves as a proposal distribution that guides the

sampling-based optimization process.

In real-world experiments we demonstrate that the

proposed approach is able to synthesize robust bi-manual

pushing trajectories in only a few seconds of planning

time, consisting of long-horizon (up to 100 seconds) open-

loop pushing maneuvers that include making and breaking

contacts (cf. Fig. 1). The experimental results show that

the interplay of i) and ii) is crucial for synthesizing robust

behavior. We furthermore show that the proposed planning

algorithm is fast enough to be used in a model-predictive

control loop, enabling a combination of reactivity and

anticipatory robustness. To the best of our knowledge,

the proposed algorithm is the first model-based planning

approach that is able to synthesize robust plans for

contact-rich manipulation without pre-defined manipulation

primitives.

2 Related Work

2.1 Contact-rich Manipulation

To plan and control physical interactions such as contacts,

model-based algorithms aim to exploit these models

to synthesize manipulation behavior. Optimization-based

approaches have shown successful manipulation planning

capabilities when the desired behavior can be found via

local optimization (Hogan and Rodriguez (2020); Aydinoglu

and Posa (2022); Aydinoglu et al. (2022); Cleac’h et al.

(2021)) or when contact modes can be represented as a

small set of discrete decision variables (Marcucci et al.

(2017); Migimatsu and Bohg (2020); Toussaint et al. (2020,

2022); Chen et al. (2021)). In the case of local optimization,

however, most methods rely on gradients which require a

smoothed approximation of the contact dynamics. Moreover,

they rely on good initializations, as control actions that do not

result in the robot making contact with the object will yield a

vanishing gradient of the associated manipulation objective.

In contrast, when reformulating the manipulation problem as

finding the optimal sequence of contact modes, the difficulty

lies in an combinatorial explosion when frequent switching

of contact modes is necessary, i.e. making-and-breaking

contacts, or if multiple contact points are involved.

Recently, sampling-based planning and control algorithms

have been explored for contact-rich manipulation tasks

as a gradient-free approach to cope with discontinuous

cost landscapes. This offers a framework for combining

stochastic sampling and optimization, supporting the search

over contact-rich manipulation actions. In Pang et al.

(2023), the authors propose to use a quasi-dynamic contact

model to efficiently simulate physical interactions during

manipulation. Plans are then synthesized with an adaptation

of the RRT algorithm. While the planning algorithm is able to

generate contact-rich manipulation plans including making-

and-breaking contacts, the underlying contact model is

assumed to be accurate, resulting in plans that are not robust

to inaccuracies in the contact model. In another stream of

research on controlling contact-rich manipulation, sampling-

based optimization has been explored in model-predictive

control schemes to exploit parallel computing opportunities

(Bhardwaj et al. (2022); Howell et al. (2022); Jankowski

et al. (2023)). In this article, we build upon our previous work

on via-point-based stochastic trajectory optimization (VP-

STO) as a tool for efficiently optimizing robot trajectories

without requiring gradients of the manipulation cost with

respect to the manipulation action (Jankowski et al. (2023)).

2.2 Robust Manipulation

In robotic manipulation, uncertainty is a dominant aspect that

arises from the complex and hybrid nature of modeling phys-

ical interactions (Rodriguez (2021)). Robust manipulation

aims at exploiting particular contact configurations that nat-

urally reduce errors in manipulation tasks. In Erdmann and

Mason (1988), the authors exploit the geometry of a tray with

physical boundaries to reorient a tool without sensory feed-

back. Lynch and Mason (1995) exploit line contacts between

a robot and polygonal objects to generate robust pushing

plans. In Dogar and Srinivasa (2011), the geometry of a half-

open gripper is exploited to actively funnel the probability

distribution over object locations between the two fingers

and the palm with a push-grasp. Ha et al. (2020) model the

uncertainty in an underactuated system with additive noise

on the robot control actions and approximate the probability

distribution over state trajectories with a normal distribution

around a particular contact mode. Logic geometric program-

ming is then used to find the most robust contact mode from

a set of pre-defined candidate modes. These strategies have

in common that favorable contact geometries are used to

create natural contact dynamics that effectively decrease the

uncertainty of the manipulation system over time without the

Prepared using sagej.cls



Jankowski et al. 3

Figure 2. Analogies between active robot localization and

robust manipulation. Both can be formulated as a belief space

planning problem, where the objective is to decrease the

uncertainty of the belief over time. While active localization

approaches are based on observation models, robust

manipulation exploits favorable contact dynamics to achieve the

same goal.

need for sensors. However, the above approaches rely on a

pre-programmed set of robust behaviors that are tailored to

the robot contact geometry.

In this article, we achieve robust manipulation as the result

of optimizing over an object belief. Belief-space planning in

robotics is concerned with modeling the state of the robot and

its work space via probability distributions, e.g. for active

localization. Sensor measurements of the robot are then used

to reject or confirm possible states based on an observation

model to reduce uncertainty. Fig. 2 illustrates the analogy

of active localization and robust manipulation. Both can be

formulated as a belief-space planning problem, where the

common objective is to decrease the state-variance over time.

While the goal is to minimize the uncertainty of the robot’s

own state in localization problems, robust manipulation aims

to minimize the uncertainty of the object state. An even more

important difference lies in the way the belief is updated

over time. Instead of using observation models to rule out

possible states of the robot, robust manipulation exploits

natural invariances in the contact dynamics to let possible

object states converge to a single state.

2.3 Modeling Uncertainty in Contact Dynamics

Modeling the uncertainty in contact dynamics is a key

aspect for synthesizing robust robot behavior. In many

reinforcement learning approaches (Haarnoja et al. (2019);

Schulman et al. (2015, 2017)), domain randomization is

a natural way of informing the skill learning process

about all the possibilities that may be encountered when

moving from simulation to reality. Domain randomization

may include probability distributions over parameters of

the dynamics model such as friction coefficients, object

mass or object geometry (Andrychowicz et al. (2020);

Muratore et al. (2022)). By simulating a large number of

combinations of policy samples and domain samples, the

policy ideally converges to a behavior that is robust against

the uncertainty modeled through domain randomization.

We believe that domain randomization as an interface for

modeling uncertainties in physical interactions is the key

reason why reinforcement learning techniques show more

advanced manipulation skills in the real world such as

in-hand manipulation (Handa et al. (2023)) compared to

model-based planning and control techniques that typically

assume an accurate model. Hence, we aim to bridge the

gap between modeling uncertainty in contact dynamics

and ad-hoc planning and control techniques that do not

require data-inefficient offline training cycles by optimizing

over statistical properties of a belief without sampling

perturbations.

3 Problem Formulation & Approach

We consider an underactuated manipulation system with

nr
dof actuated degrees of freedom for the robot, and

no
dof unactuated degrees of freedom for the object to

be manipulated. We are interested in controlling the

configuration of the object qo ∈ R
no
dof by executing

robot control commands u ∈ R
nr
dof . The initial object

configuration and the contact dynamics are subject to

uncertainty, such that the object configuration at time step k
is a random variable that is described through the belief bk =
p(qo

k). We formulate the planning problem as a stochastic

optimal control problem over a horizon of K time steps:

min
u0:K−1

EbK

[

(qo
K − qo

des)
⊤

(qo
K − qo

des)
]

. (1)

We are optimizing for an open-loop control trajectory

u0:K−1 such that the expected control error at time step K
is minimal. In order to evaluate the expected control error in

(1) given a control trajectory, the belief over object positions

is to be propagated through the stochastic contact dynamics.

However, as contact dynamics are inherently non-smooth,

propagating the belief through contacts in closed-form is

intractable. Another way to explicitly evaluate the expected

cost is to sample a large number of stochastic rollouts. Yet,

this is problematic due to the fact that the evaluation of a

single robot control trajectory becomes not only inefficient,

but also stochastic.

A key to our approach is the separation of the stochastic

optimal control problem in (1) into a mean control problem

and a variance control problem (Okamoto et al. (2018);

Shirai et al. (2023)). The objective of the stochastic optimal

control problem is separated as follows:

min
u0:K−1

(EbK [qo
K ]− qo

des)
⊤

(EbK [qo
K ]− qo

des) + VbK [qo
K ] .

(2)

We provide a more detailed derivation from (1) to (2) in

the appendix. The first term in (2) corresponds to the mean

control problem, which refers to planning for the expected

object configuration EbK [qo
K ], i.e. the configuration that is

obtained if the mean initial configuration and the nominal

contact dynamics are used. Evaluating the mean control

objective does not require the propagation of the belief or

the sampling of large numbers of stochastic rollouts of the

state. In other words, the mean control problem resembles

a deterministic optimal control problem that assumes an

accurate dynamics model, while the stochasticity in the

original problem is captured by the variance control problem

represented by the second term in (2). Note that the variance

Prepared using sagej.cls
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control problem, i.e. minimizing VbK [qo
K ], is independent

of the desired object configuration qo
des. The variance of the

object configuration is defined as:

Vbk [q
o
k] = Ebk

[

(qo
k − Ebk [q

o
k])

⊤

(qo
k − Ebk [q

o
k])

]

. (3)

Thus, the stochastic optimal control problem can be solved

by controlling the nominal object configuration while also

steering its variance. The variance is a scalar measure of the

second statistical moment of the belief and can be interpreted

as the uncertainty that the system has about the object’s

configuration. However, note that computing the variance at

time step K still requires the propagation of the belief or

a Monte-Carlo approximation of the stochastic dynamics.

In Sec. 4, we present an approach which approximates

the variance of the object configuration over time without

sampling perturbations to the contact dynamics, resulting in

efficient and deterministic rollouts of the nominal dynamics

and the approximated variance. In Sec. 5 and Sec. 6,

we exploit the approximated variance in a sampling-based

trajectory optimization scheme for synthesizing robust robot

trajectories.

4 Belief Dynamics through Contacts

Given a robot control action and a belief over an object’s

configuration, we are interested in predicting the mean and

the variance of the object’s configuration at the consecutive

time step. For this, we first introduce a quasi-static model

for the object dynamics, i.e. predicting the nominal object

configuration given a robot configuration. We then model

the uncertainty of the object dynamics through additive

perturbations on the object configuration if the robot makes

contact with the object. Last, we derive a deterministic

prediction of the variance given the current belief, a control

action and the statistical properties of the perturbations.

4.1 Stochastic Quasi-Static Dynamics for

Pushing

Quasi-static and quasi-dynamic models have been used to

simplify the prediction of slow physical interactions between

robots and objects (Mason (2001); Koval et al. (2016);

Hogan and Rodriguez (2020); Cheng et al. (2021); Pang

(2021); Pang et al. (2023)). Both classes of models assume

that effects that are related to velocities and accelerations

can be neglected as they do not affect the outcome of the

prediction. This limits the range of applications to slow

interactions such as pushing tasks, insertion tasks or in-hand

manipulation. Yet, the benefits of quasi-static and quasi-

dynamic models are the lower dimensionality of the system

state, i.e. half the number of states compared to second-

order dynamics models (e.g. Todorov et al. (2012)), and

the lower temporal resolution required to compute stable

predictions of the system state. Both aspects effectively allow

for faster simulated rollouts of robot plans and thus for more

efficient model-based trajectory optimization. Such models

oftentimes denote the state as q = (qr, qo). It decomposes

into the position of the actuated degrees of freedom of the

robot qr ∈ R
nr
dof , and the position of the unactuated degrees

of freedom of the object(s) qo ∈ R
no
dof . The discretized

dynamics are consequently given in the form of

(

qr
+

qo
+

)

= f

((

qr

qo

)

,u

)

. (4)

qr
+, qo

+ are the predicted robot and object configurations

at the consecutive time step, respectively. In Pang et al.

(2023), the input u ∈ R
nr
dof is defined as the commanded

robot configuration. The robot is assumed to be controlled by

a low-level impedance controller (Hogan (1984)), such that

the robot can be modeled as an impedance for the contact

dynamics. In this article, we further simplify the quasi-

dynamic contact dynamics in Pang et al. (2023) by assuming

infinite stiffness of the controlled robot. As a consequence,

contacts with objects are assumed to not affect the robot

state itself, but only the configuration of the object. This

assumption is particularly realistic when pushing lightweight

objects with a stiff robot impedance controller. The high-

stiffness assumption induces that the robot is able to reach

a desired robot position even when being in contact with

an object, i.e. qr
+ = u. The benefit of modeling the contact

interactions in such a way is that the joint robot-object

dynamics reduce to solely object dynamics. This further

simplifies the simulation of contacts, as the non-penetration

constraint in the dynamics now only applies to the object.

This turns the quasi-dynamic contact dynamics into quasi-

static contact dynamics, as we remove the dependency on

time. We will further exploit this decoupling of the dynamics

in the subsequent derivation of transition probabilities for the

object. Yet, note that this assumption breaks when contacts

between the robot and the environment significantly affect

the robot state, e.g. when trying to move into a solid wall.

Furthermore, enclosing grasps, i.e. making contact with one

object from two opposing sides, will also break the high-

stiffness assumption as the two contact points will affect each

other. Due to these limitations, we focus the experiments on

planar pushing under uncertainty.

4.1.1 Nominal Object Dynamics. The discretized quasi-

static contact dynamics of the object are

(

qr
+

qo
+

)

=

(

u

qo + δqo

)

; (5a)

δqo = argmin
δq̃o

δq̃o⊤

M(qo)δq̃o, (5b)

s.t. d(u, qo + δq̃o) ≥ 0. (5c)

The control inputs u ∈ R
nr
dof to the system dynamics are

defined by the commanded joint positions of the robot.

In (5b), M(qo) is the inertia matrix of the object with

respect to its current configuration qo. Thus, the objective

in (5b) aims to minimize the work required to overcome the

friction between the object surface and the surface of the

environment, e.g. the table the object is placed on. d(qr, qo)
measures the shortest signed distance between the robot and

the object and thus (5c) incorporates the non-penetration

constraint, i.e. the robot does not penetrate a rigid object. As

the quasi-static robot dynamics in (5a) are decoupled from

the object configuration, the non-penetration constraint in

(5c) does not depend on the previous robot state, but only on

the control input u. This simplification allows us to represent

the system dynamics with the next desired robot position as

Prepared using sagej.cls
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the control input and the object position as the sole state

variable. The quasi-static contact dynamics of the object in

(5a)–(5c) can thus be summarized into the nominal forward

dynamics of the object configuration:

qo
+ = f(qo,u). (6)

In the following, we exploit the simplified mathematical

structure of the quasi-static contact dynamics to model

uncertainty and to analyze how object belief states propagate

through the contact dynamics.

4.1.2 Noisy Object Dynamics. We propose to model the

uncertainty in the contact dynamics as additive noise that

acts as a perturbation to the nominal quasi-static contact

dynamics in (6). Hence, the noisy object dynamics are given

by

qo
+ = f(qo,u) + ηw. (7)

The perturbation w is assumed to be sampled from a

probability distribution pw such that the resulting object

configuration satisfies the non-penetration constraint in (5c).

The noise coefficient η encodes if the robot is in contact with

the object and is defined as

η =

{

0 if d(u, qo) > 0 (no contact),

1 else (contact).
(8)

Hence, the model only considers uncertainty in the

prediction of the object configuration when the robot is

manipulating the object. The presented formulation of the

noisy discrete-time contact dynamics in (7) captures two

distinct modes: one when the robot is in contact with the

object (η = 1) and another when the robot is not in contact

with the object (η = 0). Note that we do not model different

contact modes. The contact mode η = 1 captures arbitrary

numbers of contact points with arbitrary contact geometries.

The object dynamics can thus be formulated with

qo
+ =

{

qo if η = 0 (no contact),

f(qo,u) +w else (contact).
(9)

The no-contact mode entails that the object configuration

does not change. This mode is not subject to uncertainty.

4.2 Object Belief Dynamics

In order to analyze how the belief about an object

configuration and its associated uncertainty propagate

through contact dynamics over time, we use the notation

of probabilistic state transitions. Building upon the derived

contact dynamics in (7), the state of the stochastic system

is the object configuration and the action is the next

desired robot configuration. Accordingly, we denote the state

transition probability with

qo
+ ∼ p(·|qo,u), (10)

describing the probability distribution over object configu-

rations at the next time step given the commanded robot

configuration as well as the object configuration. Note that

the random perturbation w that directly acts on the object

dynamics in (7) is captured by the stochasticity of the

transition probability in (10). We furthermore denote the

Figure 3. Belief dynamics through contact in a

one-dimensional example. a) Illustration of object samples from

the uniformly distributed initial belief (orange). The ground truth

object is depicted in non-transparent orange. b) After executing

a push from left to right, all samples that were on the left of the

push were pushed by the robot. c) The probability mass that

was on the left-hand side of the push (light-blue) is now

concentrated in a distribution at the contact point according to

the perturbation distribution (blue). The probability mass on the

right-hand side of the push does not change (blue). d) The

variance of the predicted object position is therefore a function

of the control action, where a robust control action may

decrease the variance over time.

probability distribution over object configurations as belief

b = p(qo). Given the transition probability in (10), a control

action u and the object belief b, the resulting belief b+
can be predicted by marginalizing over the initial object

configuration:

b+ = p(qo
+|u) =

∫

Qo

p(qo
+|q

o,u) b dqo. (11)

This equation represents the belief dynamics, which can

be used not only for predicting the most likely object

configuration, but also the variance of the belief after

executing action u. However, solving the integral in (11)

is typically intractable for non-linear dynamics and non-

Gaussian beliefs. Yet, in the following, we start by showing

an example problem for which we can obtain a closed-form

solution of (11), followed by the introduction of a general

approximation.

Example 1. (1D Box-Pushing). We illustrate the effects

of contacts on the belief with a one-dimensional pushing

example as illustrated in Fig. 3. The hand (i.e. the robot)

can be controlled directly while the box on the table (i.e. the

Prepared using sagej.cls
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object) can only be moved by making contact. The quasi-

static contact dynamics in this example simplify to

qo+ =

{

qo if qo > u (no contact),

u+ w else (contact).
(12)

These one-dimensional piece-wise linear dynamics move the

object to the right-hand side of the contact. The object does

not move if no contact has been made. In this example,

we consider the perturbation of the contact dynamics to

be uniformly distributed, i.e. w ∼ U[0,α]. Sub-figures a) and

b) illustrate a particular instance of the object being at qo,

which is then moved to qo+ due to the robot reaching the

commanded position u. However, in this example the initial

box position is subject to uncertainty. The initial belief b over

box positions being given as a uniform distribution on an

interval between box position qo and q̄o, respectively. The

interval is indicated by the vertical dashed lines in all sub-

figures. The initial belief is

b = U[qo,q̄o](q
o). (13)

Given a control action u ∈ [qo, q̄o] as a commanded robot

position, we can now predict the belief after contact by

solving (11). While solving the integral in (11) is typically

intractable, this example has a closed-form solution that is

given by

b+ =
u− qo

q̄o − qo
U[u,u+α](q

o
+) +

q̄o − u

q̄o − qo
U[u,q̄o](q

o
+). (14)

We illustrate the belief dynamics in sub-figure c) by

visualizing the initial belief in light-blue and the resulting

belief in dark-blue. It can be seen that the contact dynamics

result in a concentration of probability mass around the

contact point. This is due to the fact that all probability mass

to the left of the contact has moved to the same position

interval, i.e. the contact point subject to perturbation. In

the extreme case of pushing all the way through the

interval of the uniform distribution, i.e. u = q̄o, the object

belief is equivalent to the perturbation distribution with the

mean shifted to the contact point. The closed-form belief

dynamics in (14) show that the probability distribution can

be controlled by the actions a robot takes. This is underlined

by sub-figure d) plotting the variance V of the object position

after the push as a function of how far the robot pushed. Note

that while in this specific example any control action u that

makes contact with the object reduces the variance of the

belief over its position, this may not be the case in general.

An unfavorable control action could generally also increase

the variance of the belief.

4.3 Variance Prediction.

While the 1D-example above showed a closed-form solution

to the belief dynamics, this is typically intractable.

Consequently, predicting the variance with

V+ = Vb+ [qo] , (15)

in closed-form is also intractable. A common approach is to

use a Monte-Carlo approximation of the belief dynamics in

(11) in order to compute the variance of the approximated

belief update (Kappen (2015); Shirai et al. (2023)). However,

this is problematic since this induces stochasticity in the

prediction of the variance V+. Evaluating whether a control

action reduces or increases the variance may thus be

subject to uncertainty itself, which introduces numerical

issues in downstream optimization techniques. The induced

noise furthermore depends on the number of samples used

to approximate the belief. Thus, numerical problems and

approximation errors may only be avoided by choosing a

high number of samples, rendering the underlying planning

technique inefficient. In the following, we derive a different

way of predicting the variance of object configurations

without depending on the transition probability. In other

words, we eliminate the need to sample from the belief

transition distribution in (10) in order to predict the variance

given a robot action.

Instead of predicting the updated variance after taking a

control action by computing the variance of the predicted

belief as in (15), we compute the variance of the noisy object

dynamics in (7), i.e.

V+ = Vb,pw
[f(qo,u) + ηw]

= Vb[f(q
o,u)] + Vb,pw

[ηw]+

2Eb,pw
[(f(qo,u)− Eb[f(q

o,u)])⊤(ηw − Eb,pw
[ηw])] .

(16)

At this point, we introduce the assumption that the

expectation of the perturbation w is zero, i.e. Epw
[w] =

0. As a result, perturbations are modeled as zero-mean

noise in the tangential directions with respect to the contact

point and zero noise in the normal direction of the contact.

We furthermore note that the contact indicator η and the

perturbation are independent, such that the expectation of the

product of the contact indicator and the perturbation is zero,

i.e. Eb,pw
[ηw] = Eb[η]Epw

[w] = 0. Consequently, the third

term in (16) simplifies to

Eb,pw
[(f(qo,u)− Eb[f(q

o,u)])⊤(ηw − Eb,pw
[ηw])] =

Eb,pw
[η(f(qo,u)− Eb[f(q

o,u)])⊤w] =

Eb [η(f(q
o,u)− Eb[f(q

o,u)])]
⊤

Epw
[w] = 0.

(17)

As a result, the predicted variance in (16) is equivalent to the

sum of the nominally predicted variance and the variance of

the induced noise. The predicted variance is thus

V+ = Vb [f(q
o,u)] + Vb,pw

[ηw] . (18)

The left-hand term is computed through the nominal object

dynamics f , thus not including perturbations. The right-hand

term is the variance contribution from the noise acting on

the object when making contact. With the expectation of pw
being zero, i.e. Eb,pw

[ηw] = 0, the variance of the noise is

given with

Vb,pw
[ηw] = Eb,pw

[(ηw)⊤(ηw)] =

Eb,pw

[

η2w⊤w
]

= Eb

[

η2
]

Epw
[w⊤w] .

(19)

With η = η2 ∈ {0, 1}, the expectation of the squared contact

indicator is equal to the expected contact indicator, i.e.

Eb

[

η2
]

= Eb [η]. The expected value of the contact indicator

Prepared using sagej.cls



Jankowski et al. 7

Figure 4. Block diagram depicting one iteration of BS-VP-STO. The algorithm starts with sampling a population of latent candidate

trajectory variables ε. These are then decoded into robot trajectories qr

0:K using a contact prior. For each candidate trajectory the

object belief is rolled-out using the nominal object dynamics. The variance gain together with the mean control cost is then used to

compute the fitness of each candidate trajectory. Finally, the distribution of candidate trajectory variables weighted by the fitness is

used to update the Gaussian approximation of the probability distribution using CMA-ES. After M iterations, the algorithm returns

the best performing candidate trajectory as solution.

is the probability of the robot making contact with the

object given a belief over object positions and a control

action. Furthermore, note that due to the zero-mean property

of our noise distribution, the expectation of the squared

perturbation is equivalent to the variance of the perturbation,

i.e. Epw
[w⊤w] = Vw. Inserting these equalities in (19), the

variance of the applied perturbation can be expressed with

Vb,pw
[ηw] = Eb [η] Vw. (20)

As a result of this section, we predict the variance of the

object configuration with

V+ = Vb [f(q
o,u)] + Eb [η] Vw. (21)

The result in (21) is central to our contribution, as this allows

us to predict the variance of the object configuration, i.e.

the uncertainty, based on the variance of the perturbation

Vw that is assumed to be a constant value. Especially when

those perturbations are constrained to the tangent space

of the contact, sampling consistent perturbations involves

expensive computations and makes the prediction of the

variance stochastic.

4.3.1 Monte-Carlo Approximation of the Nominal

Dynamics. We approximate the variance contribution

resulting from the nominal contact dynamics using a

non-parametric representation of the belief, i.e. particles.

We denote the approximated belief as a set of Np particles

{iqo, iα}
Np

i=1, where each particle consists of a state sample
iqo and a corresponding weight iα. The weight of a

particle, 0 ≤ iα ≤ 1, represents an approximate belief in the

corresponding state sample iqo. A prediction step consists

of propagating each particle through the nominal contact

dynamics, i.e.

iqo
+ = f(iqo,u), ∀i ∈ {1, 2, .., Np}. (22)

Since we do not take any measurements during planning,

we assume that the particle weights are constant and equally

distributed, such that iα = 1/Np, ∀i. Based on the particle-

representation of the belief, we estimate the variance of the

object configuration with

V̂b[q
o] =

1

Np

Np
∑

i=1

(

iqo − µo
)

⊤
(

iqo − µo
)

. (23)

The empirical mean object configuration is computed with

µo = 1/Np

∑Np

i=1
iqo. The probability of making contact

Eb [η] is approximated as

Êb [η] =
1

Np

Np
∑

i=1

iη, (24)

where iη indicates if the i-th particle has an object

configuration that is in contact with the robot. As a result,

we approximate the overall variance prediction with

V̂+ = V̂b [f(q
o,u)] + Êb [η] Vw. (25)

When comparing the predicted variance V̂+ against the

variance of the current time step V̂b[q
o], the same set of

particles is used to compute the empirical variance as in

(23). Thus, evaluating the approximated variance dynamics

does not involve sampling and is thus deterministic. We

exploit this approximation in Sec. 5 when optimizing robot

trajectories based on the predicted variance.

5 Stochastic Trajectory Optimization for

Robust Manipulation

Given our objective to push an object into a desired goal

configuration subject to stochastic contact dynamics (cf. (2)),

this section presents a framework that optimizes for robust

robot trajectories directly in the belief space over possible

object configurations. This framework extends our previous

work VP-STO (Jankowski et al. (2023)) to belief-space via-

point-based stochastic trajectory optimization (BS-VP-STO).

Our framework exploits the variance prediction developed in

Sec. 4 for synthesizing robust manipulation behavior. Due

to the quasi-static pushing model in (5a) - (5c), a robot

trajectory is equivalent to a control trajectory, i.e. qr
1:K =

u0:K−1. Thus, BS-VP-STO is a shooting method aiming at
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minimizing an objective that depends solely on the object

configuration as in (1). Due to the non-smooth nature of the

contact dynamics and the resulting non-smooth cost function

with respect to the optimization variable, we approach the

optimization problem with a gradient-free, i.e. zero-order,

evolutionary optimization technique.

Fig. 4 illustrates the optimization loop that is based on

zero-order optimization of the variable ε, which uniquely

encodes a robot trajectory. At the beginning of the m-

th iteration, we sample Ncand candidate trajectories from

a latent Gaussian distribution that represents the current

solution to the optimization problem:

εj ∼ N (ε̄m,Σm), ∀j ∈ {1, 2, . . . , Ncand}. (26)

The latent variable εj translates to a robot trajectory

through an affine mapping g, i.e. u
j
0:K−1 = g(εj). This

affine mapping imposes a contact prior on the sampling of

robot trajectories, which is presented in Sec. 5.2. Given a

candidate robot trajectory u
j
0:K−1 and an initial belief over

object positions b0 = p(qo), we compute the nominal belief

dynamics. This results in a nominal belief trajectory b̃j0:K for

each candidate εj . Based on the nominal belief trajectory

we compute the step-wise predicted variance as developed in

Sec. 4. The predicted variance is subsequently used in a cost

and a constraint to the optimization problem, which is further

outlined in Sec. 5.1. Together with a cost for controlling

the mean of the object configuration, the total cost of each

candidate trajectory is used to update the parameters of

the latent Gaussian distribution, i.e. ε̄m+1,Σm+1 based on

Covariance Matrix Adaptation (CMA-ES) (Hansen (2016)).

After M iterations, we return the best performing sample that

returned the lowest cost.

5.1 Variance Gain Control

In Sec. 4 we derive an approximation of the one-step

prediction of the variance of the object configuration.

However, this does not enable the prediction of the variance

after multiple time-steps, which is due to the fact that the

prediction of the variance V̂k+1 in (25) requires the belief of

the previous time step bk to be known. Therefore, instead of

directly controlling the variance at the end of the trajectory

V̂K , we propose to control the predicted variance at each

time step. Given a robot trajectory u
j
0:K−1, we thus compute

the nominal belief over object configurations at each time

step, i.e. b̃k, via the the nominal object dynamics in (6).

Given the particle set that approximates the initial belief b0 =
p(qo) as an input to BS-VP-STO, the nominal belief rollout

is computed by applying the nominal forward dynamics to

all particles:

iqo
k+1 = f

(

iqo
k,uk

)

, ∀i ∈ {1, 2, .., Np}. (27)

The one-step prediction of the variance at each time step can

then be computed as

V̂k+1 = V̂b̃k
[f(qo,uk)] + Êb̃k

[η] Vw

= V̂b̃k+1
[qo] + Êb̃k

[η] Vw.
(28)

In order to quantify the change of uncertainty due to a

given control action uk, we are interested in the amount

Figure 5. Belief dynamics through contact in a two-dimensional

example. The three sub-figures on the right illustrate the

predicted belief b+ via samples in orange. All three cases

started from the same initial belief b that is depicted in the

left-most sub-figure. The visualization of the prediction on the

left shows an increase of the variance of the object position as a

consequence of pushing with a single contact point (γ > 1). The

second prediction shows a constant variance as a consequence

of pushing with a flat contact surface (γ = 1). The right-most

sub-figure shows a decrease of the variance of object position

as a consequence of pushing with two contact points (γ < 1).

of variance that is gained over one time step. Note that

the variance of a continuous random variable is closely

related to its differential entropy. While the variance as

defined in (3) is equivalent to the trace of the covariance

matrix, i.e. the sum over all eigenvalues, the upper bound

of the differential entropy is monotonic in the determinant of

the covariance matrix, i.e. the product over all eigenvalues

(Cover and Thomas (2005)). As a result, the variance of

a continuous random variable yields an upper bound for

its entropy. Therefore, we introduce a new metric γ, which

we call variance gain, measuring the relative change of the

variance after applying an action uk, i.e.

γk =
V̂+

k+1

V̂b̃k
[qo] + Vw

=
V̂b̃k+1

[qo] + Êb̃k
[η] Vw

V̂b̃k
[qo] + Vw

. (29)

The variance gain γ is the ratio of the output variance,

i.e. the predicted variance V̂k+1, to the input variance, i.e.

V̂k +Vw. Fig. 5 illustrates three different robot actions

resulting in different variance gains. It shows that the contact

geometry plays a crucial role when planning to make contact

between the robot and an object. The variance gain γ reflects

that the contact geometry affects the robustness of a contact,

e.g. when pushing. The left sub-figure shows that using one

finger for pushing a circular object with uncertain location

results in an increase of variance (γ > 1). In contrast, the

right sub-figure shows that using two fingers with one finger

pushing the object towards the other finger results in a

decrease of variance (γ < 1). Using a flat contact surface

to push an object with uncertain location keeps the variance

constant as shown in the middle sub-figure (γ = 1). Note that

the variance gain is lower or equal to one for robot actions

that have zero probability of making contact with the object.

In this case, the belief does not change, i.e. V̂b̃k+1
[qo] =

V̂b̃k
[qo], since no perturbation is injected into the belief, i.e.

Êb̃k
[η] Vw = 0. Thus, a no-contact action results in

γno−contact =
V̂b̃k

[qo]

V̂b̃k
[qo] + Vw

≤ 1. (30)

We propose to enforce robustness in the optimization

problem by constraining the solution to variance gains
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Figure 6. Comparison of uninformed and informed sampling of

robot trajectories. The left sub-figure shows trajectory samples

drawn from a probability distribution computed without a contact

prior (Qq = 0). The right sub-figure shows trajectory samples

drawn from a probability distribution computed with a contact

prior (Qq > 0). The contact prior guides the sampling of robot

trajectories towards regions where the robot is likely to make

contact with the object given the object belief.

smaller or equal to one at all steps, i.e.

γk ≤ 1 ∀ k. (31)

Due to the zero-order technique that we use for optimizing

the robot trajectory, we deploy the robustness constraint as

a barrier cost, i.e. a discontinuous cost that is zero if the

constraint is satisfied and returns a high value if the constraint

is violated. We can further reduce the predicted variance by

adding a cost term that is active if the constraint is already

satisfied. This is encapsulated in the following cost term

crobust = λc

K−1
∏

k=0

e−
1−γk
K−1 , (32)

with a discontinuous cost weight

λc =

{

1 if maxk γk ≤ 1,

103 else.
(33)

The total cost of a candidate robot trajectory is computed as

the sum of the variance gain control cost in (32) and a task-

specific cost ctask that computes the deviation of the mean of

the object configuration to the desired goal configuration.

5.2 Trajectory Sampling with a Contact Prior

The efficiency of sampling-based optimization algorithms

depend on the quality of the generated samples. In this

section, we present how the object belief can be used to

inform the sampling of robot trajectories for manipulation

tasks. In general, it is desirable to sample trajectories with a

likelihood that is proportional to the negative cost that can

be expected from executing the trajectory. In the following,

we denote a robot trajectory with qr
0:K = [qr

0, q
r
1, . . . , q

r
K ],

where K corresponds to the number of discretized steps

captured by the trajectory. Suppose that the cost is given as

a function of the robot trajectory, i.e. c = fc(q
r
0:K), then we

would like to sample robot trajectories from a corresponding

probability distribution with

p(qr
0:K) ∝ exp (−fc(q

r
0:K)) . (34)

While we do not have access to such a generative probability

distribution, we approximate it with a prior that improves the

sample-efficiency of the optimization algorithm compared

to sampling initial guesses from an uninformed probability

distribution. The idea is to sample robot trajectories in

regions where the robot is likely to make contact with

the object given its belief. This is motivated by the

observation that making contact is a necessary precondition

of manipulating an object.

Figure 6 illustrates the impact of the contact prior on

trajectory samples. Without the contact prior, a large portion

of the candidate trajectories explores regions in which the

robot does not move into the object belief, and thus does not

contribute to the optimization process.

5.2.1 Via-point-based Trajectory Parameterization. In

order to efficiently synthesize robot trajectories in a low-

dimensional space, we adopt the via-point-based trajectory

representation as in Jankowski et al. (2023). The robot

configuration is given with

qr(t) = Φvia(t)θ + φ0(t, q
r
0, q̇

r
0), (35)

where the robot trajectory is parameterized with

θ =







q1
via
...

qN
via






∈ R

N ·nr
dof . (36)

The trajectory parameter θ contains N via-points the

trajectory passes through. The basis functions Φvia(t)
enforce that the trajectory passes exactly through the via

configurations while smoothly interpolating with minimal

acceleration. The basis functions furthermore enforce that

the velocity at the end of the trajectory is zero. Note that the

last nr
dof elements of θ are the final robot configuration at

the end of the trajectory, i.e. qr(T ) = qr
K = qN

via. The basis

offset φ0(t, q
r
0, q̇

r
0) incorporates the initial robot position

qr
0 and velocity with q̇r

0 . T denotes the duration of the

trajectory. We use the time scaling algorithm in Jankowski

et al. (2023) for computing the duration of a trajectory based

on a given parameter θ such that user-defined velocity and

acceleration limits are enforced. For implementation details

on how to compute the basis functions and offsets, please

refer to Jankowski et al. (2022).

In the following, we are interested in computing a

Gaussian distribution of the via-points θ to efficiently sample

from. Due to the affine mapping from via-points to robot

trajectories in (35), this corresponds to sampling from a

Gaussian distribution of continuous robot trajectories.

5.2.2 Gaussian Contact Prior. The contact prior is a

probability distribution that guides the sampling of robot

trajectories towards regions where the robot is likely to

make contact with the object. To allow for variations in how

to approach the contact with the object, we only consider

the final robot configuration of the trajectory to be subject

to the contact prior. This is incorporated by exploiting the

parameterization of the robot trajectory in (35), where the

final robot configuration is explicitly given by the last nr
dof

elements of θ.

Suppose that a conditional Gaussian distribution

pc(q
r|qo) = N (fc(q

o),Σr|o) (37)

approximates the probability density of a robot configuration

making contact with the object. Furthermore, suppose that
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the object configuration is Gaussian distributed as well

with qo ∼ N (µo,Σo). Practically, we find the Gaussian

distribution of object configurations by approximating the

initial belief b0 with a Gaussian distribution for computing

the contact prior. This lets us compute a probability

distribution over robot configurations indicating how likely

it is to establish a contact between the robot and the object:

pc(q
r) = N (fc(µ

o),Σr|o +AΣ
oA⊤), (38)

with A = ∂fc/∂qo|µo . The corresponding prior on the

trajectory parameter θ is then given by

pc






θ=







q1
via
...

qN
via












= N















0

...

q̄c






,







0 · · · 0

...
. . .

...

0 · · · Qq







−1








,

(39)

where Qq =
(

Σ
r|o +AΣ

oA⊤

)−1
describes the precision

matrix of the contact prior with respect to the mean contact

configuration q̄c = fc(µ
o). We denote the contact prior with

pc(θ) = N (θ̄c,Q
−1
θ ). (40)

Note that the resulting covariance matrix Q−1
θ is degenerated

due to zero-precision values for the via-points except for

qN
via. For resolving the degeneration, we regularize the

covariance matrix by combining the contact prior with a

smoothness prior as described in the following.

5.2.3 Gaussian Contact Prior in Joint Space. Optimizing

in the joint space of an articulated robot such as robot arms

may be beneficial when kinematic and dynamic limitations

are to be considered during planning. Sampling in joint space

requires to represent the contact prior in joint space as well.

Suppose that the robot’s end-effector, that is supposed to

manipulate the object, has a configuration given by xr which

is computed from the robot’s joint positions qr via forward

kinematics xr = ffk(q
r). We may adopt the contact prior in

(38) to formulate a prior distribution over configurations of

the end-effector, i.e.

pc(x
r) = N (fc(µ

o),Σr|o +AΣ
oA⊤). (41)

For computing a corresponding Gaussian distribution in joint

space, the forward kinematics are linearized around a mean

joint position q̄r
c with

xr ≈ ffk(q̄
r
c ) + J(q̄r

c ) (q
r − q̄r

c ) , (42)

where J(q) = ∂xr
/∂qr|q̄r

c
denotes the Jacobian with respect

to the end-effector configuration. The mean joint position q̄r
c

can be computed via inverse kinematics with respect to the

mean end-effector configuration fc(µ
o). Consequently, the

Gaussian contact prior for the end-effector can be locally

transformed into the joint space, resulting in a Gaussian

distribution pc(q
r) = N (q̄r

c ,Q
−1
q ). The joint space contact

precision matrix is computed with

Qq = J(q̄r
c )

⊤

(

Σ
r|o +AΣ

oA⊤

)−1

J(q̄r
c ). (43)

Figure 7. Smooth trajectories sampled from the product of the

smoothness prior and the contact prior. The contact prior is

indicated by the orange ellipses and circles with the mean of the

contact prior in the center. The velocity profile of the trajectories

is encoded through color with low velocities in blue and high

velocities in yellow. Note that all trajectories start and end with

exactly zero velocity.

5.2.4 Gaussian Smoothness Prior. The smoothness

prior, introduced in our previous work (Jankowski et al.

(2023)), incorporates temporal correlations between via-

points by computing a Gaussian distribution that expresses

a high likelihood for low-acceleration profiles. A typical

objective in trajectory optimization is to minimize the

integral over squared accelerations of the candidate

trajectory, i.e.

Js =
1

2

∫ T

0

q̈r⊤(t)Rqq̈
r(t)dt. (44)

The positive definite matrix Rq encodes the desired

smoothing for the individual degrees of freedom. Using the

parameterization in (35), this objective can be expressed

using the via-point parameter θ and the initial conditions

for the trajectory qr
0, q̇

r
0 , i.e. Js(θ, q

r
0, q̇

r
0). As a next step,

we express the smoothness prior as a probability distribution

parameterized with the negative objective in (44) with

ps(θ, q
r
0, q̇

r
0) ∝ e−Js(θ,q

r
0 ,q̇

r
0). (45)

Interestingly, this results in a joint Gaussian distribution

over the trajectory parameter and the initial conditions. We

then compute a Gaussian smoothness prior on the trajectory

parameter by conditioning on the initial conditions, i.e.

ps(θ|q
r
0, q̇

r
0) = N (θ̄s,R

−1
θ ), (46)

with the precision matrix being computed with

Rθ =

∫ T

0

Φ̈
⊤

via(t)RqΦ̈via(t)dt. (47)

Please refer to the appendix for the derivation of (47) and

for details on how to compute the smoothness prior mean

θ̄s. Note that the smoothness precision matrix Rθ can be

computed offline as it does not depend on the trajectory

parameter θ.
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Figure 8. BS-VP-STO optimizing the trajectory of a rectangular robot to push a circular object into a goal region subject to

uncertain initial object location (represented by a particle-based belief representation) and uncertain contact dynamics. The

sub-figures show the best performing candidate solution with the corresponding velocity profile, as well as the other trajectory

samples in light gray, after 1, 10, 40 and 120 iterations from left to right.

5.2.5 Product of Gaussian Priors. Given the two priors

for making contact and smooth trajectories respectively, we

find the informed via-point distribution by fusing the two

probabilistic priors via computing the normalized product of

the two priors, such that

p(θ) = N (θ̄,Σθ) ∝ pc(θ)ps(θ|q
r
0, q̇

r
0). (48)

The product of two multivariate Gaussians is again a

multivariate Gaussian, with the resulting parameters given

by

Σθ = (Qθ +Rθ)
−1

, (49a)

θ̄ = Σθ(Qθθ̄c +Rθθ̄s). (49b)

Fig. 7 illustrates trajectories sampled from the product of

the contact prior, parameterized by Qq , and the smoothness

prior, parameterized by Rq . Within each sub-figure, all

trajectories are drawn from a single Gaussian distribution.

Note that all trajectories start and end with zero velocity.

5.2.6 Optimizing and Sampling in Latent Space. Given

the product of priors, we use the informed generative

via-point distribution p(θ) as a probabilistic initial guess

for optimizing robot trajectories with CMA-ES. Instead

of directly sampling trajectory candidates θ from an

uninformed distribution, e.g. white noise, we sample and

optimize for ε ∈ R
Nnr

dof . For a given ε, we compute θ

through an affine transformation as follows:

θ = θ̄ +Lθε. (50)

Here, Lθ is the Cholesky decomposition of the covariance

matrix Σθ . The parameters θ̄ and Σθ incorporate the prior

as defined in (49). The idea of this additional transformation

is to decouple the optimization variable ε from the particular

prior. In each iteration m of BS-VP-STO, we obtain the new

population of candidate solutions by sampling Ncand robot

trajectories via

θ ∼ N
(

θ̄ +Lθε̄m,LθΣmL⊤

θ

)

. (51)

When initializing the CMA-ES distribution as white noise,

i.e. ε̄0 = 0 and Σ0 = I , we effectively sample the first

population from the informed distribution in (49), as

inserting the initial parameters into (51) yields

θ ∼ N
(

θ̄,LθL
⊤

θ

)

= N
(

θ̄,Σθ

)

. (52)

Eventually, given a sampled trajectory parameter θ, we find

the control trajectory with respect to the system in (6) by

discretizing the robot trajectory in (35), i.e.

uk = qr

(

t = T ·
k + 1

K

)

. (53)

Note that due to the quasi-static model in (6), the dynamics

can be rolled out with an arbitrary temporal resolution.

Example 2. (Single-horizon Robust 2D Object-Pushing).

We showcase the BS-VP-STO pipeline over multiple

iterations for a 2D object pushing example, illustrated in

Fig. 8. The task for the robot, a rectangular geometry, is to

push the object, a circular geometry, into a target region. We

consider two sources of uncertainty in this example: a) The

initial position of the object is uncertain, which is reflected by

an initial belief; and b) the contact dynamics are uncertain.

This task requires exploring contact modes that are robust

to these uncertainties, as implicitly done by the presented

planning algorithm.

After the first iteration, the best solution corresponds to

the robot making contact with its long side. Note that this

solution corresponds to the best candidate of the initial

population sampled from the product of Gaussian priors,

without any CMA-ES updates. Due to the probabilistic

contact prior, almost all of the 30 initial candidates bring the

robot into contact with the object, enabling an informative

sampling of the cost landscape. After 10 iterations of BS-

VP-STO, the algorithm found a solution making robust

contact with the object while moving it slightly towards the

target area. The solution after 40 iterations enables the robot

to almost push the object into the target area. After 120

iterations, the algorithm found a solution for pushing the

object robustly into the target area, while also optimizing the

overall motion duration which is incorporated into ctask. The

tight distribution of candidate solutions after 120 iterations

indicates that CMA-ES has converged.
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Algorithm 1: Receding-horizon BS-VP-STO

Input: Robot configuration qr
0 and velocity q̇r

0 ,

object belief b0, receding horizon length H .

Output: Robot trajectory u.

1 u← ∅
2 while task not solved do

3 qr∗
0:K , q̇r∗

0:K ← BS-VP-STO(qr
0, q̇

r
0, b0)

4 u∗
0:H−1 ← qr∗

1:H

5 for k ← 0 to H − 1 do

// Stochastic rollout

6
iqo

k+1 ∼ p(·|iqo
k,u

∗
k), ∀i ∈ {1, 2, .., Np}

7 end

8 qr
0, q̇

r
0 ← qr∗

H , q̇r∗
H

9 b0 ← {
iqo

H}
Np

i=1

10 u← concatenate
(

u,u∗
0:H−1

)

11 end

6 Receding-horizon BS-VP-STO

Planning a pushing maneuver over a single long horizon

is challenging for two reasons: i) The dimensionality of

the solution space of the optimization problem grows as

the solution requires higher expressiveness. In the presented

algorithm, this is reflected by an increasing number of

via-points N that parameterize the robot trajectory. ii) In

BS-VP-STO, the belief is rolled out using the nominal

object dynamics, i.e. without inducing noise. For robust

candidate trajectories, the belief may collapse to a Dirac-

delta distribution after kcollapse steps, i.e. b̃k = δ(qo
k), ∀k ≥

kcollapse, resulting in zero variance. In this case, the variance

gain at those time steps is either γk = 0 if the robot does

not touch the object, or γk = 1 if the robot touches the

object. Thus, the optimization is strongly biased towards not

touching the object after kcollapse steps.

For these reasons, we propose receding-horizon BS-VP-

STO, a planning scheme for pushing maneuvers over longer

horizons. The scheme alternates between computing a robust

push via BS-VP-STO and performing a stochastic rollout of

the solution. This allows to plan pushing maneuvers over

multiple shorter horizons, while optimizing for task progress,

i.e. pushing the object towards the goal, and robustness over

a single horizon.

Alg. 1 sketches the receding-horizon procedure for

planning pushing maneuvers. Starting from the initial robot

configuration qr
0 and velocity q̇r

0 , a given initial belief b0
and the number of time steps for a receding horizon H ,

BS-VP-STO is used to generate a robust pushing trajectory

qr∗
0:K . In order to update the belief for the subsequent

receding-horizon, we perform a stochastic rollout of the

robust pushing trajectory, i.e. sampling from the transition

probability in (10). Note that the update of the belief can

be extended by taking observations into account. For this,

line 9 in Alg. 1 may be replaced by a Bayesian state

estimation update, e.g. a particle filter (Arulampalam et al.

(2002)), thus turning the offline planning algorithm into an

online re-planning approach. When planning offline, the

optimized pushing trajectories of the receding-horizons are

sequenced to form a single continuous trajectory over a long

horizon. This process may be repeated until a task-specific

Figure 9. Receding-horizon BS-VP-STO optimizing the

trajectory of a rectangular robot to push a circular object into a

goal region subject to an uncertain initial object location and

uncertain contact dynamics. The sub-figures show the robot

trajectory optimized over the corresponding receding-horizon

together with a stochastic rollout of the object dynamics. In each

receding-horizon, the algorithm optimizes for a tradeoff between

pushing progress and robustness. The resulting pushing

maneuver is more robust than the solution found when

optimizing over a single horizon as in Fig. 8.

termination criterion is satisfied, e.g. the mean object

configuration is within bounds of the target.

Example 3. (Receding-horizon Robust 2D Object-

Pushing). In this example, we solve the same problem as

in Example 2, while iteratively optimizing over multiple

receding horizons instead of running BS-VP-STO only once

over the full horizon. For this, we only adapt the task-

specific cost to reflect the pushing progress towards the goal.

We measure this progress by computing the distance dk =
||E[qo

k]− qo
des||2 between the target area center qo

des and

the mean object position at that time step. We compare the

distance at the end of the receding horizon with the distance

at the beginning of it in order to make the cost invariant

to absolute distance to the target. Progress is thus defined

as d0 − dK . Consequently, the task-cost ctask is defined as

follows

ctask(u0:K−1) = e−λ(d0−dK). (54)

Fig. 9 illustrates each solution of the optimization over

multiple shorter horizons. It can be seen that a single-horizon

push moves the object belief towards the target area with

high probability. The overall pushing maneuver, obtained by

sequencing the robot trajectories of the individual horizons,

has no constraints on the number of parameters, i.e. the

number of via-points, as the number of receding horizon

operations is not fixed but rather tied to a goal check. It

is therefore expected to be more expressive than a single-

horizon solution and thus more robust.

7 Experiments: Robust Pushing

This section presents robot experiments validating the theory

and algorithmic approach developed in this article. We use

objects that the robot has never interacted with before, with

the geometry of the objects being the only information

available. In all experiments, we compare the performance of

the proposed approach against a baseline that only uses the

nominal model of the contact dynamics without considering

uncertainties. For this, the planner assumes that the initial

object position is known and it uses the nominal object

dynamics from Sec. 4 as a deterministic dynamics model.
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Figure 10. Open-loop single-hand pushing experiment: The

task for the robot is to use the rectangular geometry of its hand

(highlighted in green) to push the object with a circular

geometry (highlighted in orange) into a target position without

sensory feedback. The experiment consists of repeating the

same pushing plan open-loop until the object diverged off the

path such that the robot does not make contact anymore.

Consequently, we run the baseline without the cost and

constraints on the variance gain.

7.1 Implementation

We implement the contact dynamics as in (6) for the special

case of circular and rectangular shapes in two dimensions.

In order to approximate the initial belief via particles, we

found that Np = 20 particles are sufficient to generate robust

plans. For computing the CMA-ES updates to the Gaussian

distribution over candidate trajectories, we use the Python

package provided by the authors of Hansen (2016). We

provide additional details on the cost design in the appendix.

The planning algorithm was executed on a laptop with

an Intel Core i9-14900HX CPU and 32GB of RAM. On

average, generating a robust pushing plan for the full target

path takes around seven seconds wall-clock time.

7.2 Open-Loop Single-Hand Pushing

The first experiment takes Example 3 from simulation

into the real world. As an end-effector, the robot uses the

rectangular-shaped hand of the Franka robot to push the

target object, without considering the fingers for contacts.

Fig. 10 illustrates the experimental setup showing the initial

robot configuration, the initial object position and the target

object position. We compare trajectories of 2D positions

and yaw angles of the hand generated by our approach

(receding-horizon BS-VP-STO) and a baseline approach.

The baseline optimizes for efficient trajectories assuming

that the nominal contact dynamics accurately predict the

object trajectory. To evaluate the robustness of generated

plans, we execute the plan to let the robot push the object

into the target position and use the same plan for pushing

the object back to the initial position. Subsequently, the

same plan is executed repeatedly open-loop with the object

located where the previous execution ended. We expect that

uncertainties in the contact dynamics will lead to deviations

from the nominal model, resulting in the accumulation of

control errors. Hence, we measure robustness by counting

the number of successive runs until the robot loses the object.

For a video showing qualitative results, see Extension 1. In

the following, we report quantitative results.

7.2.1 Deterministic Baseline As the baseline does not

account for uncertainties in the contact dynamics, the

resulting optimal trajectory consists of pushing in a straight

line towards the target position while keeping the long side of

the hand perpendicular to the pushing direction. We execute

10 experiments with the optimal baseline plan, resulting in

an average of 6.8 (min. 5, max. 9) successive runs until the

robot loses the object. This is the result of deviations from

the nominal model due to real-world perturbations such as

imperfect friction surfaces and mass distributions, leading

to an accumulation of errors in the object positions when

pushing a circular object with a flat surface.

7.2.2 Receding-horizon BS-VP-STO The proposed algo-

rithm uses the same nominal model that was used in the base-

line, while modeling additional uncertainty. The resulting

optimal trajectory is executed in 10 open-loop experiments

without additional perturbations to compare the result with

the baseline. All experiments have been stopped after 40
successive runs as the system did not show any sign of accu-

mulating errors. This indicates that the optimized trajectory

actively controls the uncertainty in the object position by

keeping track of the open-loop propagated belief.

7.3 Open-Loop Bi-manual Pushing

We choose to validate the proposed algorithm with a bi-

manual pushing task, consisting of two Franka robot arms

that are equipped with ball-shaped end-effectors. Note that

we treat the two robot arms as one bi-manual robot. We

plan 2D trajectories for the ball-shaped end-effectors in a

plane parallel to the table. The dynamics are modeled in

this 2D plane, where the two robots are abstracted as two

independent circles. The objects are abstracted as circles

as well. Fig. 11 shows the experimental setup. Initially,

the object (bottle, glass or can) is placed in front the bi-

manual robot and the goal for the robot is to push the object

along a circular target path. The belief over object positions

is initialized with a Gaussian distribution. We furthermore

modeled the noise in the contact dynamics with a Gaussian

distribution and we tuned the covariance to capture the

stochasticity in the contact dynamics. To prevent collisions

between the two end-effectors, we include a collision

constraint enforcing that the two end-effectors do not touch.

We also add a constraint that prevents the robot from crossing

its arms. Note that the time, location and number of contacts

is subject to planning, i.e. we do not impose any heuristic

that forces the robot to use both end-effectors for pushing.

Instead, the proposed cost and constraint on the variance

gain drives the optimization algorithm to find stabilizing

contact configurations and sequences, such as using both

end-effectors for pushing.

7.3.1 Qualitative Planning Results. We illustrate plans

generated with the deterministic baseline and with the pro-

posed receding-horizon BS-VP-STO algorithm in Fig. 12.

Each plan is presented with 1000 stochastic rollouts of the

object dynamics used for optimization. For an evaluation

of the real-world performance of the plans, please refer to

Sec. 7.3.3.
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Figure 11. Open-loop bi-manual pushing experiment: The two manipulators are considered as one bi-manual robot with two

end-effectors, each equipped with a ball-shaped end-effector. The object (bottle, glass or can) is placed in front of the robot and the

goal is to push the object along the target path (red circle). All objects were chosen due to their circular shape for the sake of a

simple implementation of the quasi-static contact dynamics. The initial belief over the object position is Gaussian distributed with a

mean equal to the initial object position and a covariance that reflects the uncertainty in the object detection. The contact dynamics

are modeled probabilistically to reflect uncertainty. For the experiments with the can, we add additional perturbations by placing

wooden cubes (red cubes) on the target path and by changing the center of mass to be off-center by placing a heavy tool in the can

(yellow content of the can).

Figure 12. Qualitative comparison between the proposed

receding-horizon BS-VP-STO algorithm and the deterministic

baseline. We perform 1000 stochastic rollouts of each

generated plan using the proposed stochastic object dynamics.

The left and right end-effectors are visualized with black and

blue circles, respectively. The target path is depicted in

light-green. a) For testing the baseline plan, the object position

is initialized with the expected position (orange circle). For the

proposed approach, we initialize the object position according to

the modeled uncertainty. b) Plans generated for an object with 5

cm radius, i.e. the bottle and the can. c) Plans generated for an

object with 3 cm radius, i.e. the glass.

Deterministic Baseline. In all plans generated with the

deterministic baseline, the robot uses only one end-effector

at a time for pushing the object. This is not surprising as the

pushing progress, i.e. the mean control problem, is equally

optimized when using one or two end-effectors. Thus, the

baseline is not forced to discover the coordination between

the two end-effectors and converges to the simpler solution,

i.e. using one end-effector. When performing open-loop

stochastic rollouts of the baseline plans, the object deviates

from the planned trajectory after some time and thus the

robot is not able to successfully push the object along the

whole target path.

Receding-horizon BS-VP-STO. In contrast, we observe

that the robot uses both end-effectors to push the object along

the target path when planning with the receding-horizon BS-

VP-STO algorithm. Note that the strategy of using two end-

effectors for pushing deliberately emerges from planning in

belief space. The proposed algorithm discovers the use of

two end-effectors by penalizing sampled robot trajectories

that result in an increasing uncertainty about the object

position, i.e. using one end-effector. At the beginning of

the pushing maneuver, the robot performs an action that

reduces uncertainty by placing its end-effectors such that

they enclose the initial belief. This effectively brings the

particles closer together, resulting in a decreasing variance.

The robot then starts to make contact with its two end-

effectors side-by-side to push the object along the target path

with high probability. After pushing the object along the first

half of the circular target path, the no-collision constraint

between the two end-effectors forces the robot to break the

contact and to find a new contact configuration with which it

can continue pushing. Consequently, the robot has to move

its left end-effector around the object without touching it.

Afterwards, the robot makes contact again with the object

and continues pushing until it reaches the initial position

again. When performing open-loop stochastic rollouts of

the robust plans, the robot has a high probability of being

successful at pushing the object along the target path despite

the perturbations and the lack of feedback.

7.3.2 Quantitative Planning Results & Ablation Studies.

In the following, we present ablation studies of the different

components of receding-horizon BS-VP-STO. We evaluate

i) the dependence of the overall algorithmic performance
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Figure 13. Success rates of receding-horizon BS-VP-STO over

the number of BS-VP-STO iterations M . We compare the

performance of the planning algorithm with the contact prior

Qq > 0 and without Qq = 0; and we evaluate the scalability of

the planning algorithm to many degrees of freedom (14 DoF). A

planning run is considered successful if a valid solution is found

within 500 single-horizon optimizations.

on the number of iterations taken in each BS-VP-STO

instance within the receding-horizon setting, ii) the relevance

of a contact-prior compared to an uninformed proposal

distribution, and iii) how the receding-horizon BS-VP-STO

algorithm scales with the number of degrees of freedom

of the robot. We summarize all findings in Fig. 13 which

evaluates the success rate of the receding-horizon BS-VP-

STO algorithm, i.e. if the planning algorithm finds a valid

solution for the robot pushing an object with 5 cm radius.

A plan is considered successful if the mean of the object

belief is within 1 cm tolerance to the target location and if

the plan is valid with respect to the robustness constraints

on the variance gain. The planning algorithm is aborted

after 500 iterations of receding-horizon BS-VP-STO and the

plan is considered a failure. Sub-figure b) on the right-hand

side in Fig. 12 illustrates a successful plan for the problem

considered for the ablations. We instantiate the planning

problem with a varying number M of iterations for one BS-

VP-STO instance within the receding-horizon scheme. For

each M , we run receding-horizon BS-VP-STO 50 times and

measure the success rate of the planning algorithm.

Impact of the Number of BS-VP-STO Iterations.

Fig. 13 illustrates the statistics of success over the number

of BS-VP-STO iterations. We observe that the success

rate increases with the number of iterations M and

reaches around 100% success rate with M = 4 BS-VP-

STO iterations. Note that running BS-VP-STO for one

iteration poses a special case of the algorithm since no

CMA-ES update is performed, resulting in only sampling an

initial candidate population and picking the best performing

candidate. This procedure in fact corresponds to the

predictive sampling algorithm introduced in Howell et al.

(2022).

The planning time increases linearly with the number

of iterations. For reference, performing one BS-VP-STO

iteration for four degrees of freedom takes approximately

0.01 seconds wall-clock time. In this setup, we execute the

pushing plan for an execution horizon H that corresponds to

0.2 seconds. Thus, it would be possible to run the planning

algorithm in an online receding horizon fashion with up to

M = 20 BS-VP-STO iterations per receding-horizon.

Impact of the Contact Prior. To evaluate the impact

of the contact prior, we set the contact precision matrix

in BS-VP-STO to Qq = 0 (cf. (39)). This corresponds

to uninformed trajectory samples as depicted in the left

sub-figure of Fig. 6. In Fig. 13 we observe that the

success rate of the algorithm without the contact prior is

significantly lower than the success rate of the algorithm

with the contact prior. This indicates that the contact prior

is improving the efficiency of the planning algorithm to find

robust manipulation actions in few iterations. Computing the

contact prior requires a matrix inversion to compute Qq

with dimensionality equivalent to the number of degrees

of freedom. Since this operation has to be performed only

once for a single-horizon, the computational overhead of the

contact prior is negligible.

Scalability to Many Degrees of Freedom. Last, we

evaluate the scalability of the proposed planning algorithm

to many degrees of freedom by moving from planning in

the 2D plane to planning in the joint space of the bi-manual

robot, which has 14 degrees of freedom (seven degrees of

freedom per robot arm). Coordinating all degrees of freedom

adds complexity to the planning problem, while at the same

time increasing the dimensionality of the search space. In

Fig. 13 we observe that the success rate for a given number

of iterations M drops when increasing the complexity of the

problem, requiring more iterations to discover the required

coordination between the 14 joints. While the contact prior

in joint space (cf. Sec. 5.2.3) imposes coordination between

the seven joints of the individual arms, BS-VP-STO is still

required to find joint trajectories such that the two end-

effectors touch the object at the right place at the right time.

The planning time per iteration is not significantly increased

compared to planning for four degrees of freedom, since only

an additional forward kinematics computation for the belief

rollout is required. However, note that the contact dynamics

are still modeled using the ball-shaped abstraction of the end-

effector. Modeling the whole kinematic chain of the robot

arms as contact geometries adds additional computational

complexity to the planner.

7.3.3 Real-world Pushing Results Fig. 14 shows snap-

shots of the robot behavior planned with the receding-

horizon BS-VP-STO algorithm. In addition, a full video of

the experiment can be found in Extension 2. We executed

the planned robot trajectories for each of the three objects

(bottle, glass, can), where we conducted five experiments for

each object by placing the object at different initial positions.

Out of 15 executed plans, the robot successfully pushed the

object along the target path in 14 experiments. The robot

failed to push the glass in one experiment, where the object

was too far away from the mean initial position such the

robot did not enclose the object during the initial uncertainty-

reducing action.

We furthermore evaluated the deterministic baseline

planner with the same three objects, while placing the objects

only at the expected location. In all three experiments,

the actual object position deviated from the planned object

position after a few pushes, resulting in the robot loosing

contact with the object and thus failing to push the object

along the target path. We show a video example of the motion

generated by the baseline in Extension 2.

7.4 Closed-Loop Bi-manual Pushing

Last, we show that receding-horizon BS-VP-STO can be

used in a closed control loop, gaining additional robustness
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Figure 14. Snapshots of the robot behavior synthesized with the receding-horizon BS-VP-STO algorithm and executed on the real

bi-manual system. Each snapshot shows an overlay of five experiments that were conducted with different initial positions of the

bottle. The robot successfully pushed the bottle along the target path in all five experiments. At the beginning, i.e. in the first image,

the robot encloses the initial belief with its two end-effectors such that robust pushing is possible. After moving along the first half of

the circular target path, i.e. in the third image, the robot re-positions its two end-effectors to continue pushing the bottle along the

target path while avoiding collisions between the two arms.

Figure 15. Closed-loop bi-manual pushing experiment: The left

image shows the external perturbations applied by manually

moving the object. A camera continuously provides noisy

observations of the object position to the closed-loop controller.

The right image shows how the proposed approach is able to

generate robust plans in real-time, enabling uncertainty-aware

model-predictive control loops.

against out-of-distribution disturbances. We use the same

bi-manual robot setup as in Sec. 7.3. However, instead of

pushing an object along a target path, the task is to push

the object to the center of the table while its position is

perturbed by a human. In addition, noisy observations of

the object position are provided by a camera for closing the

loop. We deploy a particle filter for continuously updating

the belief based on both the stochastic rollout and noisy

observations of the object as described in Sec. 6. We

qualitatively compare the resulting behavior of the robot

when being controlled with receding-horizon BS-VP-STO

against the behavior when using the deterministic nominal

model in a model-predictive controller. Both controllers run

at a control rate of 5 Hz with M = 6 BS-VP-STO iterations

per control step. Fig. 15 illustrates the external perturbations

applied to the object and the resulting robot behavior when

controlled with our proposed robust approach. A video of the

resulting behavior of both control approaches can be found

in Extension 3.

We observe that the robot robustly pushes the object

back to the center of the table using both end-effectors

when controlled with the proposed approach. The additional

state estimation enables the robot to also react to out-of-

distribution perturbations, re-generating robust plans given

noisy measurement updates. For the deterministic baseline,

we observe that the continuous feedback enables the robot to

maintain contact with the object and to generate consistent

pushes. However, we observe that the robot only uses one

end-effector for pushing as also observed for the open-loop

experiment in Sec. 7.3. In contrast to our approach, this

leads to larger control errors during pushing that need to be

corrected, resulting in the deterministic baseline taking more

time to accurately bring the object back to the center of the

table.

8 Discussion

In this article, we investigated the problem of planning robust

manipulation actions subject to stochastic contact dynamics.

The quasi-static model used to predict the contact dynamics

is a simplification of the real-world contact dynamics tailored

to the particular problem of slow pushing. In particular,

reducing the dynamics from joint robot-object dynamics

to solely object dynamics enables efficient reasoning over

belief dynamics. However, the provided model excludes

other categories of manipulation tasks involving effects such

as grasping objects. We leave it to future work to investigate

how other manipulation dynamics can be reduced to object-

only dynamics.

Furthermore, we have shown that informed prior

distributions for sampling candidate actions is beneficial, if

not necessary, for sampling-based optimization for contact-

rich manipulation. We used the product of Gaussian priors

to bias the sampling towards smooth and contact-making

trajectories. As the evolutionary optimization algorithm

CMA-ES is based on sampling from and iterating on

Gaussian distributions, we incorporated our Gaussian-

distributed prior to initialize CMA-ES. Yet, we see great

potential in the use of non-Gaussian priors that are further

optimized with a stochastic optimization algorithm such as

BS-VP-STO. Especially when the system has many degrees

of freedom such as for two robot arms or articulated robotic

hands, sampling from a proposal distribution that captures

possibly non-Gaussian correlations between the degrees of

freedom, e.g. correlations between fingers, is expected to be

a key to scalable, real-time control through contacts.

Last, we show that a manipulation task such as pushing,

which is typically approached with high-bandwidth closed-

loop control, can also be stabilized by planning appropriate

open-loop actions that deliberately optimize for robustness.

However, if the robot is not able to anticipate perturbations

or the statistical properties of the perturbations, feedback

is required to be able to stabilize the manipulation. We

thus show that the developed approach can be used in a

closed-loop controller by integrating the open-loop planning

algorithm in a receding-horizon control scheme and by

feeding back observations of the object configuration. We

furthermore show that a model-predictive controller based on
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receding-horizon BS-VP-STO even outperforms a controller

based on a deterministic model for pushing tasks.
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Appendix

Separation of the Expected Cost

Suppose that the state x ∈ R
nx that is to be controlled is a

random variable that is distributed with x ∼ p. Furthermore

suppose that the task is described by a quadratic cost of the

state and a desired state xdes, i.e.

Jdet(x) = (x− xdes)
⊤

(x− xdes) . (55)

The corresponding stochastic optimal control objective is

given by the expectation of the quadratic cost of the state:

Jsto = Ep [Jdet(x)]

= Ep

[

(x− xdes)
⊤

(x− xdes)
]

= Ep [x
⊤x]− 2Ep [x]

⊤

xdes + x⊤

desxdes.

(56)

In the following, we denote the mean of the state with

x̄ = Ep [x] . (57)

Furthermore, the variance of the state is defined as the

expectation of the squared deviations from the mean:

Vp [x] = Ep [(x− x̄)⊤(x− x̄)] ,

= Ep [x
⊤x+ x̄⊤x̄− 2x̄⊤x] ,

= Ep [x
⊤x] + x̄⊤x̄− 2x̄⊤Ep [x] ,

= Ep [x
⊤x]− x̄⊤x̄.

(58)

As a result, the stochastic optimal control objective can be

rewritten in terms of the deterministic quadratic cost of the

mean state and the variance of the state with respect to its

probability distribution p:

Jsto = x̄⊤x̄− 2x̄⊤xdes + x⊤

desxdes +Vp [x]

= (x̄− xdes)
⊤

(x̄− xdes) + Vp [x]

= Jdet(x̄) + Vp [x] .

(59)

Smoothness Prior

The goal of this section is to prove that ps(qvia) is the

normalized probability density function of the unnormalized

function e−Js(qvia). Js is defined with

Js =
1

2

∫ T

0

q̈r⊤(t)Rqq̈
r(t)dt. (60)

The acceleration is an affine function of the trajectory

parameter, i.e.

q̈r(t) = Φ̈via(t)θ+φ̈0(t, q
r
0, q̇

r
0). (61)

Now, suppose that the basis offset is computed as follows:

φ̈0(t, q
r
0, q̇

r
0) = Φ̈q0

(t)qr
0 + Φ̈q̇0

(t)q̇r
0. (62)

We exploit this affine dependency on the initial position and

velocity by rewriting the acceleration as a linear function in

a combined trajectory parameter ξ, i.e.

q̈r(t) = Φ̈(t)ξ, (63)

where the new basis function matrix and the new trajectory

parameter are given by

Φ̈(t) =
(

Φ̈via(t) Φ̈q0
(t) Φ̈q̇0

(t)
)

, ξ =





θ

qr
0

q̇r
0



 . (64)

Prepared using sagej.cls

https://www.frontiersin.org/articles/10.3389/frobt.2022.799893
https://www.frontiersin.org/articles/10.3389/frobt.2022.799893
https://api.semanticscholar.org/CorpusID:228095227
https://api.semanticscholar.org/CorpusID:228095227
https://www.science.org/doi/abs/10.1126/scirobotics.abi4667
https://www.science.org/doi/abs/10.1126/scirobotics.abi4667
https://proceedings.mlr.press/v37/schulman15.html
https://proceedings.mlr.press/v37/schulman15.html
https://api.semanticscholar.org/CorpusID:247362576
https://api.semanticscholar.org/CorpusID:247362576


Jankowski et al. 19

As a result, the smoothness objective is equivalent to

Js =
1

2

∫ T

0

ξ⊤
Φ̈(t)⊤RqΦ̈(t)ξ dt,

=
1

2
ξ

∫ T

0

Φ̈(t)⊤RqΦ̈(t) dt ξ,

=
1

2
ξRξξ.

(65)

We obtain a smoothness metric

Rξ =

(

Rθ Rθ|q0,q̇0

R⊤

θ|q0,q̇0
Rq0,q̇0

)

, (66)

that is the result of the integral in the second equation in

(65). With this result, the smoothness objective is in fact a

quadratic function in ξ and can thus be expressed as a zero-

mean Gaussian distribution with

ps(ξ) = ps(θ, q
r
0, q̇

r
0) = N

(

0,R−1
ξ

)

. (67)

This Gaussian distribution is a joint distribution over the

original trajectory parameter θ and the initial position and

velocity. At the time of constructing the smoothness prior,

the initial position and velocity are given. Consequently, we

obtain the smoothness prior for θ by conditioning on the

initial conditions, i.e.

ps(θ|q
r
0, q̇

r
0) = N

(

θ̄s,R
−1
θ

)

,

θ̄s = R−1
θ Rθ|q0,q̇0

(

q0
q̇0

)

.
(68)

Experiment: Implementation Details

In the following, we provide the details of the implementa-

tions for running the experiments as described in Sec. 7.

Path Tracking Cost. In a single-horizon optimization

problem, we define the task-specific cost based on the object

belief only. Given a predicted trajectory of particles, we

denote the initial belief with b0 and the belief at the end

of the horizon with bT . For both beliefs, we compute the

expected object states, i.e. q̄o
0 = Eb0 [q

o] and q̄o
T = EbT [q

o],
for consequently computing the cost with respect to the

candidate solution. The target path is defined as a circle with

qo
path(s) = rpath

(

cos(2πs)
sin(2πs)

)

, s ∈ [0, 1]. (69)

The radius of the circle is rpath = 0.15. Next, we find the

point on the target path that is closest to the expected object

states with

sk = argmin
s
||q̄o

k − qo
path(s)||2, s.t. s ∈ [0, 1], (70)

for k = {0, T}. Consequently, we compute the path tracking

cost with

cpath = ewprogress(s0−sT ) + werror||q̄
o
T − qo

path(sT )||
2
2.
(71)

The first cost term measures the tracking progress by

comparing the progress variable s at the end of the horizon

with the beginning of the horizon. We scale the first cost

term with wprogress = 100. The second cost term penalizes

deviations from the path, where the squared error term is

weighted with werror = 2000.
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