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Abstract— In many sensing and control applications, data are
represented in the form of symmetric positive definite (SPD)
matrices. Considering the underlying geometry of this data
space can be beneficial in many robotics applications. In this
paper, we present an extension of Gaussian mixture regression
(GMR) with input and/or output data on SPD manifolds. As the
covariance of SPD datapoints is a 4th-order tensor, we develop
a method for parallel transport of high order covariances on
SPD manifolds. The proposed approach is experimented in
the context of prosthetic hands, with the estimation of wrist
movements based on spatial covariance features computed from
surface electromyography (SEMG) signals.

I. INTRODUCTION

Symmetric positive definite (SPD) matrices are encoun-
tered in various domains. For instance, in medical imaging,
diffusion tensor magnetic resonance imaging (DT-MRI) pro-
vides measurements in the form of SPD matrices [1], [2].
Covariance features provide also a robust representation for
object tracking [3] or for analyzing electroencephalography
(EEG) signals [4]. Considering the underlying Riemannian
geometry has been proven beneficial for many applications,
such as interpolation and regression in the space of SPD
matrices [5], [6].

Gaussian mixture regression (GMR) exploits the Gaussian
conditioning theorem to estimate the distribution of output
data given input data. A Gaussian mixture model (GMM) is
first estimated to encode the joint distribution of input and
output datapoints, e.g. with an Expectation-Maximization
(EM) algorithm. The output is then estimated as a linear
combination of expected output Gaussian distributions, given
observed inputs. This regression method provides a fast
and efficient way to estimate multivariate output data from
multivariate input data in the form of Gaussian distributions
with full covariances. The approach does not learn the
regression function directly, but instead relies on the learned
joint distribution. The approach is widely used in imitation
learning to generate robot motions [7].

The formulation of Gaussian distributions in standard
GMM and GMR assumes data in the Euclidean space.
Recently, probabilistic encoding using GMM/GMR was ex-
tended to orientation data (quaternions on hypersphere man-
ifolds) [8]. This work demonstrated that parallel transport of
covariance matrices —a standard technique in differential
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geometry— is essential to extend GMR to Riemannian
manifolds. In this paper, we extend the generalization of
GMM and GMR to data in the form of SPD matrices. To
achieve this, we characterize the (co)variability of 2nd-order
tensors (matrices) by a 4th-order covariance tensor. In order
to encode the variability with full covariances, we develop
an efficient parallel transport method for 4th-order covariance
tensors of SPD matrices. We exploit the proposed approach
in the context of prosthetic hands, with the goal of identifying
wrist movements from spatial covariance features acquired
by surface electromyography.

The paper is organized as follows: Section II motivates
the use of GMR on SPD matrices and explains the need
of inversion and parallel transport for 4th-order covariance
tensors. Related work is described in Section III. Section IV
introduces Riemannian manifolds, tensor representation and
the normal distribution of SPD matrices. The proposed
approach is described in Section V and evaluated on SEMG
signals in Section VI. Section VII concludes the paper.

II. MOTIVATING EXAMPLE

The extension of GMM/GMR to Riemannian manifolds
allows the retrieval of smooth trajectories for data that do not
belong to the Euclidean space. The process remains similar:
the joint density distribution of a set of input and output data
is modeled in a GMM. The expected conditional distribution
of the output, given a new input, is then estimated using
GMR. The components of a GMM are characterized by their
centers and covariance matrices.

To apply GMR, we have to invert and parallel transport
parts of the covariance matrices obtained by the GMM, see
[8] for details. In the case of SPD manifolds, the center of
a GMM component is a SPD matrix, and its variability is
represented by a 4th-order tensor (4-way array of data). The
inverse and parallel transport of 4th-order tensors are not
trivial operations, except for the identity tensor (eventually
multiplied by a constant). In this case, both operations result
in the identity tensor.

In standard GMM, it is well known that forcing covari-
ances to be isotropic can have limited representation power,
particularly in applications requiring coordination patterns
to be modeled. Similarly, forcing higher order GMMs to
have isotropic tensors as covariances can be limited for the
encoding of coordination information, by decoupling each
dimension.

Fig. 1 presents an example motivating the use of full
covariances or tensors in a GMM, in the special case of
trajectory encoding and retrieval (i.e., with a time signal
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Fig. 1: Examples of Gaussian mixture regression results, where time inputs
are used to retrieve a 1D trajectory (a,b) or a sequence of 2 x 2 SPD matrices
(c,d). The joint density is modeled by a 2-component GMM. (a,b) The
retrieved trajectory are in black lines, while the centers and covariances are
represented by green ellipses with red nucleus (equiprobable contour of one
standard deviation). (c¢,d) The retrieved sequence of SPD matrices and the
centers of the GMM components are represented in gray and red ellipsoids,
respectively. Note that the 4th-order covariance is not depicted in the graph.
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as input). We can see in Fig. la, lc that with isotropic
Gaussians, the retrieved trajectories show a smooth transition
between the components of the GMM, but remain constant
elsewhere, also when extrapolating outside the range of
the Gaussians. When full covariances are used to model
the joint distribution, the retrieved data are characterized
by a local linear trend that better models the evolution of
the covariance, for both interpolation and extrapolation, see
Fig. 1b, 1d. The benefits of using full covariances in GMMs
motivates the need to develop inversion and parallel transport
methods for full covariance tensors.

III. RELATED WORK

Ghahramani and Jordan were the first to formulate Gaus-
sian mixture regression (GMR) by studying regression em-
ploying a mixture of Gaussians in Euclidean space [9]. In
[10], Simo-Serra et al. propose an extension of EM algorithm
to Riemannian manifold for data in vector form. Their
approach allows each distribution to be located on its own
tangent space. In [11], Kim et al. also reformulates GMM
to handle the space of rotation in R3. Both publications
present methods for regression from a mixture of Gaus-
sians on Riemannian manifolds, although they only partially
exploit the manifold structure in Gaussian conditioning. In
[8], Zeestraten et al. extend probabilistic encoding using
Gaussians to Riemannian manifolds with data represented
in vector form. They demonstrate that the parallel transport
of covariance matrices is essential for Gaussian conditioning
on Riemannian manifolds.

In [12], Said et al. introduce Riemannian Gaussian distri-

bution and propose an implementation of EM for Gaussian
mixture on SPD manifolds. However, their formulation only
mildly characterize the (co)variability of SPD matrices as it
is represented by a scalar. In [13], Zhan and Ma propose a
modified EM algorithm for GMM on SPD manifolds, where
SPD matrices are converted to vectors. Their covariance is
then expressed by a matrix of higher dimensions, which
is problematic for covariance transport. In [1], Basser and
Pajevic present a normal distribution on SPD manifold where
the covariability of matrices has the form of a 4th-order
tensor. We use this formulation to extend Gaussian mixture
model and Gaussian mixture regression to SPD manifolds.
We also extend the parallel transport of elements in the form
of vectors presented in [14] to SPD manifolds.

Related work concerning the proposed experiment is de-
scribed in Section VI.

IV. PRELIMINARIES

In this section, we first introduce useful notions of geome-
try on Riemannian manifolds, particularly on SPD manifolds.
Interested readers are referred to [15], [16] for more infor-
mation. We then introduce tensor-based representation and
discuss the normal distribution for SPD matrices as well as
the representation of covariance for SPD matrices.

Scalars are denoted by lower case letters xz, vectors by
boldface lower case letters «, matrices by boldface uppercase
letters X, tensors by boldface calligraphic letters X, and
dimensions by uppercase letters. Manifolds and their tangent
spaces are designated by calligraphic letters M and 7 M,
respectively.

A. Riemannian Manifold of SPD Matrices

A manifold M is a mathematical space for which each
point locally resembles a Euclidean space. For each point
p € M, there exists a tangent space 7, M made of the
tangent vectors of all the curves passing through that point,
e.g. Fig. 2a. A Riemannian manifold is a differentiable
manifold for which each tangent space is equipped with a
Riemannian metric, i.e. a positive definite inner product.

The SPD manifold Sf 4 is the space of D x D SPD
matrices. A real symmetric matrix ¥ is positive definite
if v"3v > 0, Vv # 0. The tangent space at any point
DINS Sf . is the space of symmetric matrices Sym?”. The
space of SPD matrices forms the interior of a convex cone
in the space Sym” (see Fig. 2b). The invariant Riemannian
metric generally used for SPD manifolds is the inner product
between two matrices Vi, V; € Tsz _ such that [16]

<V, Va>y = tr(ZTVZTIRECE).

The minimum length curves between two points on a Rie-
mannian manifold are called geodesics. Similarly to straight
lines in Euclidean space, the second derivative is zero
everywhere along a geodesic. The exponential map Exp,, :
TgM — M maps a point v in the tangent space to a point p
on the manifold, so that is lies on the geodesic starting at g in
the direction v and such that the geodesic distance between
g and p is equal to the Euclidean distance between g and v



L = Logs(A)

(d

Fig. 2: Manifold representations and mappings for S? spheres (left column)
and Si + SPD matrices (right column). The manifold S 2 is here employed
to facilitate the visualization of the manifold characteristics. Black and red
points belong to M and T M, respectively. (a) Representation of S2 and
its tangent space. (b) Representation of Sf_ 4 embedded in its tangent space

Sym?. One point on the graph corresponds to a SPD matrix ( g 5 ) . (¢,d)

Exponential and logarithm maps on S? and S2

4+ providing one to one
mapping between manifold and tangent space.
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Fig. 3: Parallel transport of vectors (a), and matrices (b) (green and blue
lines) between tangent spaces of S2 and Si 4 respectively. The inner
product, i.e. the angle, between elements in the tangent space is constant
during parallel transport.

(see Fig. 2c). The inverse map is called the logarithm map
Log,, : M — TgM. For the given metric, the exponential
and logarithm maps on SPD manifold are (see also Fig. 2d)

A =Exps(L) = X7 exp(S 2 LY 2)%7,
L =Logs(A) = B7 log(T 2AX2)%7.

Parallel transport I'g_,p, : TgM — Tp M moves vectors
between tangent spaces such that the inner product between
two vectors in a tangent space is conserved, see Fig. 3a. The
parallel transport of V € TSP, to TaSP, is given by

FE—)A(V) =As A X ATE—>A’ (1
with Ass o = X2 exp(%E*%VE’%)E*%, see Fig. 3b.
B. Tensor Representation

Tensors are generalization of matrices to higher order.
Vectors and matrices may respectively be seen as 1st and
2nd-order tensors.

The tensor product of two tensors U € RI1X-xIm Y ¢
RJlx..‘xJ,ﬂ is W U ® v c Rll><...><Im><J1><...><J,,L’ where

Wis,imgtreoin = Win,oim Vit,ojn-

The tensor product is a multilinear generalization of the
outer product of two vectors u ® v, equivalent to the matrix
multiplication uv'.
Similarly to the computation of the covariance of vectors,
the 4th-order covariance tensor of matrices is defined as
N

LS X, 0 X,

S=-——
N -1
n=1

where X, is the n-th datapoint and N is the total number
of datapoints.

We follow the simple and convenient convention employed
in [3], by denoting the element (p,gq,i,7) of a 4th-order
tensor S by S;{], with two covariant indices (p,q) and two
contravariant indices (4, 7). The element (4, j) of a matrix X
is denoted by X;; with two covariant indices (i, 7). A tensor
contraction between two tensors is performed when one or
more contravariant and covariant indices are identical. For
example, the tensor contraction of & € RPXPxDxD apd
X € RP*P will be denoted

D D
I A
i=1 j=1
where the typeface helps at disambiguating a tensor operation
from a matrix operation.

Analogously to the representation used for 3rd-order ten-
sor [17], we represent 4th-order tensor by separating the
different fibers with bars, so that S can also be visualized
as

sit|... st st S
, with 8% = :

ST sl 8P . Siq

C. The Normal Distribution for SPD matrices

Random vectors and covariance matrices of a multivariate
normal distribution can be interpreted as Ist and 2nd-order
tensors. By adopting the above notation, the statement can
be generalized to a tensor-variate normal distribution of a

random 2nd-order tensor X with mean M and 4th-order
covariance tensor S given by

b rx-mysTix-M)
(2m)D|S|

N(X|M,S) =

As we are interested in using GMM with full covariances
to perform GMR on SPD manifolds, we have to compute
tensor-variate normal density function with full covariance
tensor of SPD matrices, where the computation of inverses
and determinants are required. As X € S f . are symmetric
matrices, our covariance tensor is supersymmetric and we can
use the simplification proposed in [1] to compute its inverse
and determinant. We next briefly summarize this approach.

When X is a symmetric 2nd-order tensor of dimension D
(e.g. X € RP*D such that X;;=X};), the covariance tensor
S € RP*DPXDXD ipherits symmetries such that St =
Sh" = 8" and 8" = S . Any 4th-order tensor S
satisfying those symmetry properties can be mapped into a



symmetric positive definite 2nd-order tensor ¥ € RP*P
with D = D 4 D(D —1)/2. Similarly, X can be written as
a D-dimensional vector 2 such that the tensor contraction
X8 'X is equal to "X 'z, and such that the normal
probability density function N'(X|M,S8) is equivalent to

1
(2m) D=

e~ 3(@—w) S (@—p)

N(iL‘lH, ¥) =

For simplicity, we take the example of D = 3, which
can be generalized to higher dimensions. X is in this case
written as a 6-dimensional column vector

T = (Xiia ij, Xk, \@Xij; \@Xika \/§Xjk)T~

The 3-dimensional 4h-order tensor is converted to the 6-
dimensional 2nd-order tensor by defining 3 as

si s sk vasi  vasik \/is;,k
s; sy st ovasy vas) o vas)
S?ik S_chjk 3’;2’2 \/ﬁs;cjk V28 kin \/58?@,@
Vasd v2sY Vasp 2sy 25k 2877
Vasyy vash o Vasih oaslt asi o 2s)
V28T V28T V2S 28] 287, 287,

2
Similarly to the eigenvalue decomposition of matrices, the
eigenvalues \ and eigentensors V' € RP*P of a 4th-order
tensor S satisfy the fundamental equation SV =AV. They
may also be found using the correspondence between S
and 3. First, the eigenvalues of the 4th-order covariance
and the 2nd-order covariance are the same. Then, given
v = ('vm,'vyy,vzm,vmy,vm,vyz)T one eigenvector of X,
the corresponding eigentensor of S is

1 1
Ve Evmy ﬁvmz

1

V=|5Y%y Yy FY%:|- 3)
1 1
ﬁvxz ﬁvyz Vzz

The inverse and determinant of the covariance S are then
computed using the eigentensors and eigenvalues with

ST=Y N Via Vi, and [S] =) Ak
k k

V. REGRESSION ON SPD MANIFOLDS

We introduce here a parallel transport method for 4th-order
full covariances, which will be used in Gaussian mixture
regression (GMR). We then present extensions of Gaussian
mixture model (GMM) and GMR to SPD manifolds. Finally,
we show that our approach can be used for applications
where input and output data belong to different manifolds.

A. Parallel Transport of 4th-Order Covariances

In the case of a Riemannian manifold where the ele-
ments are represented by vectors, covariance matrices can be
parallel transported between tangent spaces by transporting
their eigenvectors [14]. We extend this approach to SPD
manifolds.

Our goal is to parallel transport the 4th-order covariance
tensor S from TESE L to ’TAS_E .. The eigenvalues and

eigentensors of & are computed from the eigendecompo-
sition of the low order covariance using (2) and (3). Let
Vi = I'ss_,a(V4) be the k-th parallel transported eigentensor
with (1), and \j, the k-th eigenvalue. The parallel transported
4th-order covariance tensor is then given by

S =Ts.a(S) = > M Vi@ Vi 4)
k

B. Gaussian Mixture Model on SPD manifolds

Similarly to multivariate distributions (see [8], [10], [18]),
tensor-variate distributions maximizing the entropy in the
tangent space can be approximated by

1 e_%LOg_x(M) 87! Logx(M)
(2m)P|S]|

where X € M is a point of the manifold, M € M is the
origin of the tangent space, and S € Tps M is the covariance
tensor defined in this tangent space.

Similarly to the Euclidean case, a GMM on SPD manifold
is defined by

K
p(X) = mNm(X| My, Sy),
k=1

with K the number of components and 7 the mixing
coefficients (priors) such that ), 7, =1. The parameters of
the GMM on the manifold can be estimated by Expectation-
Maximization (EM) algorithm, by extending the approach in
[10] to SPD manifolds.

We first compute the responsibility of each component &
in the E-step with

T N (X3 | My, Si)
S Nu(Xi|M;, S;5)
N

Ne = p(k|Xs).

=1

p(k|Xi) =

We then update the mean M, the covariance tensor Sy, and
the prior 7 for each component during the M-step with

N
1
M, +— EEXPM,C< E p(/{|X1) LOng(Xi))’
=1

N
1
Si = 3 2 p(kIX:) Logay (X0) @ Logay (X0,
i=1

Tl < ——.
N

Note that at each M-step, the update of the means M}, is
performed iteratively until convergence, and Sy, is computed
once, after convergence of Mj.

C. Gaussian Mixture Regression (GMR) on SPD manifolds

GMR computes the conditional distribution p(X 0| Xz7)
of the joint distribution p(X). We denote the block decom-



position of the datapoints, means and covariances as

_ XII 0 _ MII O
X_<0 Xoo)’M_<0 ]\40o>7

SZ o 0 0
S— 0 S2°| o 0
= 0 0 | S 0

0 0 ‘ 0 899

With this decomposition, manifold functions are applied
individually on input and output parts, e.g. Expyy, (X) is
Exppr, (Xzz) 0

0 Expas,, X@O)

Similarly to GMR in Euclidean space f7] and in manifolds
where data are represented by vectors [8], GMR on SPD
manifold approximates the conditional dlstrlbutlon by a
single Gaussian p(Xoo|Xzz) ~ N(MOO,S )

The mean Moo is computed iteratively until convergence
with

equivalent to <

~IT

~77—1
Ay = LOgMoo(MOO,k) - Soo,k SII,k‘ LOgXII(MII’k)7

Moo — EXpMoo( Z hkAk),
k

where hj, are the responsibilities of the GMM component &
computed with

i Tk ( ZI‘MZI k»Szz k-)
k= K )
Zj:l m N(X II|MIIJ’S§§])

and S is the parallel transported covariance tensor

G : % XZI 0
S=T,,.%x(S) with X = ( 0 M@@)
computed with (4). The covariance S 22 defined in the
tangent space of the estimated center can then be estimated
with

AOO Iz  =%7I7—1 00
Z hk < 00,k Soo,kszz,k Szz,k + Ak ® Ak)

D. Extension of GMR to Other Manifolds

In many applications, the input and output data do not
belong to the same manifold, e.g. [1], [4]. Gaussian mixture
regression as presented in previous sections can be used with
input or output data in the form of scalars or vectors by
defining the corresponding part of X either as a scalar with
X:z =1, or as a diagonal matrix by placing the elements
of the vector in the main diagonal with X,, = diag(xz),
see for example [19]. Data on several manifolds can also
be combined to form the input or output parts of X. The
mapping functions and the parallel transport applied on the
input or output part of the datapoint X, centers M and
covariance tensors S must be adapted consequently.

VI. APPLICATION

Electroencephalography (EEG) or electromyography
(EMG) features are often represented in the form of
covariances matrices as this method reduces the impact
of noisy samples and is straightforward to fuse different
features [20]. We focus here on the application of SEMG in

the context of prosthetic hand control. In order to test the
applicability and accuracy of the presented technique, we
applied it to the Ninapro database [21].

We give here a short description of the data and we
describe how the proposed method is applied to sSEMG. We
then present the results and compare the performance of
GMR on SPD manifold with classical GMR.

A. Data Description

The second iteration of the publicly available Ninapro
database [21] comprises recordings from 40 able-bodied
subjects performing 50 movements including isometric hand
configurations, functional movements and grasping of com-
mon household objects. Each movement was repeated 6
times. Muscular activity was recorded using 12 state-of-the-
art surface electromyography (SEMG) sensors sampled at
2 kHz. A 22-sensor data glove was used to record hand
kinematics activity.

In this experiment, we focused on the estimation of three
wrist movements: extension, flexion and supination. In the
context of prosthetics, we are interested in predicting which
movement is performed but also the transitions between
movements, i.e. transitions from rest poses to wrist move-
ments and from wrist movements to rest poses.

All SEMG channels were standardized to have zero mean
and unit variance, based on statistics computed on data
from the training set. Dimensionality reduction was then
performed using principal component analysis (PCA). Spatial
covariance matrices were segmented using a sliding window
of 400 ms with an increment of 10 ms. The output for
each spatial covariance is a continuous 4-dimensional vector
Yy = (yrestyysupayextyyﬂex)—r where Yi = ]1\\][ € [07 1L with N;
the number of sample with label ¢ in the sliding window, and
N the total number of samples of the sliding window.

The data for each subject are split into training and testing
sets based on repetitions: the second and fifth repetitions for
each movement were used for testing while the training set
is comprised of the remaining repetitions. Both training and
testing sets were subsampled at interval of 10 samples in
order to ensure computational feasibility.

B. Results

We applied GMR on SPD manifold to predict wrist move-
ments from spatial covariances computed with SEMG data.
We compared the results with those obtained by applying
GMR directly on reduced sEMG data in Euclidean space.
The different models were initialized using K-means and
the numbers of Gaussians were determined using cross-
validation applied on the training set.

Table I shows three examples of typical average and
standard deviation of the root-mean-square error (RMSE)
values obtained by applying GMR on SPD manifold and on
Euclidean space for each wrist movement. Each model was
trained three times with different initializations. GMR on
SPD manifold was more effective than GMR on Euclidean
space for most of the 40 subjects: on average, it reduces
the error by 6%, 4%, 1% and 1% for rest, wrist supination,



TABLE I: Root mean square error (RMSE) for three participants
and each wrist movement.

Rest Wr. supination ~ Wr. extension ~ Wr. flexion
S£+ 0.2940.00 0.18+0.00 0.254+0.00 0.2740.00
0.4740.00 0.31£0.00 0.33£0.00 0.33£0.00
Sf+ 0.324+0.02 0.29+0.14 0.36+0.07 0.43+0.13
0.46+0.00 0.34+0.00 0.35£0.00 0.35+0.00
S£+ 0.3640.02 0.22+0.01 0.31+0.00 0.29+£0.00
0.4240.00 0.42+0.00 0.43+0.00 0.434+0.00
1 é 1
Gos 505
« a
0 S0
=
0 2 4 6 8 0 2 4 6 8
Time (s) Time (s)
g 5
Zos é 0.5
u (o
£0 20
o 2 4 & s o 2 4 & s
Time (s) Time (s)

Fig. 4: Comparison between the movements predicted by GMR on SPD
manifold (blue line) and GMR in Euclidean space (green line) during a
transition from wrist supination to rest. The reference is the black line.
We can see that GMR on SPD manifold is more efficient at predicting a
transition than GMR in Euclidean space that tends to favor rest poses in
most of the cases.

extension and flexion, respectively. However, the error reduc-
tion can attain 25% for some subjects and movements. The
outputs found by GMR in Euclidean space tend to vary only a
little compared to the real value. The expected output is often
dominated by the rest pose, whose value is high compared
to the others. GMR on SPD manifold is also generally more
efficient than GMR in Euclidean space to predict transitions
between movements (see Fig. 4).

VII. CONCLUSION

In this paper, we showed how Gaussian mixture model
(GMM) and Gaussian mixture regression (GMR) can be
extended to the manifold of symmetric positive definite
matrices. We exploited the fact that the 4th-order covariance
of a symmetric matrix inherits useful symmetry properties.
This allows us to reduce it to a 2nd-order tensor to find
its eigentensors and design a parallel transport scheme ex-
ploiting this structure. Our approach is flexible as it allows
us to easily combine data in the form of scalar, vector or
SPD matrices on different manifolds. It is extensible to other
Riemannian manifolds where the data are represented in the
form of matrices, as long as a method is available to find the
eigentensors of their covariance.

We experimented the approach in the context of prosthetic
hands, with the regression of wrist movements from sEMG
data in the form of spatial covariance. The proposed method
improved the detection of wrist movement for most of
the subjects and proved to be efficient to detect transition
between movements. In future work, we plan to extend

the regression problem to fingers movements. We will also
explore other forms of covariance features typically found in
SEMG analysis, such as root mean square (RMS) or sSEMG
histogram (HIST) features.
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