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Abstract— Optimal control is often used in robotics for
planning a trajectory to achieve some desired behavior, as
expressed by the cost function. Most works in optimal control
focus on finding a single optimal trajectory, which is then
typically tracked by another controller. In this work, we instead
consider trajectory distribution as the solution of an optimal
control problem, resulting in better tracking performance and a
more stable controller. A Gaussian distribution is first obtained
from an iterative Linear Quadratic Regulator (iLQR) solver. A
short horizon Model Predictive Control (MPC) is then used to
track this distribution. We show that tracking the distribution
is more cost-efficient and robust as compared to tracking the
mean or using iLQR feedback control. The proposed method is
validated with kinematic control of 7-DoF Panda manipulator
and dynamic control of 6-DoF quadcopter in simulation.

I. INTRODUCTION

Optimal control is a versatile problem formulation that

has a large number of applications. With the increasing

computational power, it can be used in more complex sys-

tems with high degrees of freedom. While the term control

suggests that the formulation is used to find an optimal

control input of a given problem, it is often used also for

planning, i.e., to find the state trajectory that minimizes the

cost function, typically for a long time horizon to anticipate

future events. For example, optimal control is used for plan-

ning multiple quadcopters trajectories in a constrained space

[1], biped walking generation [2] [3], centroidal dynamics

trajectory [4] [5], whole-body motion planning [6] [7], and

visual servoing [8]. The planned trajectory is usually tracked

by some other controller, e.g., PID controller, or shorter time

horizon MPC [8]. The formulation is convenient as one can

derive the cost function from the desired behavior and obtain

the corresponding optimal state and control trajectory.

However, most optimal control approaches focus on find-

ing only a single optimal output. When the optimal control

problem (OCP) is only one part of a multi-step process,

which is often the case when it is used for planning, this

can be an important limitation. For example, the optimal

trajectory may not be feasible for the subsequent step due

to the presence of a new obstacle or model errors. In this

work, we consider a probabilistic formulation of OCP that

allows us to obtain not only a single output, but a probability

distribution of the output that minimizes the OCP’s cost.

Among many algorithm variants to solve OCP, iterative

Linear Quadratic Regulator (iLQR) [9] is often used in
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Fig. 1. Tracking an iLQR trajectory of a quadcopter. The current position,
the goal position, the initial planned trajectory, and the obstacles are shown
in green, red, white, and black, respectively. At the current state, an upward
velocity disturbance is introduced to the system. For MPCmarg, the short
horizon OCP reference trajectory (shown in cyan) remains along the planned
trajectory because it does not depend on the current state. For MPCcond, the
reference trajectory is calculated by conditioning the trajectory distribution
on the current state. Since the disturbance adds an upward velocity, the
reference trajectory adjusts accordingly, as shown in yellow.

robotics due to its computational efficiency. By iteratively ap-

proximating the cost function and the dynamics as quadratic

and linear, respectively, an LQR subproblem is solved at

each step. It has been used for high dimensional systems

such as quadruped and humanoid robots [7]. We show that a

probabilistic solution of iLQR can be obtained efficiently by

using the information provided by a standard iLQR solver.

The probabilistic treatment of OCP is discussed by Kappen

et al. [10], who formulate it as minimizing Kullback-Leibler

(KL) divergence. The optimal control solution is the product

of the free dynamics and the exponentiated cost (i.e., the

exponent of the cost function is considered as an unnormal-

ized probability distribution). Toussaint [11] shows that using

an approximate inference method (similar to expectation

propagation) to solve an optimal control problem results in

an algorithm that is similar to iterative Linear Quadratic

Gaussian (iLQG). These works, however, concentrate on

improving the solver’s efficiency, and not many works ac-

tually use the probabilistic solution, except in Guided Policy

Search (GPS) where the probabilistic distribution of the

iLQR solution is used to provide off-policy samples for

reinforcement learning [12].

In this work, we propose to use the probability distribution

in the context of a tracking controller. Instead of tracking

only the optimal solution, we use a short horizon Model

Predictive Control (MPC) to track the trajectory distribu-

tion. We show that it improves the tracking performance
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significantly, with lower cost and better stability. Given a

disturbance, a controller tracking only the mean will require

the controller to react stiffly to perturbations in all directions,

while a controller tracking the distribution can react more

intelligently, as it knows in which direction it can move

without increasing the cost function too much.

In short, our contribution is twofold. First, we show how

to obtain a probability distribution of iLQR solution as

a Gaussian distribution using the terms available from a

standard iLQR solver. Then we propose a tracking strategy

with adaptive gains to follow this distribution using a short

time horizon MPC controller, and show that it improves the

tracking performance in terms of the total cost and stability,

as compared to tracking only the mean.

The outline of the paper is as follows. In Section II we give

some background on the connection between quadratic costs

and Gaussian distribution, and how this relates to finding the

probability distribution of LQR. In Section III, we extend this

approach to iLQR and show how to track the resulting dis-

tribution using a short time horizon MPC. In Section IV, we

evaluate the method qualitatively on two different systems:

manipulator and quadcopter moving around obstacles, and

compare the proposed controller against baselines. Section V

concludes the paper.

II. BACKGROUND

A. Optimal Control Problem (OCP)

A general discrete OCP consists of a cost function

C(x,u) =

T−1
∑

t=0

ct(xt,ut) + cT (xT ,uT ), (1)

subject to the dynamics

xt+1 = f(xt,ut). (2)

OCP may also have equality and inequality constraints.

The objective of solving OCP is to find the sequence of

state and control trajectories (x∗,u∗) that minimizes the

cost function while respecting the dynamics. In robotics,

given the system’s high degree of freedom and complexity,

most researchers rely on numerical optimization to solve the

problem. One of the popular methods is iterative LQR [9].

B. Quadratic Cost and Product of Gaussians

A quadratic cost can be viewed probabilistically as corre-

sponding to a Gaussian distribution. Given the quadratic cost

C(x) = (x− x̄)⊤W (x− x̄), (3)

the optimal solution x∗ = x̄ does not contain much infor-

mation about the cost function itself. Instead, we can view

x as a random variable with a Gaussian probability, i.e.,

p(x) = N (x̄,W−1) where x̄ and W−1 are the mean and

the covariance of the Gaussian, respectively. The negative

log-likelihood of this Gaussian distribution is equivalent to

(3) up to a constant factor. According to p(x), x has the

highest probability at x̄, and W−1 gives the directional

information on how this probability changes as we move

away from x̄. The point having the lowest cost in (3)

is therefore associated with the point having the highest

probability.

Similarly, an objective function composed of several

quadratic terms

µ̂ = argmin
x

K
∑

k=1

(x− µk)
⊤

Wk(x− µk) (4)

can be seen as a product of Gaussians
∏K

k=1
N (µk,W

−1

k ),
with centers µk and covariance matrices W−1

k . The Gaussian

N (µ̂, Ŵ−1) resulting from this product has parameters

µ̂ =

(

K
∑

k=1

Wk

)−1(
K
∑

k=1

Wkµk

)

, Ŵ =

K
∑

k=1

Wk.

µ̂ and Ŵ are the same as the solution of (4) and its

Hessian, respectively. Viewing the quadratic cost probabilis-

tically allows us to capture more information about the cost

function in the form of the covariance matrix Ŵ−1.

C. Probabilistic Solution of Time-Varying Finite Horizon

Linear Quadratic Regulator (LQR)

A time-varying finite horizon LQR problem is a subclass

of OCP with time-varying linear dynamics

xt+1 = Atxt +Btut,

and quadratic costs

C(x,u) =

T−1
∑

t=0

(x⊤

t Qtxt + u⊤

t Rtut) + x⊤

TQTxT .

For such class of problems, the solution can be obtained an-

alytically. We focus here on the batch least-squares solution

of LQR. Each xt can be written in terms of x0,

x1 = A0x0 +B0u0,

x2 = A1x1 +B1u1 = A1A0x0 +A1B0u0 +B1u1,

and so on until xT . We can then stack all xt and ut and get

the batch equation

x = Sxx0 + Suu, (5)

where x = (x⊤

0 ,x
⊤

1 , · · · ,x
⊤

T )
⊤

, u = (u⊤

0 ,u
⊤

1 , · · · ,u
⊤

T−1)
⊤

,

and

Sx =







I

A0

A1A0

.

.

.
∏T−1

t=0
AT−t






,Su =







0 0 · · · 0

B0 0 · · · 0

A1B0 B1 · · · 0

.

.

.

.

.

.

.
.
.

.

.

.
∏T−1

t=1
AT−tB0 · · · · · · BT−1






.

We can then write the cost function as

C(x,u) = x⊤Qsx+ u⊤Rsu, (6)

where Qs = blockdiag(Q0,Q1, . . . ,QT ) and Rs =
blockdiag(R0,R1, . . . ,RT−1) are block diagonal matrices.

Substituting (5) to (6), we obtain

C(x,u) =x⊤Qsx+ u⊤Rsu

=(Sxx0 + Suu)
⊤Qs(Sxx0 + Suu) + u⊤Rsu

=u⊤(S⊤

uQsSu +Rs)u+ 2u⊤S⊤

uQsSxx0

+ x⊤

0S
⊤

xQsSxx0. (7)



Note that the cost is quadratic in u. As discussed in

Section II-B, we can view this probabilistically and obtain

the probability distribution of u as a Gaussian distribution

N (µu,Σu), where

µu = −(S⊤

u
QsSu +Rs)

−1S⊤

u
QsSxx0, (8)

Σu = (S⊤

u
QsSu +Rs)

−1. (9)

The mean is obtained as the optimum of the cost function in

(7) by setting the gradient equal to zero, while the covariance

matrix is the inverse of the cost function’s Hessian.

This distribution tells us that u has the highest probability

at the mean µu (corresponding to the point with the lowest

cost), and Σu explains how the probability changes along

any direction. With this distribution, we know how to move

away from the mean while avoiding significant increase in

the cost function. We can also obtain the distribution of

the state trajectory, since x is a linear transformation of u

according to (5), namely

p(x) = N (x|Sxx0 + Suµu,SuΣ
−1
u

S⊤

u
). (10)

More details about the probability distribution of LQR can

be found in [13], [14].

III. METHOD

In this section, we first describe how to obtain the solution

of an iLQR problem as a Gaussian distribution. The key

insight is to note that each step of iLQR solves an LQR

subproblem, of which we can find the probability distribution

of the solution. We then show how to track this distribution

using a short time horizon MPC.

A. Probabilistic Solution of iLQR

1) iLQR solution: iLQR can be used to solve more

general problems than LQR involving non-quadratic cost

functions and nonlinear dynamics. Starting from an initial

guess (x0,u0), iLQR iteratively refines this guess by making

a simpler approximation of the OCP at each step. Let

us consider the current guess (xk,uk), where k is the

iteration index. Given the general cost function in (1), we

can approximate it as a quadratic function around (xk,uk),

ct(δxt, δut) =
1

2

[

δxt

δut

]

⊤
[

cxx,t 0

0 cuu,t

] [

δxt

δut

]

+

[

cx,t cu,t

]

[

δxt

δut

]

, (11)

where cx,t, cu,t, cxx,t, and cuu,t are the cost function’s

first and second order derivatives with respect to x and u.

We omit here the cross-derivatives cxu,t for simplifying the

derivations and the notations, but a similar derivation works

when cxu,t is not zero.

Similarly, we can approximate the dynamics in (2) using

the linear approximation

δxt = Atδxt +Btδut, (12)

where At and Bt are the derivatives of the dynamics

f(xt,ut) with respect to xt and ut, respectively. The

derivatives are evaluated at the current guess (xk,uk). If

the dynamics is approximated as quadratic instead of lin-

ear, it is referred to as Differential Dynamic Programming

(DDP) [15].

At this stage, we have quadratic costs and linear dynamics

as functions of δx and δu. This is therefore a time-varying

LQR problem, of which the variables of interest are δx

and δu. We can solve this either by the batch least-squares

solution or dynamic programming, and obtain the optimal

δx∗ and δu∗. Although in standard LQR the two methods

give the same outputs, in iLQR they will be different due

to the dynamics rollout step, i.e. the forward pass. When

solving the LQR subproblem using dynamic programming, at

each time step we calculate the resulting ut, and the forward

pass is calculated using the actual nonlinear dynamics. In the

batch least-squares solution, on the other hand, the forward

pass is calculated using the approximated linear dynamics,

so the two will give slightly different solutions.

The δu calculated by solving the LQR subproblem is

a directional step to improve the current guess (xk,uk).
Typically, a line search is performed to find the optimum

step length to move in this direction (see [7]). With the

given optimum step length α we calculate the new u as

uk+1 = uk + αδuk. By performing dynamics rollout using

this new uk+1 we obtain the new state trajectory xk+1. The

line search guarantees that (xk+1,uk+1) has lower cost than

the previous guess. We can then make another approximation

around the new guess to obtain a new LQR problem and

improve the solution. This is iterated until convergence.

Besides obtaining the optimal solution (x∗,u∗), we also

obtain the time-dependent feedback gain Kt to be used for

feedback control in the proximity of (x∗,u∗).

2) Obtaining the iLQR distribution: Let us assume that

we have reached convergence and obtain the optimal solution

as (x∗,u∗). If we again approximate the cost function and

the dynamics to obtain a new LQR subproblem around

this solution, its solution would be δu∗ = 0, because the

optimization gradient is zero at local optima, and the cost

function cannot be reduced further. However, as discussed in

Section II-B, the optimal solution δu∗ = 0 does not contain

much information about the cost function and the underlying

optimization problem. Since this is an LQR problem, we can

obtain not only the optimal solution but also the distribution

of the solution, as discussed in Section II-C.

We consider the quadratic cost functions and the linear

dynamics at the final iteration k = K. As explained in

Section II-C, we can compute the probability distribution of

δu as p(δu) = N (0,Σδu∗), where Σδu∗ is calculated using

(9). The precision matrices Qs and Rs are computed from

the cost derivatives, i.e.

Qs = blockdiag(cxx,0, cxx,1, · · · , cxx,T ),

Rs = blockdiag(cuu,0, cuu,1, · · · , cuu,T−1).

Now the mean of this p(δu) is a zero vector, correspond-

ing to an optimal solution at convergence. The covariance

Σδu∗ tells us how to move away from the mean while



keeping a low cost. Since u = u∗ + δu, we obtain p(u) =
N (u∗,Σu

∗) where Σu
∗ = Σδu∗ . That is, the distribution

of u is centered around the optimal solution u∗, with the

same covariance as δu.

Since δx = Sxδx0 + Suδu, the probability distribution

of δx can be computed as

p(δx) = N (0,Σδx∗), with Σδx∗ = SuΣδu∗S⊤

u
. (13)

Furthermore, x = x∗ + δx, so p(x) = N (x∗,Σx
∗),

where Σx
∗ = Σδx∗ . Note that the probability distribution

is computed based on the terms that are available from a

standard iLQR solver, i.e. the derivatives of the costs and

the dynamics. Indeed, we can just run a standard solver until

convergence, and extract all the dynamics and cost deriva-

tives to construct the trajectory distribution N (x∗,Σx
∗).

The probability distribution is obtained by approximating

the cost function and the dynamics. Technically, a Gaussian

distribution propagated by nonlinear dynamics would not

remain as Gaussian distribution. We obtain a final Gaussian

distribution of the overall trajectory because of the linear

approximation of the dynamics at each iLQR step, similar

to what is done in Extended Kalman Filter [16]. Therefore,

this distribution only holds locally near the optimal solution

(x∗,u∗). Nevertheless, it still contains important information

on the local behavior of the cost function and the dynamics

around this optimal solution. We will show that this infor-

mation will be beneficial for the next step, i.e., tracking the

optimal trajectory.

B. Tracking Distribution using Short Time Horizon MPC

From the previous section, we obtain the probability

distribution of the state trajectory p(x) = N (x∗,Σx
∗).

Most optimal control approaches only consider the optimal

solution x∗. As discussed in Section I, the OCP is often

an intermediary step to generate a trajectory, which is then

tracked by using another controller. This controller can be a

simple PID controller or a short time horizon MPC [8] that

tracks x∗. We argue that tracking only the optimal solution is

suboptimal because it does not contain sufficient information

about the underlying cost functions. When the system faces

disturbances, the controller will force the system to go back

to the optimal solution, although the disturbance may be

acceptable according to the desired behavior.

Consider as an example the problem of controlling a

bicopter to reach a goal position. The mean and the samples

from the trajectory distribution are shown in Fig. 2c. The

main objective is the position of the bicopter at the final

time step to be at the goal. This results in a wide trajectory

distribution in-between, signifying that it is acceptable to

deviate from the mean in the middle of the trajectory.

When there is a disturbance, a controller tracking the mean

will force the system to come back to the mean, although

this is not necessary according to our cost function (which

reflects the desired behavior). In contrast, if the controller

knows about the distribution, it knows when a disturbance

is acceptable and hence does not apply strong correction,

following a minimal intervention principle [13], [17], [18].

To track the distribution p(x), we propose to use a short

time horizon MPC. At each time step, we solve an OCP with

horizon Ts, which is much shorter than the long horizon T

used to plan the trajectory in Section III-A. We solve this

short horizon OCP with iLQR just as we do for the long

horizon OCP, but in practice we can use any OCP solver for

this part. The cost function

ct(xt,ut)=(xt − x̄t)
⊤Qt(xt − x̄t) + l(xt,ut) + u⊤

t Rut

(14)

is designed to track a reference trajectory, where x̄t is the

reference state at time t, l(xt,ut) is the collision cost, and

the precision matrices Qt are designed to correspond to the

probability distribution of x̄t. If x̄t has a large variance, we

do not want to track this state too precisely, so Qt should

be small, and vice-versa.

How to relate x̄t and Qt to the trajectory distribution

N (x∗,Σx
∗) that we find earlier? One way is to use the

marginal distribution pm(xt) = N (x∗

t ,Σx
∗,t), where x∗

t

is the component of x∗ at time t, and Σx
∗,t is the cor-

responding block matrix, so that x̄t = x∗

t and Qt =
Σ

−1
x

∗,t. However, when we do this, we neglect the correlation

between the different time steps in Σx
∗ . Instead, we can use

the conditional distribution based on the current state.

At time step t = τ , we observe the current state at xτ .

We first extract the probability p(xτ :τ+Ts
) from p(x), and

write this in partition format

p

(

xτ

xτ+1:τ+Ts

)

= N

((

µ1

µ2

)

,

(

Σ11 Σ12

Σ21 Σ22

))

.

We can then condition on xτ to obtain pc(xτ+1:τ+Ts
|xτ ) =

N (µc,Σc) where

µc=µ2+Σ21Σ11(xτ − µ1), Σc=Σ22−Σ21Σ
−1
11 Σ12.

The conditional distribution pc(xt|xτ ) = N (µc,t,Σc,t) can

then be obtained from pc(xτ+1:τ+Ts
|xτ ) for t = τ + 1 to

τ+Ts. µc,t is the tth element of µc, with the corresponding

block diagonal Σc,t. This can be used to set x̄t = µc,t and

Qt = Σ
−1
c,t in (14).

We demonstrate in the next section that formulating the

tracking controller to follow the reference trajectory distri-

bution will improve the tracking performance. The complete

algorithm is given in Table 1.

It is also possible to use the long horizon OCP in MPC

fashion. However, the long horizon requires longer compu-

tational time, making it difficult to be used in real-time. The

computation time is linear with respect to the time horizon

T . Formulating the controller as a short time horizon MPC

to track the distribution speeds up the computational time

significantly, while still being able to consider the future

events using the distribution. With shorter computational

time, the short horizon MPC can better adapt to real time

changes such as new obstacles along the trajectory. We

can also add hard constraints to the OCP, e.g., using the

augmented Lagrangian method [19].



Algorithm 1 Tracking iLQR distribution

1: Solve the long horizon (T ) OCP by iLQR;
2: Calculate p(x) = N (x∗,Σ

x
∗);

3: for t = τ < T do
4: Estimate the current state xτ ;
5: Extract the probability p(xτ :τ+Ts

) from p(x);
6: Compute the conditional probability pc(xτ+1:τ+Ts

|xτ );
7: Extract the ref. traj. distribution pc(xt|xτ ) from

pc(xτ+1:τ+Ts
|xτ ) for t = τ + 1 to τ + Ts;

8: Construct the cost function of the short horizon (Ts) OCP
(Eq. 14);

9: Solve the short horizon (Ts) OCP using iLQR;
10: Execute the first control input ut;
11: end for

IV. EXPERIMENTS

Fig. 2 shows the probability distribution on several sys-

tems, i.e., inverted pendulum (1 DoF), unicycle (3 DoF),

and bicopter (3 DoF). The system description can be found

in [17], [15], [20]. The distribution is determined by both

the dynamics and the cost function. As we put a high cost at

t = T to reach the goal and low cost at t < T , the distribution

is narrow around the goal and quite wide in the middle. Thus

the tracking controller knows that deviation from the mean

is more tolerable in the middle of the trajectory.

We quantitatively evaluated the proposed algorithm on

robotic manipulator (Panda) and quadcopter, with the task to

move from an initial configuration to a goal location while

avoiding obstacles. Following Algorithm 1, a long horizon

iLQR is first solved to obtain the trajectory distribution p(x)
that reaches the goal. The cost function is defined as

C(x,u) =

T−1
∑

t=0

(

(xt − xgoal)
⊤Q(xt − xgoal) +u⊤

t Rut+

l(xt,ut)
)

+ (xT − xgoal)
⊤QT (xT − xgoal), (15)

where Q and QT are the precision matrices, Q being much

smaller than QT . l(xt,ut) is a collision avoidance cost

formulated as a potential field that is active only when

the quadcopter is in collision. After running the iLQR

solver until convergence, we can compute the state trajectory

distribution p(x) = N (x∗,Σx
∗). Section IV-A describes

various tracking algorithms to be compared, with the results

discussed in Section IV-B.

A. Tracking Algorithms

To illustrate the benefit of tracking the trajectory distribu-

tion, we compare four different algorithms:

1) iLQR Feedback Control (iLQRfeed): iLQRfeed tracks the

mean trajectory x∗ using the feedforward control input u∗

and the feedback term Kt,

ut = u∗

t +Kt(xt − x∗

t ),

where xt is the current observed state. While this requires

very little computation, the feedback gain is only good

around the planned trajectory (x∗,u∗), and it can be unstable

for large disturbance.

2) Short time horizon MPC tracking the mean trajectory

(MPCmean): MPCmean solves an OCP problem at each time

step with the cost function in (14). The reference state is

obtained from the planned trajectory, i.e., x̄t = x∗

t , whereas

the precision matrix Qt is set to be the same as QT in (15),

i.e., a high-gain tracking.

3) Short time horizon MPC tracking the marginal tra-

jectory distribution (MPCmarg): MPCmarg solves an OCP

problem at each time step with the cost function in (14). x̄t

and Qt are set according to the marginal distribution pm(xt)
as described in Section III-B.

4) Short time horizon MPC tracking the conditional tra-

jectory distribution (MPCcond): MPCcond solves an OCP

problem at each time step with the cost function in (14).

x̄t and Qt are set according to the conditional distribution

pc(xt|xτ ) as described in Section III-B.

B. Tracking Comparison

We run the experiments on two systems, the 7-DoF Panda

manipulator and 6-DoF quadcopter. The manipulator task is

kinematic control to reach a desired end-effector pose where

the state x ∈ R
14 consists of the joint angles and velocities,

and the control u ∈ R
7 is the joint acceleration command.

The dynamics of the system is therefore linear (i.e., double

integrator), but the cost is non-quadratic as it involves the

end effector pose. The quadcopter task is dynamic control

to reach a desired goal location where the state x ∈ R
12

consists of the position, orientation, and its corresponding

velocities, while the control u ∈ R
4 consists of the four

propellers thrusts. For both systems, the horizon is set to

be T = 150 and Ts = 30 for the long and short horizon,

respectively, with 50 ms interval. The long horizon is set to

be long enough to reach the goal at the end of the trajectory,

while the short horizon is set to be as short as possible

while still managing to obtain good performance. As the

computation time of DDP is linear with respect to the horizon

length, the iteration time for short horizon DDP is around 5

times faster than the long horizon DDP. The cost function

is defined in (15). Fig. 1 shows an example of the optimal

iLQR trajectory x∗ for the quadcopter, shown in white.

After solving the long horizon iLQR to obtain the trajec-

tory distribution p(x) = N (x∗,Σx
∗), we track the trajectory

using the algorithms in Section IV-A. During tracking we

introduce external velocity disturbance to the system, and

evaluate how well the algorithms overcome the disturbance

with varying magnitude. We consider two types of distur-

bance: impulse and time-varying disturbance, each of which

has three levels of disturbance: small, medium, and large.

For the impulse disturbance, we introduce external velocity

disturbance for a short time, i.e., during 2 time steps, with the

magnitude of (0.5, 1.5, 3.) for manipulator and (0.2, 0.7, 1.5)
for quadcopter (the units are m/s and rad/s for linear and

angular velocity, respectively) in random direction. For the

time-varying disturbance, we introduce time-varying velocity

disturbance between t = 30 and t = 100 with the mag-

nitude of (0.1, 0.3, .6) for manipulator and (0.07, 0.2, 0.4)
for quadcopter. These numbers are chosen to specifically



Fig. 2. Trajectory distribution for different systems, shown at selected axes. The mean trajectory is shown as a black line, and the trajectory samples
drawn from the distribution are shown as red thin lines. The goal is shown in green.

demonstrate the different relative performance among the

controllers at each level of disturbance, as will be discussed

shortly after this. After each task completion, we evaluate

the cost of the resulting state and control trajectories by

using the original cost function in (15). For each disturbance

level, we run N=50 experiments with disturbance in random

direction. As the costs vary greatly between each experiment,

we normalize the cost by the minimum cost achieved at each

experiment, so a cost of value 1.0 means that the method

achieves the best cost for that particular experiment. The

mean and standard deviation of the normalized cost for each

method is given in Table I and II.

The results from both tables give the same conclusions,

i.e., the relative performance of the controllers are the same

for both impulse and time-varying disturbance. For the

Panda experiment, iLQRfeed has the best performance for all

disturbance levels. However, it only performs best at small

disturbance for the quadcopter. As the disturbance increases,

iLQRfeed becomes less reliable and the cost increases. We

observe that iLQRfeed often becomes very unstable at large

disturbance, resulting in diverging movements (these samples

were not considered in the results of Table I and II). Large

disturbance move the system far from the planned trajectory

where the feedback gain is no longer valid. This is especially

true for underactuated systems such as bicopter and quad-

copter where each control is not directly associated with a

particular state, because the optimal feedback gain changes

its sign (not only magnitude) according to the current system

state. Note that the standard deviation of iLQRfeed cost at

large disturbance in Table I and II for quadcopter is very

high. On the other hand, the kinematic control of manipulator

involves a linear dynamic and fully actuated system, so the

feedback gain remains good at large disturbance.

The three remaining controllers are more stable even at

large disturbance. MPCmean has the largest cost among the

three because it tries to track the mean trajectory precisely

without knowing the underlying cost function and the desired

behavior. MPCmarg performs better because it takes into

account the variance of the planned trajectory, but it ignores

the correlations between different time steps. The smallest

cost is achieved by MPCcond because it computes the future

reference trajectory by considering the current state, i.e.,

by computing the conditional distribution. This enables the

controller to adapt to the disturbance better. In practice, it

TABLE I

TRACKING PERFORMANCE COST COMPARISON (IMPULSE

DISTURBANCE)

System Method
Disturbance

Small Medium Large

Panda

iLQRfeed 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0

MPCmean 1.02 ± 0.0 1.03 ± 0.0 1.05 ± 0.0
MPCmarg 1.02 ± 0.0 1.03 ± 0.0 1.07 ± 0.0
MPCcond 1.01 ± 0.0 1.01 ± 0.0 1.01 ± 0.0

Quadcopter

iLQRfeed 1.00 ± 0.0 1.10 ± 0.3 1.99 ± 2.9
MPCmean 1.48 ± 0.1 2.58 ± 1.0 3.41 ± 1.2
MPCmarg 1.26 ± 0.0 1.23 ± 0.1 1.25 ± 0.2
MPCcond 1.08 ± 0.0 1.05 ± 0.0 1.20 ± 0.4

TABLE II

TRACKING PERFORMANCE COST COMPARISON (TIME-VARYING

DISTURBANCE)

System Method
Disturbance

Small Medium Large

Panda

iLQRfeed 1.00 ± 0.00 1.00 ± 0.0 1.00 ± 0.0

MPCmean 1.02 ± 0.00 1.03 ± 0.0 1.05 ± 0.0
MPCmarg 1.02 ± 0.00 1.03 ± 0.0 1.06 ± 0.0
MPCcond 1.01 ± 0.00 1.01 ± 0.0 1.01 ± 0.0

Quadcopter

iLQRfeed 1.01 ± 0.06 1.33 ± 0.7 2.60 ± 4.4
MPCmean 1.54 ± 0.18 3.06 ± 1.3 4.49 ± 2.0
MPCmarg 1.26 ± 0.03 1.25 ± 0.1 1.26 ± 0.2
MPCcond 1.07 ± 0.02 1.05 ± 0.1 1.20 ± 0.6

means that the controller exerts less control to overcome the

disturbance while still achieving the objective.

Fig. 1 illustrates the difference with the quadcopter exper-

iment. The planned trajectory x∗ is shown in white. At the

current state, an upward velocity disturbance is introduced

to the system. Since MPCmean and MPCmarg do not consider

the current state when computing the reference trajectory, the

disturbance does not affect its reference trajectory (shown

in cyan), which is always along the planned trajectory x∗.

On the other hand, the reference trajectory for MPCcond is

computed by conditioning on the current state. The algorithm

knows that the quadcopter is moving with an additional

upward velocity, and it adjusted the reference trajectory

accordingly (shown in yellow). While MPCmean and MPCmarg

force the quadcopter to go back to the mean, MPCcond use the



information from the distribution more effectively to move

according to the desired behavior. Note that the cost function

in (15) dictates that the important task is to reach the goal

at the end, while the path in-between is less important. This

is well represented by the trajectory distribution.

However, the conditional distribution is also obtained

from local approximation. This means that for very large

disturbance, it can still result in undesired behavior, such as

producing a reference trajectory that has a high cost. We

indeed find that MPCmarg is more stable than MPCcond at

very large disturbance. We can see in Table I and II that the

normalized cost of MPCcond increases to almost the same

as MPCmarg at the large disturbance level. At even larger

disturbance, we observe that MPCmarg performs the best

and most stably. However, the local approximation does not

affect MPCcond as much as iLQRfeed, because the conditional

distribution is only used as the reference trajectory, while the

underlying controller in MPCcond still considers the actual

dynamics around the current state to compute the control

command during the tracking. In contrast, for iLQRfeed,

the local approximation from the planning step directly

determines the controller gain, which remains unchanged

during tracking. This poor approximation results in unstable

controllers at large disturbance, especially for underactuated

and highly nonlinear systems such as quadcopter.

C. Discussion

In this work, we show an example of kinematic control

of a serial manipulator with non-quadratic cost functions.

We do not use dynamic control for this system because the

derivative of the dynamics (the matrix At) is often unstable,

i.e., some of its eigenvalues are outside the unit circle. Since

computing the distribution involves the multiplication of the

matrices
∏T−1

t=1
AT−t, the unstable eigenvalues causes the

resulting matrix to be numerically poor and the distribution

cannot be computed. More research still needs to be done

to handle this issue. Future works will also consider moving

obstacles scenario, as well as real robot implementation.

The proposed framework can also be extended to control

systems with both state and control constraints. Augmented

Lagrangian iLQR (AL-iLQR) is discussed in [19] to handle

such systems. Note that each iteration in AL-iLQR still

solves an LQR problem, so we can still obtain the distribution

as we do here. The resulting distribution would take the

constraints into consideration, i.e., having higher probability

when the trajectory satisfies the constraints.

V. CONCLUSION AND FUTURE WORK

We have shown that by obtaining the distribution of solu-

tion from iLQR and tracking this distribution, the resulting

controller is more cost-efficient and robust to disturbance 1.

The tracking performance is shown to be better than track-

ing only the mean trajectory or using the iLQR feedback

controller. The latter is very unstable when moving far from

the planned trajectory due to large disturbance, especially

1The implementation codes are available at https://github.com/
teguhSL/optimal_control_distribution

for underactuated systems such as quadcopter. The iLQR

distribution can be calculated using the information available

from a standard iLQR solver. The method can also be

extended to constrained OCP methods such as Augmented

Lagrangian iLQR [19].
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