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Abstract

The problem of transferring skills to hyper-redundant
system requires the design of new motion primitive rep-
resentations that can cope with multiple sources of noise
and redundancy, and that can dynamically handle per-
turbations in the environment. One way is to take in-
spiration from invertebrate systems in nature to seek for
new versatile representations of motion/behavior prim-
itives for continuum robots. In particular, the incredibly
varied skills achieved by the octopus can guide us to-
ward the design of such robust encoding scheme. This
abstract presents our ongoing work that aims at combin-
ing statistical machine learning, dynamical systems and
stochastic optimization to study the problem of trans-
ferring skills to a flexible surgical robot (STIFF-FLOP)
composed of 2 modules with constant curvatures. The
approach is tested in simulation by imitation and self-
refinement of an octopus reaching motion.

Introduction
There is a wide range of skills transfer mechanisms, ranging
from the blind copy of actions (mimicry) to the understand-
ing of the intent underlying an observed action (goal-level
imitation), associated with self-training capability required
to match the extracted intent. Several approaches in machine
learning exist to cover this span of imitative behaviors, but it
remains very challenging to make these approaches co-exist
and benefit from each others. A robust and flexible represen-
tation of skills and movements is one of the keys to enable
robots to jointly exploit several learning methodologies. In
this abstract, we study the problem in the case of biological
or robotic systems characterized by a hyper-redundant kine-
matic chain.

Spatiotemporal Representation of Octopus
Movement

In this paper, we exploited one representative sample from
recordings of various octopus reaching movements (Zelman
et al. 2013), gratefully provided by Prof. Binyamin Hochner,
Shlomi Hanassy and Alexander Botvinnik (Department of
Neurobiology, Hebrew University), and Prof. Tamar Flash
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Figure 1: Left: Four surfaces representing the Euler angles
θ and offset ∆L for the whole movement. The black lines
show a certain time slice, corresponding to a static pose de-
scribed by all the links (0≤s≤1) at t=0.7. Right: The arm
configuration and Frenet frames along the arm for the same
time frame.

(Department of Computer Science and Applied Mathemat-
ics, Weizmann Institute of Science). The raw data consists of
Cartesian positions of points along the octopus arm at differ-
ent time steps during the movement. A pre-processing step
was used to smooth and resample the data (with 50 points in
both time and space) with a two-dimensional polynomial fit
(with a 7-degree polynomial, set experimentally by testing
different orders).

In order to generate a model of the Octopus movements,
the arm was approximated as a robot with a high number
of links. Each link can for example be described by a set of
3 Euler angles (ZY X decomposition order) and one offset
(link length).

We will define as continuous arm index s∈ [0, 1] the po-
sition of any point along an arm, with s = 0 and s = 1
representing respectively the base and the tip. The duration
of a movement will be represented by a continuous time in-
dex t∈ [0, 1]. We thus have a set of 3 Euler angles θx, θy, θz
and an offset ∆L for each t and s, that can be represented as
a set of surfaces, see Fig. 1.
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Figure 2: A dynamical system with surface attractor (evolution over time and arm-index). (a) The grey surface represents this
attractor for the motion of a continuum arm, while the white surface is the resulting motion of the arm. (b) For a given arm
index s along the kinematic chain, the corresponding trajectory of the link at point s is represented. (c) For a given time index
t, we obtain a virtual spring-damper system in the s space, describing a static pose of the robot.

Continuum Arm Motion Encoding with
Gaussian Mixture Regression

Dynamical movement primitives (DMP) is a popular tool
in robotics to encode and reproduce movements while be-
ing robust to perturbations (Ijspeert et al. 2013). It con-
sists of a spring-damper system modulated by a non-linear
force profile encoded as a series of pre-defined basis func-
tions associated with local force behaviors. We introduced
in (Calinon et al. 2012) a probabilistic formulation of DMP
by jointly learning the basis functions and the local force be-
haviors with Gaussian mixture regression (GMR). We also
introduced an alternative representation by assuming that
the non-linear force can be represented by a moving spring-
damper system pulling the system, allowing us to encode the
path of the attractor point instead of the force.

With this DS-GMR model, after observation of a motion
x, the trajectory of the virtual attractor y that generates the
motion is described by

ẍ = κP [y − x]− κVẋ ⇒ y =
1

κP
ẍ+

κV

κP
ẋ+ x, (1)

where κP and κV are respectively the stiffness of the spring
and the viscosity of the damper. ẋ and ẍ are the velocity and
acceleration.

In order to employ the above system with octopus move-
ments, we use as input variable [s, t], and as output variable
an attractor y to reproduce x=[θz, θy, θx,∆L]. ẋ and ẍ are
calculated by differentiating x for each s with respect to t.
In other words, the observations x of the motion are con-
verted into the trajectory of virtual attractors y for each arm
index. Similarly as in Fig. 1, y can be represented as a set
of attractor surfaces. An illustration of a continuum arm is
presented in Fig. 2.1.

The joint distribution [s, t,y] is encoded in a Gaus-
sian mixture model (GMM) of K components, trained by
expectation-maximization (EM) after initialization of the pa-
rameters with k-means clustering. GMR is then used to esti-
mate P(y|s, t), within a fast computation time independent
of the number of datapoints used to train the model. Given

1Note that in this implementation, the evolution is only semi bi-
dimensional in the sense that the evolution over s with t = 0 is first
computed, followed by evolutions over t for s ∈ [0, 1], providing a
continuous surface.

y, the whole motion can then be reconstructed by double
integration.

Self-Refinement with Reward-Weighted
Regression

The compact GMM representation presented above can be
refined by other learning strategies such as self-refinement.
One option for implementing such self-refinement is to use
an EM-based stochastic optimization algorithm to refine the
GMM parameters, similarly as in (Calinon et al. 2014). The
procedure corresponds to an EM algorithm in which a re-
ward signal of exponential form is treated as a likelihood,
which can easily be extended to multi-optima policy search
(Calinon, Kormushev, and Caldwell 2013).

In this paper, we pursue another approach with the aim
of providing a more structured exploration strategy. In (Ko-
rmushev et al. 2010), it was proposed to exploit the struc-
ture of the optimization problem to speed up the search pro-
cess by redefining the self-refinement problem as an iterative
reward-weighted regression, which is relevant for the sub-
class of problems in which we have access to the goal or to
the highest value that a reward can take (e.g., reaching the
center of a target, staying as close as possible to a reference
trajectory, etc.).

In this paper, a Gaussian distribution is fit to the aug-
mented data ξ = [ξI>, ξO>

]> formed by the policy parame-
ters ξO (the GMM parameters of the model described in the
previous section) and the associated goals ξI (the movement
to imitate). The ordered set of datapoints {ξm}Mm=1 with re-
wards r(ξ1) > r(ξ2) > . . . > r(ξM ) is used as a form
of importance sampling (Kober and Peters 2010) to estimate
iteratively a new Gaussian distribution. A new policy ξO is
then estimated trough conditional probability by giving the
desired goal as input and by evaluating the retrieved model
to create a new point in the dataset.

Applications
Manual Design of Motion Primitives
The DS-GMR model is first employed to emulate typi-
cal movements used by octopus to reach for food, namely
bend propagation and bend elongation (Zelman et al. 2013).
These reaching movements involve bend propagation and
elongation of the proximal part of the arm (Flash and
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Figure 3: Emulation of reaching movement with bend propagation (a-c) and bend elongation (d-f).

Figure 4: An example of octopus reaching movement (after
data pre-processing). The black lines on the surfaces show
configurations at three different time steps (initial, mid and
final configurations), with corresponding octopus arm pose
in a 3D Cartesian space (the tip trajectory is represented with
blue dots).

Hochner 2005). The bend propagation movement from the
base to the tip can be simulated by setting a full covariance
matrix with non-zero off-diagonal elements (in the form
of a tilted ellipsoid), acting as an attractor in a curvature-
elongation space (e.g., θx and ∆L), see Fig. 3(a-c). An elon-
gation primitive can also be obtained by translating one of
the Gaussians in the elongation space, see Fig. 3(d-f).

Reaching movements are usually generated by a com-
bination of these two motor primitives: propagation of a
bend along the arm and arm elongation. They may be com-
bined with different weights to create a broader spectrum
of reaching movements. Instead of encoding individual in-
formation about bending/elongation patterns, the advantage
of DS-GMR is that it provides local correlations throughout
the movement in the form of a full covariance matrix on the
control commands retrieved by GMR.

Transferring Skills from the Octopus to the
STIFF-FLOP Robot
Fig. 4 shows an example of octopus reaching movement.
We can observe that the angle θx has a wider range than

Figure 5: Left: Single module of a constant curvature model,
with the pose of the tip described as a function of α, β and
L. Right: The Euler angles and offsets related to the octopus
movement (light gray) and the corresponding STIFF-FLOP
robot with 2 modules (green and red surfaces).

the others, suggesting that the octopus reaching movement
is mostly achieved in a plane.

The DS-GMR model can be exploited to transfer the
movement to a STIFF-FLOP robot composed of several
modules juxtaposed in series (Cianchetti et al. 2014). We
employ here a simplified representation for each STIFF-
FLOP module by approximating the shape of each module
by a constant curvature model. This constraint requires us to
divide the set of continuous surfaces into a given number of
subsurfaces corresponding to the number of modules (here,
two).

This transfer of motion skills from a continuous arm to an
arm with piecewise constant curvatures can provide a good
initial estimate but does not necessarily guarantee the best
fit. Indeed, even though the movement is quite similar, the
different structure of the STIFF-FLOP robot can cause dis-
similarity in the learnt movement. The self-refinement ap-
proach presented before is thus used to refine this initial es-
timate, by using the centers and the first eigencomponent of
the covariance matrices of the GMM as policy parameters.
A reward function based on the Cartesian distance of the
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Figure 6: (a-c) Comparison of the tip positions of the octopus arm (blue dots) and STIFF-FLOP robot (red dots) based on
the skill transfer imitation approach (before self-refinement) at time instances t= 0.2, t= 0.5 and t= 1. (d) The initial (light
gray) and refined variables (green and red surfaces). (e-g) The comparison after self-refinement (the black dots are the new tip
trajectory). (h) The Error over 30 runs.

STIFF-FLOP end-effector (xr) and the octopus tip (xo) is
defined at time instances t=0.2, t=0.5 and t=1 as

r =
1

3

∑
t=0.2,0.5,1

exp(−γE), E = ||xr(t)− xo(t)||,

where γ is a bandwidth coefficient set experimentally and E
is the position error.

In order to keep the robot parameters within the real
hardware limits, we also considered hard constraints in the
search process for each of the 2 modules asL0 ≤ L ≤ 1.8L0

and β ≤ 2π/3, where L0, L and β are the module minimum
length, length and curvature (see Fig. 5-left).

The results of the skill transfer and self-refinement pro-
cesses are shown in Figs 5-right and 6. Fig. 6(h) shows the
average and standard deviation of the error (E) for 30 runs
of the same experiment. We can observe a convergence of
the error (equivalently the reward) after 40 self-refinement
iterations, by starting from an initial set of 20 randomly gen-
erated policies based on the initial demonstration.

Conclusion
We presented an approach based on statistical dynamical
systems to encode movements in biological or robotic sys-
tems with a continuous kinematic structure. We showed
that the approach could be employed to transfer skills from
demonstration, and that it can be combined with a self-
refinement strategy based on iterative reward-weighted re-
gression. Our future work aims at applying this learning ap-
proach to the real STIFF-FLOP platform, by considering a
wider range of motion/feedback skills that could be used to
assist doctors in surgical operations.
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