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A Probabilistic Approach to Multi-Modal Adaptive
Virtual Fixtures

Maximilian Mühlbauer1,2, Thomas Hulin2, Bernhard Weber2, Sylvain Calinon3,4,
Freek Stulp2, Alin Albu-Schäffer2,1, João Silvério2

Abstract—Virtual Fixtures (VFs) provide haptic feedback for
teleoperation, typically requiring distinct input modalities for
different phases of a task. This often results in vision- and
position-based fixtures. Vision-based fixtures, particularly, re-
quire the handling of visual uncertainty, as well as target
appearance/disappearance for increased flexibility. This creates
the need for principled ways to add/remove fixtures, in addition
to uncertainty-aware assistance regulation. Moreover, the arbi-
tration of different modalities plays a crucial role in providing
an optimal feedback to the user throughout the task.

In this paper, we propose a Mixture of Experts (MoE)
model that synthesizes visual servoing fixtures, elegantly handling
full pose detection uncertainties and teleoperation goals in a
unified framework. An arbitration function combining multiple
vision-based fixtures arises naturally from the MoE formulation,
leveraging uncertainties to modulate fixture stiffness and thus
the degree of assistance. The resulting visual servoing fixtures
are then fused with position-based fixtures using a Product
of Experts (PoE) approach, achieving guidance throughout the
complete workspace. Our results indicate that this approach not
only permits human operators to accurately insert printed circuit
boards (PCBs) but also offers added flexibility and retains the
performance level of a baseline with carefully handtuned VFs,
without requiring the manual creation of VFs for individual
connectors. An exemplary video showcasing our method is
available at: https://youtu.be/6BDB3g0QyFg

Index Terms—Telerobotics and Teleoperation, Space Robotics
and Automation, Assembly

I. INTRODUCTION

V IRTUAL FIXTURES (VFs) play an important role in
shared control as haptic aids by providing force feedback

to the human operator [1, 2], assisting in the execution of tasks.
The type of assistance to be provided depends on the task at
hand and/or the phase of the task that the robot is currently
executing. An insertion task typically requires an approach
phase, where trajectory guidance is needed, followed by an
insertion phase, where visual guidance takes over. Position
and vision [3] or even forces [4] are examples of fixture input
modalities. The arbitration of different modalities, i.e. when
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Fig. 1: Fusion of position-based and visual servoing fixtures. Trajectory
covariance (green ellipsoids) and visual servoing covariance (purple ellipsoid)
are used to calculate the final wrench and uncertainty (red ellipsoid).

each type of modality should be activated and by how much,
is an important open problem in shared control.

Although established frameworks for position-based trajec-
tory fixtures exist [2], visual servoing fixture formulations
which are robust to object appearance/disappearance and
provide assistance based on target uncertainty are lacking.
Providing visual assistance in an adaptive manner is known
to be challenging. On the one hand, object poses may not
be known with sufficient certainty in advance, making it
impossible to use constant fixtures that are designed once
and rarely change. On the other hand, many external factors,
such as lighting conditions, are non-trivial to model and may
drastically degrade perception performance. Imperfect visual
measurements are a reality in robotics – yet, we have to rely on
them even though they might be uncertain. Systems using this
uncertainty are thus better equipped to succeed in challenging
environments, such as in-orbit scenarios.

In this work we introduce a multi-modal VFs framework
that leverages probability theory to seamlessly combine vision-
and position-based fixtures (Fig. 1), using probability distribu-
tions on R3×S3 (Section III) to take orientations into account.
Our contribution is two-fold. First, we propose a probabilistic
Mixture of Experts (MoE) [5] approach to automate the arbitra-
tion of uncertain visual servoing fixtures (Section IV). Under
the MoE, each expert is a probability distribution that models
the uncertainty of a detected object. State- and perception-
dependent gating functions regulate the influence of each
expert such that haptic assistance changes dynamically as the
robot interacts with the environment. The formulation further-
more elegantly handles object appearance/disappearance. As a
consequence, the effort to design visual servoing fixtures by
hand is minimal. Second, we propose the fusion of visual ser-
voing fixtures with position-based fixtures using a Product of
Experts (PoE) (Section V) resulting in a principled arbitration
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between multiple assistance modalities that is generic to a wide
range of shared control problems. By treating position-based
fixtures as mixture models [2, 6], both modalities are MoEs,
allowing for their seamless fusion. Relying on Gaussian-
distributed experts, this corresponds to a product of Gaussians,
a well-known approach for fusing information from different
sources.

We evaluate the proposed approach on a PCB connector
assembly task where a position-based VF guides the operator
towards the insertion region and a visual servoing VF provides
fine-grained assistance guiding the insertion (Section VI). We
use two torque-controlled KUKA light-weight arms as robot
and haptic device (Fig. 2).

II. RELATED WORK

A. Adaptive and Probabilistic Virtual Fixtures
The first type of fixtures initialize static position-based

fixtures from visual measurements. Selvaggio et al. [7] detect
limit switches and plan VFs for reaching and manipulating
these switches. Pruks and Ryu [8] use visual measurements
to allow users to interactively define VFs based on geometric
primitives, for example cylindrical fixtures for circles detected
in the image. Contrarily, Hager [9] and Bettini et al. [10]
calculate VF forces directly based on camera images for 2D
line following thus creating dynamic visual servoing fixtures.
The visual servoing fixture of Wu et al. [11] is closest to
ours, however without probabilistically considering multiple
fixtures. A major limitation of these works is however that
fixtures can only be generated when the manipulation target
is visible in the camera. Furthermore, they only consider the
visual modality, unlike our approach which considers position-
based fixtures as well.

Static position-based fixtures can be created using proba-
bilistic methods. Aarno et al. [12] extract lines as trajectory
fixtures from demonstrations, selecting the active VF based
on the estimate of a jointly learned Hidden Markov Model.
Raiola et al. [2] present a probabilistic arbitration between
a library of probabilistic VFs based on Gaussian Mixture
Models (GMMs). Havoutis and Calinon [6] show how Task-
Parametrized Gaussian Mixture Models (TP-GMMs) [13] can
be used to define fixtures which can adapt to changing start
and goal points. These approaches do however not incorporate
assistance based on uncertain visual measurements.

B. Virtual Fixture Arbitration
Having multiple VFs active at the same time, the need

for an arbitration function that combines them arises. This
extends the classical concept of arbitration as division of
control authority between human and robot. One possibility is
to have phase-dependent VFs and to activate them sequentially
[14]. Other approaches allow multiple fixtures to be defined
at once and use an arbitration component to switch between
them. Selvaggio et al. [7] use a passivity controller to stabilize
a hard assignment switching operation between fixtures. Abi-
Farraj et al. [15] use fixtures guiding the operator to possible
grasping poses. Manually tuned scaling factors allow them to
have all fixtures active at the same time. In our previous work
[3] we hand-designed an arbitration function between position-

and vision-based fixtures. A limitation of such approaches
is that smooth switching between target poses requires the
handcrafting of either a stabilizing controller or an arbitration
function.

Also between fixtures and the operator, arbitration needs to
be performed. Probabilistic formulations for arbitration have
been proposed [2, 16–18]. While the implementations differ,
most of these works use a scalar value for assigning weights
to fixtures, ruling out degree-of-freedom-specific arbitration.
In contrast, Zeestraten et al. [18] modulate human commands
by a hand-designed covariance matrix allowing for a seamless
arbitration with static Gaussian-based fixtures and treating
each degree of freedom individually. Michel et al. [19] use
a different approach by learning a full stiffness matrix, where
uncertain directions generate lower VF stiffness. Our work
combines the best of these approaches by using adaptively
scaled stiffness matrices computed from the covariance of
dynamic fixtures.

C. Machine Learning Approaches
In robotics, MoEs have been applied in locomotion learning

[20], imitation learning [13, 21, 22] and shared control [2],
while PoEs are a popular approach at the intersection of
learning and control [23, 6, 24, 22]. The expert is a simple
model which, combined with other experts, improves model
performance over the single-expert case. Gaussian-based ex-
perts, where the expert is modelled as a Gaussian distribution,
are among the most popular expert models. The MoE model
corresponds to an “or” operation, performing a weighted sum
of the density functions of the experts.

In contrast, a PoE model (product of Gaussians) corre-
sponds to an “and” operation where all constraints must be
approximately satisfied. Many PoE models consist of MoE-
based experts. TP-GMMs [13] learn local models of skill
demonstrations, encoding them as GMMs. For different input
values, such as time, predictions from the local GMMs are
combined using a PoE. The concept has been extended to the
fusion of controllers [22] and assistive teleoperation [6, 18],
where it was however mainly used to arbitrate between user
and automation. We believe that the potential of MoE-based
experts goes beyond modeling demonstrations and provides
the flexibility to represent different fixture modalities. Al-
though PoE approaches have been used with vision [23], to
the best of our knowledge they have not been used with MoE-
based vision experts nor in shared control.

III. BACKGROUND

A. Teleoperation System and Virtual Fixtures
We assume two gravity-compensated, impedance-controlled

manipulators (Fig. 2) where Cartesian wrenches wee ∈ R6 are
commanded at the end effector, with joint torques computed
from τ = J>wee [25]. The Cartesian wrenches of remote and
input robots are computed with

wee,remote = α (K∆x+D∆ẋ) +wVF (1)
wee,input = −αAdirwee,remote (2)

where the adjoint Adir transforms wrenches from the remote
robot to the haptic input device. This position-computed force
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Fig. 2: The teleoperation setup with haptic input device on the left and remote
device on the right side.

architecture does not require a force-torque sensor at the end
effector. The factor α scales motions between both robots,
∆x and ∆ẋ corresponds to their relative displacement and
K, D, are positive definite constant stiffness and damping
gain matrices. The virtual fixture wrench wVF is applied to
the end effector of the remote robot only, which thus achieves
high accuracy. The user also receives useful feedback through
the coupling introduced by α. In this work we assume that
wVF is a combination of individual wrenches, associated with
different virtual fixtures, computed as

wVF,j = KVF,jLogxee
(xVF) , (3)

where xee is the end effector pose, KVF,j and xVF,j are the
stiffness and attractor point of the j-th fixture. Logxee

(xVF)
denotes the R3×S3 logarithmic map [21] of xVF at xee, which
is the on-manifold equivalent to the Euclidean xVF,j − xee,
allowing us to also take the orientation into account. We
further assume that each fixture j can be based on a different
input modality, e.g. vision or position and has one attractor
point and stiffness matrix. We denote those attractors as xVS

respectively xPB instead of xVF,j in Sections IV and V-A.
Section V introduces our proposed arbitration of different
fixtures.

B. On-Manifold Probabilities

Object pose uncertainties appear at position and orientation
levels. To be able to model both, we use an on-manifold
approach with Gaussian distributions. We use a pose defined
as the Cartesian product of the 3-dimensional Euclidean space
and the unit quaternion manifold,1 x ∈ R3 × S3, whose dis-
tribution is parameterized by a mean µ ∈ R3 × S3 and a
covariance matrix Σ ∈ R6×6 in the tangent space of µ. Since
S3 is a compact Lie group, it admits a bi-invariant metric
allowing the computation of geodesics using the Lie group
exponential [27, 28]. This allowed [21] to express tangent
vectors and covariance matrices of S3 as elements of R3

and R3×3 respectively, here, we follow the same approach.
We employ the Gaussian distribution proposed in [21, 29] to
compute the probability of x:

N (x|µ,Σ) =
1√

(2π)
d |Σ|

e−
1
2Logµ(x)

>Σ−1Logµ(x). (4)

1To avoid issues with S3 double-covering SO(3), we wrapped the loga-
rithm at a full rotation, ensuring that Logq(−q) = 0.

From N samples, Maximum Likelihood Estimation (MLE)
[30] is computed iteratively using the Fréchet mean [21]

∆ =
1

N

N∑
i=1

Logµ(xi) , µ← Expµ(∆) , (5)

upon convergence of (5), the covariance matrix is given as

Σ =
1

N − 1

N∑
i=1

Logµ(xi) Logµ(xi)
>
. (6)

The logarithm function Logµ(.) maps points from the manifold
to the tangent space at µ. The exponential map Expµ(.) maps
a vector from the tangent space at µ onto the manifold. For
the orientation part of the pose, we use the functions defined
in [21] for unit quaternions. Vectors in tangent space can be
moved from one linearization point to another using parallel
transport compensating for different base vector orientations
at different points µ. Using the parallel transport defined
in [21], we transport covariance matrices between different
tangent spaces. Note that other Lie-group approaches rely on
expressions e.g. for the product of Gaussians [31] with very
similar results on S3 to using the Riemannian Levi-Civita
parallel transport [21] as we have experimentally verified.

IV. PROBABILISTIC VISUAL-SERVOING FIXTURES

Formally we assume that, at any moment, a number of
MVS ≥ 0 visual servoing fixtures may be active, each trying
to bring the robot towards an object in its field of view
with different xVS. As the field of view changes with the
end effector position, the number of active fixtures and their
parameters depend on xee. Hence we treat each fixture as a
conditional distribution pm(xVS|xee) with m = 1, . . . ,MVS

that is computed from the uncertainty of the predicted poses
(Section IV-A). When MVS > 1, several fixtures pull the end
effector simultaneously. In order to ensure both local assis-
tance and the capability to switch between fixtures we propose
a MoE that outputs a unimodal distribution p(xVS|xee) from
the MVS candidates (Sections IV-B and IV-C). With this
distribution we are able to compute not only an attractor
point that drives the remote robot pose, but also stiffness
gains that regulate the required precision while tracking it
(Section IV-D).

Additional, desired assistive behaviors can be easily cre-
ated by adding hand-parametrized Gaussian distributions, with
gating functions enabling a user-defined regulation of transi-
tions between local experts. We demonstrate these features
experimentally in Section VI through the creation of dead
zones, initialization experts and the deactivation of undesired
assistance along certain axes.

A. Probabilistic Fixtures from Visual Uncertainty

In this section we propose an algorithm that outputs a
probability distribution per PCB connector in the camera
image, which can readily be used for the PCB connector
assembly task in Section VI. Using an in-hand camera leads
to an increasing accuracy when approaching the target as the
connector’s size in pixels increases. Previously [3], we used
a fixed grayscale threshold to binarize the intensity image I
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Fig. 3: Probabilistic target connector extraction using multiple grayscale
threshold values. Different threshold values lead to “soft” borders (left side,
intermediate gray values) while the core of the connectors and the outside,
where all threshold values give the same result, are uniformly black/white.
This results in different rectangles (right side). Converted to 6DoF poses, we
treat the grouped detections as samples from a Gaussian distribution.

and extract targets using OpenCV [32] rectangle extraction.
Depending on illumination conditions and camera settings,
the optimal threshold differs. Furthermore, shadows cast by
the connectors make it very difficult to find a single value for
optimally extracting the target connector. Using the idea of soft
grayscale thresholds [33, 34] we propose to extract potential
target connectors (Fig. 3) on a symmetric range of different
grayscale values T ∈ Tnom ± {∆T0,∆T1, . . . } around the
nominal threshold Tnom with threshold increments ∆Ti. As
shown in Algorithm 1, we group these extractions using their
2D coordinates (groupByXy), assigning exactly one matching
rectangle per grayscale threshold value. Then, we convert them
to 6D poses (convertTo6D) and, for each connector m, treat
them as set of Nm individual samples drawn from a noisy
measurement of the target.

Using (5), the MLE estimate of the samples is computed
to approximate pm(xVS|xee) = N (xVS|µm,Σm), where
Σm provides a measure of the uncertainty associated with
a connector. As final step of the detection, we associate new
measurements with already tracked connectors based on their
distance. If no existing tracked connector is found, a new
tracking instance is created using the mean and covariance of
the measurement as initial state. In case a tracked connector
exists, we employ Kalman filtering for data fusion.

B. On-Manifold Mixture of Experts
Having represented the uncertainty of candidate VFs in the

robot workspace with pm(xVS|xee), we express p(xVS|xee)
in a unified manner using a MoE model [5, 30]

p(xVS|xee) =

MVS∑
m=1

ĥm(xee,µm)pm(xVS|xee). (7)

Our proposed gating function hm takes into account the
robot end effector pose and the predicted expert locations
µm to compute an on-manifold, distance-based metric that
determines the influence of each expert through

hm(xee,µm) = exp

(
−1

2
Logxee

(µm)
>
LLogxee

(µm)

)
+γ

(8)

where L is a hyperparameter regulating the influence of
nearby points and γ is a regularization factor stabilizing (7)
numerically when far from the objects, then assigning near-
equal probabilities to all objects. For our experiments, we set
L = diag(l2x, l

2
y, l

2
z , l

2
wx, l

2
wy, l

2
wz)
−1, enabling us to specify the

Algorithm 1 Probabilistic target connector detection on
grayscale image I(xee) with threshold values Ti.

rects← empty list
for i in len(T ) do

B ← I > Ti
rects← rects + minAreaRects(B) . list append

end for
sorted rects← groupByXy(rects) . one rect per Ti
for m in len(sorted rects) do

6d det← xee · convertTo6d(sorted rects[m])
µm ← mean(6d det) . Eq. (5)
Σm ← covµm

(6d det) . Eq. (6)
end for

relevance of each direction. Our chosen gating function can be
interpreted as a linear combination of a RBF kernel and a con-
stant kernel [35]. (8) ensures a peaked assignment when close
to one connector while assigning very similar weights when far
from all connectors. The factors li and γ can be used to adjust
the gating function to the scale of the problem. Smaller values
li increase the peak while a smaller γ increases the distance
required to assign similar weights to all targets. We finally
normalize ĥm(xee,µm) = hm(xee,µm)/

∑MVS

j hj(xee,µm)
to ensure that the value of all gating functions sums to 1.

C. Unimodal Approximation of the Multi-Modal MoE

Despite unifying predictions from different experts, (7) is
by design multi-modal, which is not well-suited to our VF
implementation requiring a single attractor point. To mitigate
this issue, we rely on the expectation and covariance of
xVS under p(xVS|xee). Since the experts are Gaussian, the
resulting distribution can be approximated as a uni-modal
Gaussian. This approximation is often referred to as moment
matching, see [13, 30] for derivations. Similarly to III-B, the
mean is computed iteratively, this time using the means of
each expert µm and their importance ĥm

∆ =

MVS∑
m=1

ĥmLogµVS
(µm) , µVS ← ExpµVS

(∆) . (9)

The covariance computation is adapted to the manifold using

ΣVS =

MVS∑
m=1

hm

(
ΣµVS

||µm
+ LogµVS

(µm) LogµVS
(µm)

>
)
,

(10)
where ΣµVS

||µm
denotes Σm mapped from the tangent space

of µm to that of µVS using parallel transport. Note that
this corresponds to the second moment of the multi-modal
distribution [13], unlike [21] where by omitting the vector
outer product LogµVS

(µm) LogµVS
(µm)

> it was the result of
a linear combination of Gaussians. Under (9), we use µVS

as the attractor point in (3). Due to our choice of hm, (10)
matches Σm in the vicinity of connector m, increasing as
the end effector moves away. For this reason, we use ΣVS to
design the stiffness K associated with the fixture.
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D. Variable Stiffness Control

We use the precision matrix PVS = Σ−1VS to scale the
stiffness of the resulting visual servoing fixture. With this gain
design we ensure that directions that have larger variance allow
for more freedom to the operator, while directions with low
variance are stricter in enforcing the visual servoing fixture.
For this, the elements of KVS are set elementwise

KVS,ij = Kijmin (max (η (Pij − κ) , 0) , 1) (11)

where Pij is the entry of PVS at indices i, j. Precision entries
< κ result in zero fixture stiffness, entries > 1

η + κ in full
stiffness. Values in between are linearly scaled.

V. PRODUCT OF EXPERTS FOR MULTI-MODAL VIRTUAL
FIXTURE ARBITRATION

The MoE-based formulation for visual servoing fixtures
introduced in Section IV is well-suited to being combined with
other fixtures via a Product of Experts (PoE)

p(x) =

P∏
j=1

pj(x), (12)

particularly, if other fixtures are also modeled as MoEs using
Gaussian experts. Such PoE formulations are used in well-
known TP-GMMs [13] and variations thereof [22], where
motion demonstrations are encoded locally in GMMs and later
fused via a Gaussian product to compute a global policy for the
robot. We introduce a PoE formulation where experts are not
necessarily learned but can also be instantiated from vision,
leveraging our proposed visual servoing MoE.

A multi-modal VF formulation with position- and vision-
based fixtures thus has experts responsible for vision- (Sec-
tion IV) and position-based assistance. In a PoE-based formu-
lation, the arbitration between them arises naturally from the
Gaussian product. In this section we explain how we achieve
multi-modal VF arbitration with position-based fixtures (sec-
tion V-A) and fusion at action level (section V-B) using an
on-manifold Gaussian product [21].

A. Probabilistic Position-based Fixtures

We define probabilistic position-based trajectory fixtures
using GMMs [21] on the manifold R1 × R3 × S3. From
a dataset of pose trajectories {ti,xi}Ni=1, where t ∈ R1 is
normalized using dynamic time warping and x ∈ R3 × S3
represents a pose, we approximate the joint distribution be-
tween time and pose using a GMM with MPB components, i.e.[
t
x>

]
∼
∑MPB

m=1 πmN
([

t
x>

]
|µm,Σm

)
. We subsequently

treat the pose elements of the GMM as the position-based
fixture attractor xPB and use Gaussian mixture regression to
compute the conditional distribution of xPB given time,

p(xPB|t) =

MPB∑
m=1

πm(t)N (xPB|µm|t,Σm|t). (13)

Note the similarity between (13) and (7) – both trajectory and
visual servoing fixtures are MoEs. The multi-modal distribu-
tion (13) is subsequently approximated by a single Gaussian,

Fig. 4: Probabilistic position-based trajectory fixture based on a GMM.
Individual Gaussians (light green) define a mean trajectory (red) evaluated at
discrete points with corresponding covariance (yellow). A set of such points
(red dots) around the projection of the current end effector pose (green dot)
with closest covariance is sent to the real-time controller for interpolation.

similarly to Section IV-C, ensuring that the trajectory fixture
contributes with one single expert to the PoE, i.e.

p(xPB|t) = N (xPB|µPB,ΣPB). (14)

For the details on the computation of (13)–(14), particularly
µPB,ΣPB, the reader is referred to [13].

A position-based fixture provides assistance by guiding the
end effector towards a trajectory. To achieve this behavior we
compute D Gaussian distributions (14) given D equally spaced
samples of t in the training interval, yielding {µd,Σd}Dd=1. We
then select the two closest means to the current end effector
position xee and perform on-manifold linear interpolation
between them to create the expert.

B. PoE at Action Level

Inspired by [22], we perform the fusion of P different
VFs on wrench level. Given the linear relationship between
wrench and virtual fixtures (3), Gaussian experts result in
Gaussian wrenches, i.e. wVF,j ∼ N (µVF,j ,ΣVF,j), where
µVF,j = KVF,jLogxee

(µj) and ΣVF,j = KVF,jΣjK
>
VF,j .

Optimal wrenches result from the optimization

ŵVF = arg min
wVF

P∑
j=1

(wVF − µVF,j)
>
Σ−1VF,j (wVF − µVF,j) ,

(15)
whose solution is the product of P Gaussians yielding,

ŵVF = Σ̂VF

P∑
j=1

Σ−1VF,jwVF,j, Σ̂VF =

 P∑
j=1

Σ−1VF,j

−1 ,
(16)

with the Cartesian wrenches ŵVF being used in (1). Perform-
ing the fusion at action level has the advantage of abstracting
away the local expert representations, helping to keep the
overall formulation generic. For example, in [22] this was used
to fuse force- and pose-based policies, which are represented
in different spaces and mapped to a common space by the
linear structure of the controllers. Since in this work we
employ variable stiffness (Section IV-D), in order to keep the
influence of the original spaces we set ΣVF,j = Σj .
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VI. EVALUATION

We evaluate our method on the use case of CubeSat sub-
system assembly [3]. We empirically set lx = ly = lz = 0.06,
lwx = lwy = lwz = 0.2, γ = 1 × 10−20, κ = 3 × 103 and
η = 1×10−6 for stiffness scaling in the visual servoing fixture.
The position-based trajectory fixture is trained on a dataset
(100 trajectories) obtained during a previous user study [3]
yielding a R1 × R3 × S3 GMM visualized in Fig. 1.

A. Prior-knowledge-driven Expert Customization

We customize the visual servoing MoE experts based on
human prior knowledge about the task requirements.

a) Zero force along insertion axis: To allow the user
to fully control the insertion, we set KVS,3j = 0,∀j, not
generating forces along the insertion axis.

b) Adding a dead-zone around connectors: To ensure
strong guidance in the victinity of a connector, we add a “dead
zone” with radius ldead in x and y coordinates by modifying
the first two entries of the vector Logxee

(µm)

x′ = x− lcrop
x

ltot
, y′ = y − lcrop

y

ltot
(17)

with ltot =
√

(x)2 + (y)2 and lcrop = min(ltot, ldead). Fig. 5
shows the resulting raw weights, we used ldead = 5× 10−3m
in the experiments.

c) Expert initialization: As connectors appear gradually
in the camera image, the visual servoing MoE (7) would
yield a very certain result once the first detector is perceived
only to become much less certain when a second connector
is detected. To mitigate this, we initialize the MoE with an
additional expert at the current end effector position with high
covariance and activation (subscript pos for position)

hMVS+1(xee,xtarg) = 1−exp

(
−1

2
λ||xee,pos − xtarg,pos||2

)
,

(18)
where λ = 1× 10−2 in our experiments. The expected target
pose xtarg is supplied externally based on the approximate
PCB location. (18) ensures that (7) always has at least one
active expert. A dead-zone with ldead = 9× 10−2m is used
in the experiments, this time including the z-axis, to ensure
that the influence of the initialization expert dissipates in
the vicinity of the connectors. Given its large covariance the
initialization expert generates negligible guiding forces.

B. Qualitative Evaluation of the Visual-Servoing Fixture

For the first experiment, we only enable the visual servoing
fixture which results in P = 1 for the PoE in (16). Fig. 6 shows
different end effector poses EE and the resulting estimated
Gaussian, according to (9)–(10), given the visualized detec-
tions. The obtained results show that the proposed probabilistic
fixture gives a strong positional and rotational guidance to the
user when close to one target as illustrated by the barely visible
purple covariance ellipsoid A in Fig. 6a. Despite the strong
guidance the user is able to ‘escape’ the fixture and switch to
a different connector. Fig. 6b shows that the attractor point
is temporarily located between connectors when switching.
With our choice of gating function (8), the importance of a

Fig. 5: Distance-based influence factors hm of the detections in the xy-plane
for distances in all other DoFs equal to 0.

connector grows exponentially with decreasing end effector
distance, ensuring that the operator is, in the end, always
guided towards a connector. Moment matching (10) leads to
a large variance of the purple Gaussian in direction of the
connectors B . Thanks to the variable stiffness (Section IV-D),
this results in lower stiffness along that direction, facilitating
the transition.

When far away (e.g. above the backplane PCB, Fig. 6c),
the user can not only displace the end effector in the xy plane
but also rotate the end effector freely around the z axis. This
allows the operator to choose connectors rotated by 180◦.

Fig. 6d shows the effect of including orientation in the
distance function. While the closest connector would be at D ,
our model knows that the most likely target is the connector
C because of a difference of 180◦ in orientation.

C. Pilot Study on CubeSat Subsystem Assembly

Fig. 7 shows the CubeSat assembly task where the subsys-
tem connector has to be mated with the backplane connector
requiring very high precision, which was not possible using
our telerobotic system without VFs. A positional offset of at
most 0.7 mm as well as a low angular deviation (4◦ / 2◦)
must be achieved, which requires a human in the loop in
addition to the fixtures. While the nominal subsystem insertion
pose is assumed to be given externally, this information might
be inaccurate and the user might want to choose a different
connector as CubeSat production is highly individualised.

The task for the human operator is to perform this insertion
using camera views and force feedback, consisting of forces
from the VFs and the remote environment. Input device and
remote side are based on lightweight robots (Fig. 2).

As the application is targeted for expert users, we set up a
small pilot study with 15 participants who already have expe-
rience with teleoperation,2 of which 6 already participated in a
previous experiment [3]. Participants are first introduced to the
system. After completing an introductory questionnaire, they
perform test insertion operations with only the novel visual
servoing fixture until they are confident with the teleoperation
setup and the required precision.

For the actual experiments, we use three different assistive
scenarios with different combinations of VFs (Table I). Users
perform three trials with each method in one block, the order
of the conditions being systematically varied. Probabilistic
Multi-Modal (P = 2) denotes the proposed combination of
fixtures (V), Probabilistic Visual-Servoing (P = 1) only the
visual servoing fixture (IV) and Multi-Modal the multi-modal

2All participants are DLR employees with experience in haptic interac- tion
with lightweight robots so no special ethic permission is required. Permission
for the questionnaires was obtained from the works council and data protection
of DLR, participants gave their informed consent.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3384759

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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EE

A

(a) Close to one connector.

EE

B

(b) In-between two connectors. (c) Far from the board.

EE

C

D

(d) Orientation influence.

Fig. 6: Probabilistic visual servoing fixture estimation. White spheres represent detected connectors with their Gaussian covariance displayed as small yellow
ellipsoid inside them and orientation shown as coordinate frames. These so-called experts act as individual candidate fixtures to drive the robot end effector.
The purple ellipsoid depicts the 3D Gaussian distribution corresponding to the unimodal approximation of the MoE. Its mean which acts as attractor for the
end effector is shown as green sphere. Finally, the blue sphere shows the 3D end effector position EE projected on the horizontal plane.

EF

CAM1

CAM2

Fig. 7: CubeSat assembly scenario. The gripper holds a Subsystem to be
inserted into the backplane (damaged connector at E ) mounted on the table.
An in-hand camera CAM1 is used for the visual servoing fixture ensuring
the high precision required to successfully insert the connector. On the left
side, one of the cameras CAM2 provided to the human operator is visible.

TABLE I: FLEXIBILITY, MANIP. TIME, WORKLOAD (LOWER=BETTER),
SYSTEM USABILITY SCALE (SUS) SCORE (HIGHER=BETTER), IN

BRACKETS: VARIANCE.

Method Flexibility Manip. t [s] Workload SUS score
Prob. Multi-Mod. (V) high 27.8 (18.1) 5.9 (3.4) 70.2 (15.6)

Prob. Visual-Serv. (IV) high 29.0 (18.8) 6.5 (3.6) 70.2 (15.8)
Multi-Modal [3] low 22.9 (15.7) 4.7 (2.9) 81 (12.4)

fixture of our previous approach [3]. Unlike our proposed
approach, [3] does not provide the flexibility to switch between
connectors automatically during task execution. Instead, it re-
quires a manual programming of the vision when the insertion
target changes. To simulate a more realistic scenario, where
the flexibility of our expert-based approach is required, we ask
users to insert into the front left connector F (Fig. 7), while the
position-based trajectory fixture guides them near a damaged
middle connector E . This requires switching between target
connectors near the PCB online, which is not possible in [3].
Our aim is to show that our proposed approach performs
favorably when compared to the hand-coded approach in [3]
despite the added flexibility. As such, in Multi-Modal the user
is directly guided to the front left connector F , resulting in a
very favorable baseline.

Subjects report their workload using the NASA TLX ques-
tionnaire [36] after each trial and the usability using the
SUS [37] after each block. Manipulation Time (10 cm above
the PCB until successful insertion) and subjective results
are summarized in Table I. Results of a repeated-measures
ANOVA on Manip. Time and workload are shown in Table II.
With 15 participants and a partial η2 = 0.0714 we achieve
a sufficient statistical power of 0.91 for the Manip. Time
analysis. For analyzing the workload, values for the within
factor Fixture have been Greenhouse-Geissner corrected. Post-
hoc comparisons with Bonferroni adjustment for the effect of
the within factor Fixture on the average TLX score revealed a
significant difference (p < .05) between Prob. Visual-Serv. and
Multi-Modal. The SUS scores were not normally distributed

TABLE II: ANOVA results comparing the different fixtures.

Dependent Variable Factor df1 df2 F p
Manipulation Time Fixture 2 28 1.0764 n.s.

Run 2 28 1.5299 n.s.
Fixt. * Run 8 56 0.7131 n.s.

Average TLX Fixture 1.39 19.46 4.1347 < .05
Run 2 28 9.8455 < .001

Fixt. * Run 8 56 1.1958 n.s.

and thus the Friedman test was performed (χ2 = 10.29,
p < .05). Post-hoc comparisons with the Wilcoxon test indi-
cated that scores were significantly higher for Multi-Modal
compared to the other conditions.

D. Discussion of the Pilot Study Results
As expected, the lower workload of Multi-Modal when

compared to Probabilistic Visual-Servoing reflects the differ-
ence in available guidance between both fixtures, since the
former does not provide guidance towards the PCB. However,
no significant difference between Probabilistic Multi-Modal,
where a position-based expert is used, and Multi-Modal could
be found even though users switched connectors during run-
time with the former. This is contrasted by the SUS score,
where Multi-Modal is significantly separated from the two
other methods. All methods still achieve a mean > 68 which
is generally considered to be above average.

While manipulation times can sometimes be vastly dif-
ferent between different trials because of tight tolerances, the
pilot study did not show significant differences between the
fixtures. This suggests that fine guidance close to the target -
which usually takes most of the time - is, as expected, very
similar. This can also be underlined by examining the PoE
result close to the target. The used position-based trajectory
fixture deviates by 3 cm from the target which is precisely
detected by the visual servoing fixture (< 1 mm) and has a
four orders of magnitude larger covariance. Thanks to the
probabilistic weighting of both fixtures, the force applied by
the incorrect trajectory fixture is only 0.03 N not hindering
precise telemanipulation. We thus conclude that the added
flexibility of our probabilistic approach maintains the precise
guidance of [3] even under unfavorable conditions.

E. Limitations of the Approach
Selecting hyperparameters in (7)–(8) currently requires ex-

pert tuning which should be automated in future work. For
a heavily inclined camera pose, the rectangle extraction in
IV-A might fail which we however did not observe yet.
More powerful detection methods can help to overcome this
limitation and also allow to interact with more difficult to
perceive objects.
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VII. CONCLUSION

We proposed an approach based on a mixture of experts
model to automatically detect and arbitrate visual servoing
fixtures in shared control. Our approach allows to incorporate
new or disappearing targets by dynamically creating and
removing fixtures. To benefit from a multi-phase guidance
throughout the robot’s workspace, a position-based trajectory
fixture is fused using a product of experts approach. Our
results show that with our method we could obtain a natural
arbitration of multiple fixtures comparable in performance
to a hand-tuned arbitration function [3] while offering much
more flexibility. This was achieved by extracting a meaningful
covariance which is then used to modulate the end effector
stiffness, allowing to switch targets. The position-based fixture
furthermore provides guidance when far from the target. The
experimental evaluation shows that the method supports the
insertion of CubeSat subsystems into multiple target connec-
tors, providing strong and useful guidance as well as giving
the user the choice of different possible targets.

In future work, we plan to extend our method to other ge-
ometries and applications as well as to investigate approaches
for seamless switching from teleoperation to automation.
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learning from demonstration to generate real-time guidance for haptic
shared control,” in 2016 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), 2016, pp. 003 205–003 210.

[5] R. Jacobs, M. Jordan, S. Nowlan, and G. Hinton, “Adaptive mixtures of
local experts,” Neural Computation, vol. 3, no. 1, pp. 79–87, 1991.

[6] I. Havoutis and S. Calinon, “Learning assistive teleoperation behaviors
from demonstration,” in IEEE International Symposium on Safety, Se-
curity, and Rescue Robotics (SSRR), 2016, pp. 258–263.

[7] M. Selvaggio, G. Notomista, F. Chen, B. Gao, F. Trapani, and D. Cald-
well, “Enhancing bilateral teleoperation using camera-based online vir-
tual fixtures generation,” in Proc. IEEE/RSJ Intl Conf. on Intelligent
Robots and Systems (IROS), 2016, pp. 1483–1488.

[8] V. Pruks and J.-H. Ryu, “Method for generating real-time interactive
virtual fixture for shared teleoperation in unknown environments,” The
Int. Journal of Robot. Research, vol. 41, no. 9-10, pp. 925–951, 2022.

[9] G. D. Hager, “Human-machine cooperative manipulation with vision-
based motion constraints,” in Visual Servoing via Adv. Num. Methods,
G. Chesi and K. Hashimoto, Eds. London: Springer, 2010, pp. 55–70.

[10] A. Bettini, P. Marayong, S. Lang, A. M. Okamura, and G. D. Hager,
“Vision-assisted control for manipulation using virtual fixtures,” IEEE
Trans. on Robotics, vol. 20, no. 6, pp. 953–966, 2004.

[11] L. Wu, K. Wu, and H. Ren, “Towards hybrid control of a flexible curvi-
linear surgical robot with visual/haptic guidance,” in Proc. IEEE/RSJ Intl
Conf. on Intelligent Robots and Systems (IROS), 2016, pp. 501–507.

[12] D. Aarno, S. Ekvall, and D. Kragic, “Adaptive virtual fixtures for
machine-assisted teleoperation tasks,” in Proc. IEEE Intl Conf. on
Robotics and Automation (ICRA), 2005, pp. 1139–1144.

[13] S. Calinon, “A tutorial on task-parameterized movement learning and
retrieval,” Intelligent service robotics, vol. 9, no. 1, pp. 1–29, 2016.

[14] K. Hagmann, A. Hellings-Kuß, J. Klodmann, R. Richter, F. Stulp,
and D. Leidner, “A digital twin approach for contextual assistance for
surgeons during surgical robotics training,” Frontiers in Robotics and
AI, vol. 8, 2021.

[15] F. Abi-Farraj, C. Pacchierotti, O. Arenz, G. Neumann, and P. R.
Giordano, “A haptic shared-control architecture for guided multi-target
robotic grasping,” IEEE Transactions on Haptics, vol. 13, no. 2, pp.
270–285, 2020.

[16] H. Saeidi and Y. Wang, “Incorporating trust and self-confidence anal-
ysis in the guidance and control of (semi)autonomous mobile robotic
systems,” IEEE Robotics and Automation Letters (RA-L), vol. 4, no. 2,
pp. 239–246, 2019.

[17] R. Balachandran, H. Mishra, M. Cappelli, B. Weber, C. Secchi, C. Ott,
and A. Albu-Schaeffer, “Adaptive authority allocation in shared control
of robots using bayesian filters,” in Proc. IEEE Intl Conf. on Robotics
and Automation (ICRA), 2020, pp. 11 298–11 304.

[18] M. J. A. Zeestraten, I. Havoutis, and S. Calinon, “Programming by
demonstration for shared control with an application in teleoperation,”
IEEE Robotics and Automation Letters (RA-L), vol. 3, no. 3, pp. 1848–
1855, 2018.

[19] Y. Michel, R. Rahal, C. Pacchierotti, P. R. Giordano, and D. Lee,
“Bilateral teleoperation with adaptive impedance control for contact
tasks,” IEEE Robotics and Automation Letters (RA-L), vol. 6, no. 3,
pp. 5429–5436, 2021.

[20] C. Yang, K. Yuan, Q. Zhu, W. Yu, and Z. Li, “Multi-expert learning of
adaptive legged locomotion,” Sci. Robot., vol. 5, no. 49, 2020.

[21] M. J. A. Zeestraten, I. Havoutis, J. Silvério, S. Calinon, and D. G.
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