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Abstract— Physical interaction between humans and robots
arises a large set of challenging problems involving hardwe,
safety, control and cognitive aspects, among others. In thicon-
text, the cooperative (two or more people/robots) transpdation
of bulky loads in manufacturing plants is a practical exampke
where these challenges are evident. In this paper, we add®s
the problem of teaching a robot collaborative behaviors fran
human demonstrations. Specifically, we present an approach
that combines: probabilistic learning and dynamical systens,
to encode the robot’s motion along the task. Our method allow
us to learn not only a desired path to take the object through,
but also, the force the robot needs to apply to the load duringhe
interaction. Moreover, the robot is able to learn and reproduce
the task with varying initial and final locations of the object.
The proposed approach can be used in scenarios where not
only the path to be followed by the transported object mattes,
but also the force applied to it. Tests were successfully caed
out in a scenario where a 7 DOFs backdrivable manipulator
learns to cooperate, with a human, to transport an object whie
satisfying the position and force constraints of the task.

. INTRODUCTION

Robots are often envisaged as human-like machines that _ _ _ _
can interact with people in a natural and safe way. Sudhig. 1: Experimental setting: demonstration and repradact
human-robot interaction (HRI) implies that the robot isPhases.

able to communicate with the person, understand his/h@qRC) scenarios, where control-based solutions have domi-
needs and behave accordingly. This impression is partlgulanated (see Section II). Yet, most control methods require a
important in situations where a human needs the help @fodel of the task, which becomes complex when a human is
another person to perform a given task successfully. F@f the loop. In such instances, PbD emerges as a promising
example, the transportation of bulky objects demands at legjternative solution allowing the natural transfer of huma

two persons to carry the load cooperatively. This task maghowledge about the task to the robot. In this context, a
become difficult when the load has to pass through narroyuman teacher may, for instance, demonstrate to the robot

spaces, and even more laborious if the object is fragilgs role in the task [4], a trajectory to follow [5], or evenwio
enough so that the transporters must concern about the foggmpliant it should be [6].

they apply fo it. In this scenario, one of the human_s May \we therefore propose to use PbD to teach a robot to simul-
be replgced *?_y,a robotic agent, where the reasoning atheously handle position and force constraints arisingrwh
adaptation abilities of the human can be combined with the a0 and a robot cooperatively manipulate/transport an
robc_)ts strength and precision. Such functionality may b% ject (see Fig. 1). Specifically, our approach defines a set
achieved by programming the-_ robot from demonstrations f virtual dynamical systems representing the constraifts
the task. Once the collaborative behavior has been Ie_arn_(fﬁe task, and driving the robot motion. Such systems can act
the rob_ot can autonomously perform the task, expanding G different frames of reference, for instance, on cootdina
own skills. . . systems representing the robot’s base, the transportedtobj
Programmmg by demqnstrat|on (PbD) [1] has been SU%tc. To deal with this problem, we use a task-parametrized
cessfully QPP"ed to settings whe_zre a_robot reproduces_ fBrmulation of a Gaussian mixture model that allows us not
learned skill in a standalone fas_h|on 2], [3]. Howeversthl_only to encode the human demonstrations, but also, to extrac
approach has rarely been used in human-robot COII‘fjlbor""t"é{[]tomaticalIy the importance of the constraints actingifat d
1Department of Advanced Robotics, Istituto ltaliano di Telogia (IIT), ~ f€r€nt coordinate systems along the task [7]. Moreover, our
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the collaboration. We successfully test our approach ik re approach was then improved by introducing stiffness iné th
world scenario where a 7 DOFs robotic manipulator learnsontroller [16]. Here, the parameters were estimated from
to perform a cooperative task requiring different force anébrce and position data collected when a single human com-
position constraints to be satisfied. pleted the task following minimum jerk robot movements

A brief review on works dealing with similar HRC prob- (i.e., the robot acted as the leader while the human was the
lems is given in Section Il. Details about our approaclHollower). Note that the minimum jerk model [17] has also
can be found in Sections Il and 1V, while results for thebeen an inspiration for Maedz al. [18]. They proposed to
cooperative transportation experiment are shown in Sectizise such a model to estimate the human hand position in a
V. Conclusions and future work are presented in Section Vhuman-robot carrying task. This estimation was used as the
Il. RELATED WORK reference for the robot impedance gontroller.

Tsumugiwaet al. [19] used an impedance controller,

A. Control-based approaches where the damping varied according to the estimate of the

Human-robot collaboration has been investigated from thguman arm stiffness. Their approach assumed that a low
early nineties, when purely control-based approaches wevelocity cooperative system remains stable if the robot’s
dominant. Kosuget al. [8] proposed an impedance controldamping proportionally varies as the human stiffness. étark
based on the apparent mechanical impedance of an objettl. [20], unlike former works, proposed to iteratively tune
manipulated by multiple robots and a human. The forcthe parameters of the robot's admittance controller froe th
applied by the human was transferred to the robot contmlleruser’s preferences with regards to the robotic partner.
so that the human could command the motion of the object Notice that the idea behind all these approaches is mainly
while the robots behave as followers. The proposed coetrollto emulatethe way humans act in a collaborative scenario.
was compared against different classic control schemerevheThis aim has been achieved either by shaping the parameters
its low damping version performed the best [9]. of a predefined controller using motion/force patterns egns

Al-Jarrah and Zheng introduced a two-levels controlhile a human-human pair carries out the task, or by tuning
schema, where an admittance controller is driven by a high#ire controller based on users’ feedback. The success @& thes
level force control. The idea here was to trigger a reflemnethods mainly relies on how well the robot controller fits
controller when the robot acted as a load for the human ke human collaborative behavior.
setting a force-based threshold that governs the motion of
the manipulator [10]. Duchaine and Gosselin [11] considerec. |earning-based approaches

that the human intention in cooperative tasks is typically o
based on the direction and magnitude of the force measuredEvrardet al.[4] proposed a probabilistic framework based

at the robot's end-effector. They proposed to add the raff! Gaussian mixture models (GMM) and Gaussian mixture
of change of the sensed force to an impedance controllE§gression (GMR) to respectively encode and reproduce
[12], while varying its damping as function of the changeéObOt collaborative be_hawors. The main idea was to de_mon-
of magnitude of the force. strate, by teleoperation, the leader/follower roles dyrin
Dumoraet al. decomposed a collaborative task into a gecooperative lifting task. GMM encapsulated the robot motio
quence of non-holonomic robot motions [13]. Every motior?nd the sensed fqrces, wh|I§t GMR generated the_ reference
primitive was represented by a predefined virtual mechanisfiPuts corresponding to a given sensed force during repro-
coupled to the robot's impedance controller. Hence, thduction. On the other hand, Medirea al. [S] endowed their
whole task could be carried out by sequencing the differef@POt With a cognitive system, which provided segmentation
primitives according to the user's intention [14]. Note ttha®Ncding and clustering capabilities for demonstrations o
the key feature in all these works has been the need forcgllaborative behavioral primitives. These were représen
model of the task linked to an analysis of the possible rob&y & Primitive graph and a primitive tree using hidden
movements, so that both the parameters and the structdf@rkov models (HMM) that were incrementally updated
of the controller can be designed accordingly. Unfortulyate during reproduction [21]. One of the main differences with
most of these frameworks are not flexible, in the sense thEgSPeCt to [4] was that here the robot started behaving as a
if a new task is required or if an additional constraint needf@!lower, but its role became more proactive as it acquired

to be considered, the controllers need to be redesigned. More knowledge about the task.
Gribovskayeet al. [22] proposed a hybrid structure based

B. Human performance-based approaches on PbD and adaptive control that drives the robot using an
Several works rely on human-human collaboration studieadaptive impedance controller. First, a model of the task wa
to assist in design of the robot controllers. Ikewgtaal. learned from demonstrations encoded by a GMM to generate
proposed to approximate human cooperation using variatfieedforward control signals. Then, the impedance parasiete
impedance control (with zero stiffness). From data codldct were adapted as function of the kinematic and force errors

when two people carried an object, the damping parametgenerated during the execution of the task.

was estimated according to the precision required by theIn contrast to the work presented above, where the tra-
task, either from least squares [12], or by minimizing gectory to be followed mattered, we proposed in [6] to teach
cost function that penalized high rates of change [15]. Thaifferent compliance levels to a robot by kinesthetic téagh
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Fig. 2: lllustrative example of the robot motion driven byFig. 3: Thr_ee different dem_onstrations of the coIIabomt.iv
a virtual spring-damper attractor and constrained to esfer transportation task. The solid and dashed lines respéctive
interaction forces. The gray line represents the demdestra depict the end-effector and attractor trajectories. Tlaet st

path of the end-effector. The red line depicts the trajgctorand the end of robot motion are represented by colored dots
of the attractory. and crosses. The dark and light boxes show the starting and

target locations of the transported object.

The core idea was to virtually connect the robot’s end-
effector to a set of virtual springs driving the robot beloavi task dynamics. To achieve this aim, we propose that the robot
A task-parametrized GMM [7] encoding the demonstrationbehavior during the interaction is driven by a virtual attoa
defined the equilibrium points of this system. The modelepresented as a spring-damper system, as shown in Fig. 2.
was then augmented by including stiffness matrices estithatSpecifically, the desired robot’s motion during interaatie
from the training data. Yet, no restrictions regarding thgiven by
forces applied to the load were given, neither was a specific
path to follow. These specifications become particularlg-re
vant in cooperative transportation. Consequently, weesdr where K”, K" andy are the stiffness matrix, the damping
here the problem of learning force and position constraints and the path of the virtual attractor, respectively. Therlem
human-robot cooperative transportation, where the statt aproblem is, therefore, formulated as estimating the path of
target locations of the load vary. y that will induce the end-effector to follow the cooperative
behaviors demonstrated by the teacher.
. PROBLEM FQRMULATION Notice thatx, and its first and second time derivatives

The problem tackled in this paper is that of a humagye irectly obtained from demonstrations. Also, the cainta
and a robot cooperatively transporting an object from & stajyceg F, are provided by a force sensor mounted at the
location to a target position. Moreover, we consider thecaspot's end-effector. It is worth highlighting that the sen
in V\{hich the givgn object should be manipulated with SOMEaadings depend on the forces applied by the human and
desired forces, i.e., the forces applied to the load shoulfle ropot while moving the load, in other words, the sensed

allow the object to be transported by pressing it on thgyrces contain information about the desired force to be
sides without breaking it. In this context, the robot neeals n applied to the object.

only to follow a specific trajectory in its workspace, butals

to physically interact with the user through the transpbrte IV. LEARNING AND REPRODUCTION

load, under some force and position constraints. To fomeali We propose to probabilistically encode the set of demon-

the problem, let us consider the operational space dynamiggations through a task-parametrized version of the Gauss

model of the robot under interaction with the environmeninixture model [7]. Such a model allows us to consider the

as task constraints given at different frames of referena,(i.
Alx)z + p(x,2)+ p(x) = F — F,, (1) the parameters of the task). Formally, the task parameters a

represented a® coordinate systems, defined at time step

{bn.j, A, ;}I_,, representing respectively the origin of

frame and a set of basis vectdes , eo, ...} forming a

& = K'(y—xz)- K& —F., 2)

where A(x), pu(x, @) and p(x) are the inertia matrix, the
vector of centrifugal and Coriolis forces, and the gravit)py
components, respectively. The pose of the robot is denot . .
by « (i.e., position and orientation of the end-effectdr)js fransformation matrixd = [e1e; ---]. . . .

the generalized forces vector, ahy is the vector of contact A movement is observed from these different viewpoints,

forces exerted by the end-effector on the environment. V\;grmmg a th|r<_j order tensor da(tﬁsm %E%ijvxp’ CO(T)'
assume a perfect nonlinear dynamic coupling, which meaﬁgsed ofP trajectory sgmplesX €R - EV(.EWX '
the robot's end-effector can be treated as equivalent to cgrres_ponds to a matrix_composed Df_—d|rr_1en3|onal ob-
single unit mass moving in the Cartesian space [23]. servations atV' time steps. In our applicationD = 4,

This allows us to formulate our pmblem as the case of 1For sake of simplicity, the end-effector orientation was oonsidered
finding the generalized force vectdt to attain the desired in the experiments.
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Fig. 4: Probabilistic encoding of the demonstrations atdtiierent candidates frames of the task. The first row shdwes t
model in thestart framesS, while the second row displays the GMM in ttergetframe 7. The gray lines depict the attractor
trajectories observed from the corresponding candidat@dr The ellipsoids represent the components of the model.

. . . . P
corresponding to the aggregation of the time variable o ( () 4T 71)—1
and the Cartesian position of the attractgr therefore & Zni = Z;(A"-Jzi A,;) ) (4)
x@) — {ytgb B ytg)}.The parameters of the model with ” P
components are defined Hy;, {p, Zgj)}‘le K |, where K = En,iZ(An,jEEj)A;)j)’l(An_jugj)+bn7j).
m; are the mixing coefficientsyl(.” andEl(.J) are the modg- j=1

center and covariance matrix of tith Gaussian component. The model parameters are initialized with kameans

Lef‘”?'”gd of tgle pa;amet_ers s ?ﬁhllevecli_kbly_/hse:jtlngdth rocedure redefined using a similar process to that used for
constrained problem of maximizing the log-likelihood undey, =0 e o0 algorithm.

the constraints that the data in the different frames are By using the temporary GMM parameters computed in Eq.

generated from the same source, resulting in an EM proce ; .
. . . for a given set of task parameters, we resort to Gaussian
to iteratively update the model parameters until convergen * . . .
mixture regression to retrieve, at each time step, thecattra

E-step: position during reproduction. Specifically, GMR relies tie t
P . _ _ joint distribution P(¢,y) learned by the task-parametrized

m I N(XD| pd £ GMM. The conditional probability?(y, |t,,) is estimated as

Vi =1 , an output distributionV'(i2¥, =) that is also Gaussian, with

= 2 ] . ]
S n1N<X55>| u =)
J=

ﬂ% = Z P i(tn) [uﬂl + Eﬂfi(gi,i)’l(tn - N;,i)} )
M'Step: Ey ih2 (t ) [Ey Eyt (Et )712ty} (5)
N N i n o (ORANS D) n,g  “n,i\“ng n,il o
o 2n=1 Tni 6)_ Yonet i X :
(2 N I H/i - EN ] I
n=17Tni and activation weights,, ;(t,,) defined as
. N S (x _,0) () _ 0T
2(]) — Zn:l Tn,i (Xn K )(Xn K ) . (3) N " t Z}t
? N . ) _ T ( n| His 1)
B inaltn) = I N (] i, B
The learned model can be used to reproduce movements ko TR AEn] By Sk
in new situations (for new positions and orientations of V. TRANSPORTATION EXPERIMENT

candidate frames). The model first retrieves at each tinge ste

n a GMM, by computing a product of linearly transformed We test the performance of our approach in an experiment

Gaussians where a human-robot dyad transports an object from a start
P location to a desired target. The detailed description fibou

N(py, 5 B i) o H]\/’(An_’juz(,j)_kbn_’j, An,jzgj)AZ,j), the setting, the_demonstration ar_wd reproduction phases as
j=1 well as the obtained results are given below.



A. Description of the task .

At the beginning of the transportation task, two partici-_ L \ . L J .
pants simultaneously reach for the object. Once they ma’ \ ) :

contact with the load, they start jointly transporting the ‘
object along a given path to reach the target location. Whe =5z i o5 s %5 62 oa o5 oo 35 5 o5
the object gets to the final position, the human-human paﬁ) 1 ]

releases it and moves away from the object. Note that bo Reproductions with varying start and target locatiohghe

the starting and goal object position/orientation may var'nﬂee o 06 o

across repetitions. As stated in Section I, the aim is t o« ‘ 04 04

introduce a robot into such a task by replacing one of th_ °‘§ L \ . °'§ L i . °'z -

human participants by a robot. . T jé[— " m
Specifically, we used a torque-controlled 7 DOFs WAN - -04 -04 '

robot fitted with a 6-axis force/torque sensor. In the demor = 0 i 0 05 i o5 o o5

Ty Ty T

Strﬁtlon.ghgsbe’ thhe gra\rl]lty-ccr)]r_‘?pensated .rOtTOt |sh_k|nesthe(b) Nearly constant force applied by the human partner t@bject
cally guided by the teacher while cooperatively achievimg t along the whole reproduction.

task with the other human partner, as shown in Figure 1. Fiv o, 05 05
examples of collaborative behavior are given to the roba
The teacher shows the robot both the path to be followe, | [_
and the force pattern it should use while transporting tael lo -
(see Figure 3). The demonstrations are then used for traini

a five-states task-parametrized GMMK (= 5, selected  “* o o2 oa oe os ©*T0 0z g4 05 os s 2 0s
empirically) with two Candldat_e coordinate systenis= 2), . () Human varies the applied force along the whole repraouoct
namely, the frames representing the start and target ati The robot adapts accordingly.

of the object. They are respectively defined as

r
-
5

Fig. 5: The solid lines represent the robot’s trajectorylehi

A, = F 0;} b, = [08} the dashed lines depict the trajectory of the attraajor
" 0 R°|'T x|’ obtained from GMR. The green area display the sensed force
and at the robot’s end-effector. The dots and crosses respéctiv
1 0 0 display the start and end of the reproduction.
waely B[]

Here, R® and R’ respectively represent the start and fina

or;entat.ion of the object with rotation matrices, ,Wm,é and  manipulator moves away once the load has been placed at its
z] define its corresponding Cartesian positiériinally, - target position (i.e., fram@). This is reflected by the small
the attractor’s trajectory is computed using Eq. (2) W|trb"ipsoids in these parts of the task

- . 7) o .
predefined values for the matrice8™ = 500 - I and  ater learning, the obtained model was used to test the

v _
K - 60 - I. ) reproduction of the task on the real platform. Three diffiére
During reproduction of the task, the start and target frames o5 of tests were carried out to evaluate the performance

are given to the model in order to obtain the temporary GMM¢ 1 ropot. First, the human and robot cooperatively trans
parameters using Eq. (4). Then, the robot and its humay,teq the load as demonstrated, i.e., the force applieéto t
partner transport the object towards the target locati@eH |54 \yas similar to those given previously. Fig. 5a shows
for each time step,, the robot obtains a new attraCtory, e syccessful reproductions under the aforementioned
location from Eq, (5.) (as explam_ed n Section l,”)’ that;ongition where both the starting and target location arie
generates a new desired acceleration in the operationa Spgjq sj, shows one of these reproductions where it is clearly
of the robot. For sake ,Of simplicity in the experiments, th@ypsered that the sensed force profile remains nearly aunsta
orientation of the robot's end-effector is fixed. throughout the whole reproduction. It is worth highliglgtin

B. Results that the observed offset between the end-effector position

Fig. 4 shows the resulting encoding of the attractor trag)nrg;r:(e) ;’:\ht;rall(():;(zjr VF\)/‘::T'Z ?::ﬁ;;?ﬁngogm to apply the desired

jectories computed from Eq. (2) and observed from the two The second test consisted of applying a varying force to

different candidate frames. Notice how the multiple demonévaluate how the robot reacted to force perturbations not

strations are locally consistent when the robot approachggserved during learning. The human operator started the
2Note that the duration of the task is not modulated by the tasi%as[( pushing the ObjeCt_With a force higher tha_m those taught

parameters. during the demonstrations. Then, the applied force was
*The position and orientations of the object were predefinedhe  gjgnificantly reduced, and finally it reached values simitar

experiment, but these can alternatively be obtained usiigien or optical the demonstrations, as shown in Fig. 5c. It is observed that

tracking system. Information regarding the motion of thenhn partner was b
not considered here. the robot could successfully adapt to these force variation

the start location of the object (i.e., fran$g, and when the



When the force is high, the robot behaves compliantly,2]
allowing small deviations from the path, still ensuringttha
the position constraint remains within a feasible rangerdet (3]
mined by the observed variability in the demonstrations and
the controller gains. In contrast, when the force is very low
(i.e., the human may be losing the contact with the load),
the robot moves to apply more force and prevent the objedy]
from being dropped. Note that despite the force variations,
the robot was able to transport the object along a similar['5]
path in the other dimensions, by showing a collaborative
behavior that is an appropriate compromise between forc%]
and position constraints, automatically extracted frora th
statistical representation of the demonstrations.

The last test concerned the situation in which the humar’]
completely releases the object. In this case, the robotls en
effector moved forward, but only within a boundary defined[sg]
by the variations of the demonstrated possible paths. laroth
words, the robot does not push indefinitely, but it insteaolg]
moves in an appropriate manner according to the unexpected
circumstances and its prior knowledge of the task learned
from the demonstrations. A video of the experiment an
the task-parameterized GMM sourcecode are available at
http:// progranm ng-by-denopnstrati on. org/ Roman2014/ . [12]

VI. CONCLUSIONS AND FUTURE WORK

We presented a PbD approach for teaching a robot to
cooperatively transport objects. Our method exploits thé4!
advantages of a dynamical system formulation for modelling
both the motion and the interaction of the robot with theis]
user and the environment along the task. The dynamics of
the system is learned from a set of demonstrations that (ig;
encapsulated in a task-parametrized GMM. Note that, in
contrast to previous works, the robot extracts the desired
path to follow and the needed force to be applied to the qu@n
from the examples provided by a human user. Therefore,
the approach does not depend on a specific model of tPl%]
task, but it automatically extracts the different constisiof
the problem. The results showed that the robot successfully
carried out the task, and that it was able to adapt to fordé®!
perturbations not observed during the learning phase.

In future work, similarly as in [24], we plan to extend this[20]
research towards the estimation of the stiffness and dzgnpi[% 1
matrices of the virtual attractor. In contrast to [6], wherdy
the stiffness gains were estimated through a two-step psoce
we want to learn the task and estimate stiffness and dampi
in a one-shot fashion. This would allow the robot to shapgz%
its compliance level along the task according to the pravide
demonstrations. We also plan to explore the variability o3l
the demonstrations encapsulated in the covariance matrice
of the model, which could be exploited to detect if thg24]
robot reaches an unexpected situation that is too far from
the demonstrations (e.g., in case of failures), requirhmg t
user to provide new demonstrations.

(13]
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