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Abstract— Very often, when addressing the problem of
human-robot skill transfer in task space, only the Cartesian
position of the end-effector is encoded by the learning algo-
rithms, instead of the full pose. However, orientation is just as
important as position, if not more, when it comes to successfully
performing a manipulation task. In this paper, we present a
framework that allows robots to learn the full poses of their
end-effectors in a task-parameterized manner. Our approach
permits the encoding of complex skills, such as those found
in bimanual manipulation scenarios, where the generalized
coordination patterns between end-effectors (i.e. position and
orientation patterns) need to be considered. The proposed
framework combines a dynamical systems formulation of the
demonstrated trajectories, both in R3 and SO(3), and task-
parameterized probabilistic models that build local task repre-
sentations in both spaces, based on which it is possible to extract
the relevant features of the demonstrated skill. We validate our
approach with an experiment in which two 7-DoF WAM robots
learn to perform a bimanual sweeping task.

I. INTRODUCTION

Programming by demonstration (PbD) has gained high
interest in Robotics as an intuitive and user-friendly means
to transfer skills from humans to robots [1], [2]. Several
learning algorithms have been proposed to encode human
demonstrations in a compact way, while encapsulating the
relevant information of the task at hand [3], [4], [5]. Most
of the proposed methods have mainly focused on learning
skills where the end-effector position in Cartesian space is
exclusively considered, while orientation is ignored or kept
constant. This can be attributed to the fact that, unlike posi-
tion, that can be uniquely represented by a vector in R3, mini-
mal parameterizations of SO(3) contain singularities, which
make robot learning a more difficult problem, especially
when the movement to be learned requires to be adapted
to external task parameters describing the current context,
situation or configuration of the workspace. However, if the
end-effector orientation is considered, more complex tasks
can be learned, therefore increasing the dexterity of robots.

Bimanual robotic manipulation (Fig. 1) is a good example
of a scenario where complex movements at the level of
the end-effectors are needed for performing successfully [6].
In this context, learning generalized motions (i.e., position
and orientation) is crucial for achieving dexterous and au-
tonomous dual-arm skills. In a PbD framework, we posit
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Fig. 1. Two WAM 7-DoF robots performing a bimanual sweeping task.

that a bimanual manipulation skill is successfully learned
when a robot can: 1) extract the pose constraints between the
two hands, 2) maintain the learned poses when perturbed,
and 3) know when the formation needs to be maintained
(because a bimanual robot may also be performing two
separate uni-manual tasks at the same time). In this pa-
per, we present a framework for learning generalized end-
effector motions by encoding the desired dynamics of a
demonstrated skill through a set of virtual mass-spring-
damper systems. The approach is also able to automatically
discover the constraints of the movement by exploiting the
task-parameterized formulation of a Gaussian mixture model
(TP-GMM) [7]. The foregoing aspects allow robots to build
compact models of bimanual tasks, where full end-effector
poses can be modulated by external task parameters in
a probabilistic manner, leading to increased generalization
capabilities. Formation constraints between end-effectors are
thus automatically identified from a set of human demonstra-
tions, which is highly relevant in joint object manipulation
[6].

The contributions of this paper are twofold: 1) a method
that permits including the end-effector orientation in the for-
mulation of TP-GMM, allowing the robot to learn complete
end-effector poses; 2) a quaternion-based dynamical systems
formulation which makes it possible to encode the dynamics
of the task in SO(3) through a virtual attractor, and therefore
to select the desired impedance of the orientation controller.

The remainder of the paper is organized as follows:
Section II covers related work in both bimanual skill transfer
and learning of orientations, Section III describes the pro-
posed framework for learning position and orientation con-
straints from demonstrations, and Section IV introduces the



generalized statistical dynamical systems approach. Section
V presents the experimental setup used for validating the
proposed approach, as well as the corresponding results, and,
finally, conclusions and future work are drawn in Section VI.

II. RELATED WORK

The transfer of bimanual skills to robots is a growing topic
of research in robot learning. As the number of humanoid
robots available in the market grows, there is an increasing
need to exploit their two hands, in order to increase the
repertoire of tasks they can perform [6].

Gams et al. [8] extend dynamic movement primitives
(DMPs) [4] with a method that modulates their velocity using
a force term computed based on a virtual spring connecting
the end-effectors. This spring has an equilibrium point that
is the desired distance between the end-effectors, therefore
forcing them to maintain a desired formation. Umlauft et al.
[9] define a cooperation term inspired by artificial potential
fields, that is a function of the distance between the end-
effectors. This term is then incorporated as feedback in
DMPs allowing the robots to keep a demonstrated formation.
Even though these approaches successfully encode demon-
strated trajectories, they present two main limitations: 1) the
neglect of orientation in the pose of the end-effectors, and
2) the absence of statistical information about the task to be
reproduced, which makes it impossible to abstract the range
of possible variations of the skill. Other works like [10],
focus on the design of optimal controllers with the purpose
of minimizing internal forces (when cooperatively handling
objects) and deviations from desired formations. In this case,
the desired target configurations were pre-programmed. Nev-
ertheless, such approaches have the potential to be combined
with PbD, which would allow users to demonstrate the
desired formations to the dual-arm setup.

Concerning statistical modeling and regression of orienta-
tion data, Lang et al. [11] propose a method based on Gaus-
sian processes (GP) to model orientations as quaternions.
The approach, however, is not applicable in robot learning
scenarios where predicted end-effector orientations need to
adapt to task variations. We showed in [12] that treating
task adaptation as standard regression (with GP implementa-
tion as example) has limited generalization capabilities. We
also showed that task-parameterized modeling approaches,
on the other hand, introduce a structure based on affine
transformations to the task adaptation problem that results
in better generalization. This is achieved at the expense
of being less generic (due to the introduced structure), but
still covering a wide range of problems in robotics. It is
thus convenient that, when using task-parameterized models
to achieve task adaptation at the level of orientation, we
choose a parameterization of orientation that abides by such
structure, i.e. that allows for composing orientations using
an affine operation. Note that the axis-angle representation
is not appropriate for composing orientations, as pointed out
in [11]. Hence, in our approach, we have chosen to use
quaternions.

Pastor et al. [13] and Ude et al. [14] extended the
DMP framework to allow the encoding of orientations from
demonstrations using quaternions. The latter work improves
on the former by providing a formulation that ensures faster
convergence to attractor points. We take inspiration from [14]
to develop a quaternion-based statistical dynamical systems
formulation of orientation trajectories (Section IV).

We have proposed, in [5], a method based on task-
parameterized Gaussian mixture models (TP-GMM) to trans-
fer bimanual skills to a humanoid robot. TP-GMM (Section
III) builds representations of demonstrations in a given set
of candidate frames, which can represent any coordinate
system or rigid body in the scene, including objects and robot
body parts. The local information about the variability and
coordination of a movement, encoded in each frame, is used
to automatically coordinate and use the most relevant frames
for the execution of the task, a feature that is not offered
by methods such as DMPs. In addition, TP-GMM increases
the generalization capabilities of standard GMM in that, by
encoding information locally, a movement can be regenerated
online even if the frames are moving during reproduction. In
bimanual manipulation scenarios, we select the frame of each
end-effector as potentially relevant frames, with the objective
of encoding bimanual coordination patterns. With respect to
[5], the work we propose in this paper is innovative in that:
1) it builds local representations not only of end-effector
position but also of orientation; 2) it uses a single TP-
GMM for both arms, as opposed to one per arm, becoming
a more compact model formulation; 3) the dynamics of the
demonstrated skill in SO(3) are taken into account through
the computation of a quaternion-based virtual attractor. In
[7], a pan-tilt parameterization of orientation was employed
in TP-GMM, for a peg-in-hole experiment. However, this
parameterization is not appropriate for composing orienta-
tions. In that paper, only the initial and final orientations of
the end-effector were required to match those of the start
and end holes, without orientation offsets between frames
and end-effector. In this paper we go beyond this limitation
by enabling the encoding of full orientation trajectories. The
present work aims to fill a gap in PbD, which is that of
transferring bimanual skills to robots while considering task
variations with full end-effector poses.

III. LEARNING FULL POSE CONSTRAINTS USING A
TASK-PARAMETERIZED GAUSSIAN MIXTURE MODEL

In this paper we make use of TP-GMM to encode both po-
sitions and orientations of end-effectors in multiple reference
frames described by a set of task parameters. Formally, the
task parameters correspond to P coordinate systems, defined
at time step n by {bn,j ,An,j}Pj=1, representing respectively
the origin of the frame and a set of basis vectors {e1, e2, . . .}
forming a transformation matrix A=[e1e2 · · · ].

A movement ξ ∈ RD×N is demonstrated in a global
frame and projected onto these different viewpoints, forming
P trajectory samples X(j) ∈ RD×N . The projection is
implemented by means of a linear transformation using the
task parameters as X(j)

n = A−1n,j(ξn − bn,j), for any given



time step n. Every X(j) corresponds to a matrix composed
of D-dimensional observations during N time steps. The
parameters of the model with K components are defined
by {πi, {µ(j)

i ,Σ
(j)
i }Pj=1}Ki=1, where πi are the mixing coef-

ficients and µ(j)
i , Σ

(j)
i are the center and covariance matrix

of the i-th Gaussian component at frame j.
Learning of the parameters is achieved by maximizing

the log-likelihood under the constraint that the data in
the different frames are generated from the same source,
resulting in an Expectation-Maximization (EM) process to
iteratively update the model parameters until convergence
(see details in [7]).

A. Task Parameters for learning orientation constraints

Parameterizations of SO(3) such as Euler angles (mi-
nimal, 3-dimensional) and axis-angles (non-minimal, 4-
dimensional) contain representation singularities [15]. In ad-
dition, composing orientations using these parameterizations
is not straightforward (adding two pairs of Euler angles or
axis-angles does not result in the same orientation as the one
that results from applying the two rotations consecutively).
Alternatively, quaternions and rotation matrices provide a
non-minimal, singularity-free, parameterization of SO(3).
The (non-commutative) product between two quaternions or
two rotation matrices performs the rotation operation, provid-
ing an appropriate way of composing orientations. It is in our
interest to keep the model dimensionality low, since the cost
of estimating a GMM grows quadratically with the number of
dimensions. We therefore opt for using unit quaternions since
they represent orientations using only 4 parameters against 9
of rotation matrices (which, additionally, have orthonormality
constraints).

A unit quaternion, ε ∈ S3, with S3 denoting the unit
hypersphere of R4, is given by:

ε =

[
v
u

]
=

[
cos
(
θ
2

)
sin
(
θ
2

)
n

]
, (1)

where v ∈ R and u ∈ R3, following the notation used by
[14]. Let us also define ε̄ =

[
v − u>

]>
as the conjugate

quaternion. Note that unit quaternions are related to the axis-
angle parameterization of SO(3) through the rightmost term
of (1). Consequently, it is possible to obtain, from a unit
quaternion, a 3D unit vector n and an angle θ, which are
the two components of the axis-angle parameterization. The
mapping between these two parameterizations of orientation
plays an important role in our approach and is covered with
greater detail in Section IV.

The product between two quaternions (that preserves
membership of S3) is given by:

ε1 ∗ ε2 =

[
v1v2 − u>

1u2

v1u2 + v2u1 + u1 × u2

]
, (2)

and can be interpreted as a rotation operator: when ε1 and
ε2 are defined with respect to the same reference frame, the
quaternion product rotates the frame whose orientation is
described by ε2 by the rotation defined by ε1. Alternatively,
the quaternion product can also be seen as an operator that

maps orientations between frames. Thus, if ε2 describes the
orientation of a frame C with respect to another frame B,
and ε1 describes the rotation of B with respect to a frame
A, then the quaternion product (2) gives the orientation of
C with respect to A.

Moreover, the product between two quaternions can alter-
natively be represented by:

ε = E1ε2,with E1 =


v1 −u1,1 −u1,2 −u1,3
u1,1 v1 −u1,3 u1,2
u1,2 u1,3 v1 −u1,1
u1,3 −u1,2 u1,1 v1

, (3)

where E1 ∈ R4×4 (to which we will refer as quaternion
matrix) is built from the quaternion elements to implement
the quaternion product through matrix-vector multiplication.

By taking advantage of the matrix representation of quater-
nions, we can build compact representations of demonstrated
full end-effector poses using TP-GMM, in particular by
setting ξn = ε̂n, bn,j = 0 and An,j = En,j as the
orientation elements of the task-parameters (the complete
structure including position is given in section V). Here,
En,j represents the orientation of frame j at time step n,
expressed as a quaternion matrix, 0 is a 4× 1 vector and ε̂n
is a quaternion obtained from the demonstrations.

When the demonstrated trajectories are projected on the
frames, the operation A−1n,j(ξn − bn,j) yields E−1n,j ε̂n, for
the quaternion part of the task-parameters. This product is
equivalent to the quaternion product ε̄n,j ∗ ε̂n, mapping the
reference orientation ε̂n to frame j. Therefore, the proposed
formulation allows TP-GMM to build local representations
of the demonstrated skill, not only at the level of position, as
in [5], but also orientation. As we will see next, this feature
allows the generalization of the demonstrated orientations to
new frame orientations.

B. Reproduction using products of linearly transformed
Gaussians

The learned model can be used to reproduce movements
in new situations, that is, generalizing to new frame positions
and orientations. The model first retrieves, at each time step
n, a temporary GMM by computing a product of linearly
transformed Gaussians [7]:

N (µn,i,Σn,i) ∝
P∏
j=1

N
(
An,jµ

(j)
i +bn,j , An,jΣ

(j)
i A

>
n,j

)
,

(4)
For the elements that concern the quaternion data, the term

An,jµ
(j)
i + bn,j becomes En,jµε(j)i , where µε(j)i denotes

the quaternion elements of the local i-th Gaussian center
in frame j. Note that µε(j)i contains the orientation of the
end-effector with respect to frame j, while En,j represents
the orientation of frame j with respect to the robot’s base.
Their product gives the desired orientation of the end-effector
with respect to the robot’s base for any value of En,j (i.e.,
generalization to new frame orientations).

By using the temporary GMM computed in (4) for a
given set of task parameters, we resort to Gaussian mix-
ture regression (GMR) to retrieve, at each time step, a



position and orientation reference. Specifically, GMR relies
on the joint distribution P(ξI, ξO) learned by the task-
parameterized GMM. The conditional probability P(ξO

n |ξ
I
n)

is then estimated as an output distribution N (µ̂O
n , Σ̂

O

n ) that
is also Gaussian [7].

Note that we encode unit quaternions in a TP-GMM as 4-
dimensional vectors, without imposing any constraints on the
norm, so the output of GMR yields a 4-dimensional vector
which might not be of unit norm. Therefore, at each time
step n of the reproduction, we normalize the entries of ξO

n

that correspond to the quaternion reference. In Section V
we will show that, even though this post-processing step is
an approximation, the accuracy of the reproductions with
respect to the demonstrations is not compromised.

IV. ENCODING AND RETRIEVING FULL POSES WITH
STATISTICAL DYNAMICAL SYSTEMS

In [5] we have introduced a probabilistic formulation
of dynamic movement primitives. The approach consists
of modeling, after gravity compensation of the robot, the
position of the robot’s end-effector as a virtual unit mass
driven by a weighted superposition of spring-damper sys-
tems, whose equilibrium points and weights are inferred
from the demonstrations. This approach provides several
advantages for task-space control, namely: robust handling
of perturbations during task execution, and the possibility of
selecting the tracking gains according to the desired level
of compliance. Assuming constant stiffness and damping
gain matrices, selected a priori, the learning problem be-
comes that of computing a virtual attractor for the end-
effector position from every demonstration and encoding
the distribution of demonstrated attractors in a statistical
model, as described in Section III. GMR (Section III-B) is
then used during reproductions to estimate the attractor as
a normal distribution with full covariance matrix. Note that
the tracking gains can be estimated from the covariance [7],
but in the present work, as in [5], they were predefined.
In this section we explain how the probabilistic formulation
of dynamic movement primitives can be generalized to
orientations using quaternion notation.

A. Statistical dynamical systems for position

The dynamics of a unit mass-spring-damper system for
position are governed by a second order linear differential
equation, given by:

ẍ = Kp(x̂− x)−Kvẋ, (5)

where Kp, Kv are respectively the stiffness and damp-
ing gain matrices. The variable x̂ represents the virtual
attractor that is computed for every demonstration based
on the assumed dynamics given in (5), through the choice
of Kp, Kv . If x, ẋ, ẍ are, respectively, the demonstrated
position, velocity, and acceleration at any given instant, the
corresponding virtual attractor is computed through:

x̂ = K−1p ẍ+K−1p Kvẋ+ x. (6)

By formulating demonstrations in this way, it is possible
to reproduce the demonstrated movement with any desired
dynamics by setting Kp and Kv accordingly.

B. Statistical dynamical systems for orientation

In order to be able to generate movements with differ-
ent levels of compliance in orientation, we formulate the
learning problem as that of learning an attractor in unit
quaternion space, similarly to position. We rely on the
formulation proposed in [14], where the authors extend the
DMP framework with a formulation that encodes orientation
trajectories in SO(3) using both direction-cosine matrices
and unit quaternions. Since the DMP is described by a
second order linear differential equation, the adaptation of the
proposed rotational DMPs to the mass-spring-damper system
formulation proposed in our work is straightforward:

ω̇ = Ko 2 log(ε̂ ∗ ε̄)−Kωω, (7)

where Ko, Kω ∈ R3×3 are respectively the angular stiffness
and damping matrices, while ω, ω̇ ∈ R3 represent the an-
gular velocity and acceleration. The orientation at any given
instant is denoted by ε while ε̂ represents the orientation
attractor, analogous to x̂ in (5). The quaternion product ε̂∗ ε̄
gives the orientation error in unit quaternion space, similarly
to (x̂−x) in (5), that is, the amount by which the orientation
represented by ε needs to be rotated in order to reach ε̂ in
the unit time. The logarithmic map, log: S3 → R3, converts
the quaternion error into an axis-angle representation:

log(ε) = log
([

v
u

])
=

{
arccos(v) u

||u|| , u 6= 0

[0 0 0]>, otherwise.

An inverse map, given by the exponential map,
exp: R3 → S3, converts an orientation in axis-angle repre-
sentation into a quaternion:

exp(r) =

{ [
cos(||r||) sin(||r||) r

>

||r||

]>
, r 6= 0

[1 0 0 0]>, otherwise,

where r ∈ R3 is a vector that represents an orientation in
axis-angle notation. For ||r|| < π the two mappings are
bijective and inverse to each other, and ε̂ can be easily
computed from a given quaternion, angular velocity and
acceleration by re-writing (7) as:

ε̂ = exp
(

1

2
K−1o ω̇ +

1

2
K−1o Kωω

)
∗ ε, (8)

which is the rotational counterpart of (6). This formulation
takes into account the topology of SO(3) by computing the
attractor using the exponential map between R3 and S3.
Consequently, it is possible to retrieve a quaternion attractor,
based on the assumed dynamics for the demonstrated
orientation trajectory, through the choice of Ko and Kω .
With this formulation we generalize the learning problem
to encode full end-effector poses, becoming that of learning
an attractor in both position and orientation. We therefore
use the attractors x̂ and ε̂, defined in this section, as the
position and orientation references in the TP-GMM.
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Fig. 2. Time evolution of the position dimensions of both end-effectors
during one reproduction attempt, represented in the coordinate system of
the area to be swept by the broom. The grey lines show the demonstrated
trajectories, the red line shows the position attractor that is output by
GMR and the blue line shows the resulting end-effector positions. Time
is displayed in seconds and positions in meters.

V. EXPERIMENTAL RESULTS

We apply the proposed framework to the learning of a
bimanual sweeping task, a particular case where bimanual
coordination patterns, that encompass both position and
orientation constraints, arise. For this task, we employed two
torque-controlled 7-DoF WAM robots (see Fig. 1). A broom
is attached to the tool plate of the right arm using a Cardan
joint, while the left arm uses a Barrett robotic hand to hold
the broom. Since the broom is passively attached to the right
arm, the sweeping movement consists of a rotation between
the two end-effectors, with the hand grabbing the broom and
describing a pendulum-like motion with respect to the end-
effector of the right arm.

We collected 4 demonstrations with a duration of ap-
proximately 8 seconds each through kinesthetic teaching,
while the position and orientation of each of the end-
effectors were recorded. During the demonstrations, both
robots were physically moved with a controller compensating
for the effect of gravity. Since quaternions provide a double
coverage of SO(3) (ε and −ε represent the same orientation)
we pre-process the data to ensure that all demonstrated
quaternions are in the same hemisphere of S3. In order to
learn the movement, we trained the task-parameterized model
using K = 10 Gaussian components, chosen empirically
(methods based on a Bayesian information criterion [16]
could alternatively be used for model selection).

In all of the experiments described in this section we have
used Kp = 500I and Kv = 45I to compute the position
attractors of the left arm, Kp = 250I and Kv = 35I for
the right arm and Ko = 250I , Kω = 35I to compute
the orientation attractors of both arms (where I ∈ R3×3).
The values of Kv and Kω were chosen empirically by
keeping the unit mass-spring-damper system overdamped
(Kv,ω > 2

√
Kp,o). A video accompanying this paper

shows the results of the experiments, and is available at
http://programming-by-demonstration.org/iros2015/.
We also provide Matlab source codes presenting the overall
approach described in sections III and IV with a simple
example (codes compatible with GNU Octave).

A. Learning generalized bimanual coordination patterns

We encode the task using two frames (P = 2): a moving
frame (j = 1) given for each arm by the coordinate system

defined by the position and orientation of the opposite end-
effector, and a fixed frame (j = 2), defined by the area to
be swept by the broom. Instead of considering two separate
TP-GMM (one per arm) we use one single model, for com-
pactness, that includes the task-parameters associated with
both end-effectors. Therefore, we define ξn and bn,1,An,1,
the task parameters of frame j=1, as:

ξn=


tn
x̂Ln
ε̂Ln
x̂Rn
ε̂Rn


}ξI
nξO
n
, bn,1=


0
xRn
0
xLn
0

, An,1=


1 0 0 0 0

0 RRn 0 0 0

0 0 ERn 0 0

0 0 0 RLn 0

0 0 0 0 ELn

,
where the superscripts L and R denote the left and right arm
respectively, indicating to which arm corresponds each rota-
tion matrix Rn, quaternion matrix En, end-effector position
xn and attractors x̂n and ε̂n. In addition, tn is a time step
and 0 are zero matrices of appropriate dimension.

The frame j = 2 is given by the position of the point
to be swept by the broom on the floor and an orien-
tation corresponding to that of the bases of the robots
(which are aligned in our case). We thus have bn,2 =[
0 xLsweep

> 0 xRsweep
> 0

]>
and An,2 = I (where I ∈

R15×15). Note that this definition of frames remains valid
for a wide range of bimanual skills involving objects or
landmarks. In the first experiment, the values of xLsweep and
xRsweep were randomly selected from the demonstration set1.

Figures 2 and 3 show the positions and orientations of
both end-effectors over time during the reproduction of one
sweep, projected on the frame of the area to be swept,
together with local representations of the demonstrations.
We observe that our framework successfully reproduces
both the demonstrated position and orientation profiles.

The role of the end-effector frames in coordination: As
aforementioned, the main advantage of encoding the task
in the frame of the other end-effector is that the bimanual
coordination patterns underlying the task, both in position
and orientation, are encapsulated in the model. In order to
provide a practical example of this property, in particular
at the level of orientation, we train a new model using
P = 1, that describes the movement only in the frame of
the sweeping area. We then compare how both models react
to perturbations, in particular how one arm compensates for
perturbations applied to the other. Our hypothesis is that the
model with P = 2 should provide a better compensation
given that, in addition to the area to be swept, it also takes
into consideration the position and orientation constraints
between the two end-effectors. We therefore apply a per-
turbation to the right arm which consists of adding, via the
controller, a force and a torque to its end-effector in task-
space. The force is applied along the negative direction of
the x2-axis, while the torque is applied around the x3-axis
of the base of the robot.

1Alternatively, vision or optical tracking systems may be used to obtain
the parameters of the area to be swept.
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of GMR) and the retrieved quaternions, respectively.
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1) Position: Fig. 4 shows the applied force and how it
affects the x2 coordinate of both end-effectors. In particular,
we observe that the perturbation generates a displacement
along xR2 , for both P =1 (dashed blue line) and P =2 (solid
blue line). The effect of this perturbation on the left arm,
however, differs between P = 1 and P = 2. In the former
case, the attractor x̂L2 keeps its trend during the perturbation,
while in the latter, the model compensates the displacement
that occurred in xR2 by shifting the attractor x̂L2 accordingly.

2) Orientation: We begin by computing the sequence of
quaternions that represent the orientation between the two
end-effectors during a reproduction of the task, ε̄Ln ∗ εRn .
These quaternions are then converted into Euler angles, for
a more intuitive interpretation. Figure 5 shows the 3 Euler
angles (α, β, γ for rotations around x3, x2, x1, respectively)
alongside with the applied torque. We observe that, during
the perturbation, the drift in orientation, with respect to the
demonstrations, is greater for the model that was trained
using only the frame of reference of the area to be swept
(dashed line). As for position, the coordination patterns at
orientation level are encoded in the model when P = 2,
resulting in a better reaction to perturbations since the
relative orientation is considered by the model.

These results show that the proposed learning framework
is able to successfully encode and synthesize position and
orientation constraints in bimanual manipulation scenarios,
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Fig. 5. The first plot depicts the task-space perturbation torque that was
applied to the end-effector of the right arm. The remaining three plots
represent the orientation between the two end-effectors as Euler angles
(computed, for visualization purposes, from the quaternions ε̄Ln ∗ εRn for
every n). The dashed line corresponds to the model that was trained using
P = 1, while the solid line corresponds to P = 2. Time is in seconds,
torques are in Newton-meter, and angles are in radians.

by taking advantage of the new structure of the task parame-
ters, described in Section III. In particular, they highlight how
encoding the bimanual coordination patterns in the model
is essential for a robust execution of the task and how the
quaternion-based dynamical systems formulation yields a
correct reproduction of the demonstrated orientation patterns,
even when facing perturbations.

B. Extrapolation to new orientations

We now test the generalization capabilities of the ap-
proach. A new reproduction is performed with a new set
of task parameters for the frame of the sweeping area,
j = 2, in which its position was shifted by 0.28m along
the negative direction of x1, bringing it closer to the bases
of the robots, and by 0.05m along the positive direction of
x2. In addition, the frame was rotated clockwise by 45◦,
with respect to x3. Figures 6 and 7 show the Euler angles
that represent the orientation of both end-effectors during
one reproduction of the sweeping movement using the new
frame. The orientations are represented in the coordinate
system of the bases of the robots (Fig. 6) and in the
coordinate system of the area to sweep (Fig. 7). Figure 6
shows that the values of αL and αR (rotations around x3),
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that were retrieved during the reproduction, have an offset
of about 0.8rad (≈ 45◦) with respect to the demonstrations.
Hence, we can conclude that the movement was properly
extrapolated to an orientation that was not demonstrated. In
addition, as we can see in Fig. 7, the orientation of both
end-effectors represented in the frame of the sweeping area
remained consistent with the demonstrations in that frame,
confirming that the movement was correctly reproduced.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a method that combines task-parameterized
Gaussian mixture models and dynamical systems to learn
full end-effector poses in a Programming by Demonstration
scenario. The approach was showcased through a biman-
ual sweeping experiment, where the orientation between
the two end-effectors is essential for the correct execution
of the task. We showed that the proposed formulation of
TP-GMM, simultaneously encoding the demonstrations in
multiple frames, can be extended to task-adaptive orienta-
tion control to efficiently encode and retrieve coordination
patterns between the two end-effectors. In addition, this
formulation makes it possible to generalize the demonstrated
orientation profiles to unseen situations, namely, to new
orientations of the area to be swept. Finally, we showed that
the quaternion-based dynamical systems formulation permits
the computation of virtual attractors in SO(3) that consider
a desired impedance for the reproduction of the task.

In the proposed approach, unit quaternions are modeled
probabilistically as 4-dimensional vectors, without taking
into account the unit norm constraint inherent to this param-

eterization of SO(3). Therefore, the output of GMR has to
be normalized. As future work, this issue could be addressed
by studying alternative ways of modeling quaternion distri-
butions that consider the fact that quaternions are elements
of S3. One possible avenue could be that of exploiting the
Bingham distribution [17].

Another route for future work is to exploit the structure
of the controllers in (5) and (7) to autonomously determine
impedance gains. Hence, we plan to apply optimal control
methods to learn optimal orientation gains, similarly to [7].
Ultimately, alternative representations could also be explored
to describe end-effector poses. Representations such as those
used in [11] and [18], that employ dual quaternions, could
potentially be extended to a task-parameterized formulation.
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