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Abstract—Planning multi-contact motions in a receding hori-
zon fashion requires a value function to guide the planning with
respect to the future, e.g., building momentum to traverse large
obstacles. Traditionally, the value function is approximated by
computing trajectories in a prediction horizon (never executed)
that foresees the future beyond the execution horizon. However,
given the non-convex dynamics of multi-contact motions, this
approach is computationally expensive. To enable online Re-
ceding Horizon Planning (RHP) of multi-contact motions, we
find efficient approximations of the value function. Specifically,
we propose a trajectory-based and a learning-based approach.
In the former, namely RHP with Multiple Levels of Model
Fidelity, we approximate the value function by computing the
prediction horizon with a convex relaxed model. In the latter,
namely Locally-Guided RHP, we learn an oracle to predict local
objectives for locomotion tasks, and we use these local objectives
to construct local value functions for guiding a short-horizon
RHP. We evaluate both approaches in simulation by planning
centroidal trajectories of a humanoid robot walking on moderate
slopes, and on large slopes where the robot cannot maintain static
balance. Our results show that locally-guided RHP achieves the
best computation efficiency (95%-98.6% cycles converge online).
This computation advantage enables us to demonstrate online
receding horizon planning of our real-world humanoid robot
Talos walking in dynamic environments that change on-the-fly.

Index Terms—Multi-Contact Locomotion, Legged Locomotion,
Humanoid Robots, Optimization and Optimal Control

I. INTRODUCTION

THIS article considers the problem of computing motion

plans for legged robots to traverse uneven terrain (non-

horizontal surfaces), where the planner needs to find a se-

quence of contacts, along with a feasible state trajectory. This

problem is known as multi-contact motion planning, which is

high-dimensional, nonlinear, and subject to discrete changes of

dynamics that arise from breaking and making contacts [1]–

[9]. Given these complexity, traditional robot control methods

often plan the multi-contact motions offline, and then track

them with a controller [2], [6], [10], [11]. However, when

deploying legged robots in the real world, they can encounter

environment changes and state drifts. These perturbations can
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Fig. 1. Snapshots of our real-world experiments on Talos. Video is available
at https://youtu.be/STBYJl7jvsg.

cause the pre-planned motion to become invalid, and online

(re)-planning is needed [10], [12]–[14]. To facilitate reliable

operation in the real world, our long-term objective is to

enable legged robots with the capability to online re-plan their

motions.

Towards this end, Receding Horizon Planning (RHP) [12],

[13] can be a promising solution. The concept of Receding

Horizon Planning (RHP) [12], [13] is similar to Model Pre-

dictive Control (MPC) [15]–[18] in that they both aim to

constantly update the optimal actions for immediate execution

based on the robot state and the environment. In MPC, the

optimal actions correspond to the optimal control commands

for tracking a reference trajectory, while in RHP, the optimal

actions refer to the motion planned for execution. In both MPC

and RHP, the optimal action is computed by solving a finite

horizon Trajectory Optimization (TO) problem [19].

To ensure successful multi-contact RHP on uneven terrain,

it is critical that the motion planned for execution can facilitate

future operation. For instance, building momentum in advance

is often necessary for overcoming large obstacles (slopes and

gaps). To this end, Bellman suggests to leverage a value

function to guide the planning of optimal actions [20]. This

value function is designed to tell the utility of a certain

state with respect to the completion of a given task. Nev-

ertheless, for complex dynamical systems, finding an exact

model of the value function is challenging, and thus we need
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Execution Horizon Prediction Horizon

Fig. 2. In Receding Horizon Planning (RHP), the planning horizon often
consists of two parts: 1) execution horizon which plans the motion for
immediate execution, and 2) prediction horizon (not executed) that looks into
the future. The prediction horizon serves as an approximation of the value
function, which guides the execution horizon by telling whether the decisions
made in the execution horizon can facilitate the completion of the task or not.

approximations. A common approach to approximate the value

function is to consider a prediction horizon (not executed)

that foresees the future beyond the execution horizon (optimal

actions to be executed). This prediction horizon can be seen as

a trajectory-based approximation of the value function—which

guides the execution horizon by assessing the feasibility and

the anticipated effort required to complete the task from a

given state (see an example in Fig. 2).

Traditionally, Receding Horizon Planning (RHP) frame-

works often compute the entire horizon with an accurate

dynamics model. This ensures the execution horizon is always

dynamically consistent, while in the meantime allowing the

prediction horizon to approximate the value function as accu-

rately as possible. However, planning the prediction horizon

with an accurate model can result in expensive computation,

especially when long planning horizon and complex dynamics

need to be considered, i.e., planning multi-contact motions to

traverse large slopes. In this work, we consider the traditional

RHP approach as our baseline.

To accelerate the computation speed, one of the options is

to reduce the computation burden required for approximat-

ing the value function. Following this idea, we propose a

trajectory-based approach and a learning-based approach that

can improve the computational efficiency for achieving value

function approximation. We compare these two approaches in

the context of planning centroidal trajectories of the humanoid

robot Talos [21] walking on uneven terrain.

More specifically, our trajectory-based approach—which we

call Receding Horizon Planning with Multiple Levels of Model

Fidelity—follows the traditional formalism that models the

value function with the trajectories planned in the prediction

horizon. However, instead of considering accurate dynam-

ics models, we relax the model accuracy of the prediction

horizon. This allows us to reduce the overall complexity of

the RHP problem. In this article, we explore and compare

three candidate multi-fidelity RHPs, where the prediction

horizon considers different convex relaxations of the centroidal

dynamics model (examples shown in Fig. 5).

Alternatively, we can further improve the computation ef-

ficiency by approximating the value function with a learned

model [22]. Nevertheless, learning a value function for multi-

contact problem can be challenging. The main difficulty is that

the value function is defined in a coupled state-environment

space, which requires a flexible representation to capture

the landscape changes of the value function with respect to

different environments [23]. In this article, we circumvent

this issue by learning an oracle to predict local objectives

(intermediate goal states towards the completion of a given

task) based on the current robot state, goal position, and the

environment model. We then construct local value functions

based on these local objectives, and use them to guide a

short-horizon RHP to plan the execution horizon towards

the predicted local objectives. We refer to this approach as

Locally-Guided Receding Horizon Planning (LG-RHP). To

obtain the oracle, we take a supervised learning approach,

where we train the oracle from the dataset offline computed

by the traditional RHP that computes the entire horizon with

an accurate model.

To evaluate the performance of multi-fidelity RHP and

locally-guided RHP, we consider an online receding horizon

planning setting, where we require each cycle to converge

within a time budget—the duration of the motion to be

executed (execution horizon) for the current cycle. From our

experiment result, we obtain the following insights. First, the

result of multi-fidelity RHP demonstrates that it is possible

to achieve online computation by trading off the model ac-

curacy in the prediction horizon. However, this can affect

the accuracy of the value function modeled by the prediction

horizon. As a consequence, our multi-fidelity RHP has the

risk to arrive at ill-posed states, from which the TO can fail

to converge. Additionally, we also notice that incorporating

angular dynamics in the prediction horizon is critical to the

convergence of multi-contact RHP. On the other hand, as

locally-guided RHP features a shortened planning horizon, it

achieves the highest online convergence rate (95.0%-98.6%

cycles computes online) compared to the traditional RHP

(baseline) and multi-fidelity RHP. Nevertheless, due to the

prediction error of the oracle, our locally-guided RHP can also

arrive at ill-posed states and fail to converge. We show that

this issue can be mitigated by a data augmentation technique,

in which we add datapoints to demonstrate how to recover

from the states that cause convergence failures.

To validate our methods, we verify the dynamic feasibility

of the planned trajectories by tracking them with a whole-body

inverse dynamics controller [24] in simulation. Furthermore,

we validate locally-guided RHP with real-world experiments,

where we demonstrate online receding horizon planning of

multi-contact motions on our humanoid robot Talos in dy-

namically changing environments (see examples in Fig. 1

and Fig. 11). The video of the experiments can be found in

https://youtu.be/STBYJl7jvsg.

A. Contributions

We propose two novel methods that can achieve online

Receding Horizon Planning (RHP) of centroidal trajectories

for multi-contact locomotion. The key idea of our methods

is to reduce the computation complexity by finding compu-

https://youtu.be/STBYJl7jvsg
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tationally efficient approximations of the value function. Our

contributions are:

• Receding Horizon Planning with Multiple Levels of

Model Fidelity, where we approximate the value function

by computing trajectories in the prediction horizon while

considering convex relaxed models. This allows us to

reduce the overall computation complexity of the TO and

facilitates online computation.

• Locally-Guided Receding Horizon Planning (LG-RHP),

where the value function is approximated with a learned

oracle. This oracle is designed to predict local objectives

as intermediate goal states for completing a given task,

while taking into account the environment model around

the robot. We use these local objectives to build local

value functions for guiding a short-horizon TO to plan

the execution horizon.

• Extensive evaluations and analysis on the computation

performance of multi-fidelity RHP and locally-guided

RHP, along with the validation of the dynamic feasibility

of the planned trajectories using a whole-body inverse

dynamics controller in simulation.

• Real-world experiments on the humanoid robot Talos

that demonstrate the effectiveness of our locally-guided

RHP approach in achieving online multi-contact receding

horizon planning on uneven terrain and environments

with dynamic changes.

B. Comparison with Our Previous Work and Article Outline

This article is an extension of our earlier conference pa-

pers [25] and [26], where we initially proposed the idea of

multi-fidelity RHP and the locally-guided RHP. Compared

to our previous work, the novel content of this article in-

cludes the following parts. First, we unify the description

of the RHP problem and the concept of multi-fidelity RHP

and locally-guided RHP under the framework of Bellman’s

principle of optimality [20]. Second, we conduct a rigorous

simulation evaluation on the computation performance of the

multi-fidelity RHP and the locally-guided RHP over a set

of multi-contact scenarios. Third, we perform multiple real-

world experiments on our humanoid robot Talos showing the

efficacy of locally-guided RHP in achieving online receding

horizon planning. We consider environments that can change

dynamically during run-time and challenging uneven terrains.

Lastly, we provide a qualitative analysis on the advantages and

disadvantages of multi-fidelity RHP and locally-guided RHP.

The rest of the paper is organized as follows. Section II

reviews the literature on optimization-based multi-contact lo-

comotion planning, and learning-based methods for acceler-

ating their computation speed. Section III describes the RHP

problem, and introduces the principle of multi-fidelity RHP

and locally-guided RHP. Section IV lists the assumptions

made in our work, and Section V presents the baseline

approach—the traditional RHP which computes the entire

horizon with an accurate dynamics model. Section VI and

Section VII introduce the technical approach of multi-fidelity

RHP and the locally-guided RHP. Section VIII presents our

simulation studies, and Section IX demonstrates the real-world

experiment result on our humanoid robot Talos. In Section X,

we discuss the advantages and disadvantages of multi-fidelity

RHP and locally-guided RHP, and we conclude the article in

Section XI.

II. RELATED WORK

A. Multi-Contact Motion Planning via TO

Planning multi-contact motions to traverse challenging ter-

rain necessarily requires the consideration of the whole-body

dynamics of the robot. This model takes into account the

mass and inertia of every link and relates the base and joint

accelerations with respect to the joint torques. In the past, TO-

based methods have demonstrated impressive motions using

the whole-body dynamics model [1], [27]–[31]. However,

these approaches often struggle to compute online due to the

high-dimensionality and non-convexity of the model, unless

we predefine the contact timings and locations [32], [33].

Alternatively, we can plan multi-contact motions with the

centroidal model [34], [35]. This model has lower dimen-

sionality since it only considers the dynamics of the total

linear and angular momenta expressed at the Center of Mass

(CoM). Moreover, approximations are introduced on the robot

kinematics and the momentum variation results from the mo-

tions of each individual link. Although these approximations

may cause failures for achieving a corresponding whole-body

motion, the centroidal model is getting popular for multi-

contact planning due to its reduced dimensionality [35]–

[41]. Unfortunately, the centroidal model is still non-convex1

except when limiting assumptions (pre-defined gait, flat/co-

planar surfaces) are made [42]–[44]. Such non-convexity often

prevents the TO to compute online.

To accelerate the computation, convex approximations of

the centroidal model are proposed. For instance, [41], [45],

[46] propose convex inner approximation that searches for a

solution within a subset of all possible trajectories. Despite

their fast computation, convex inner approximation may fail

to find a solution due to the reduced search space [41].

Alternatively, [47]–[49] present convex outer approximation

that introduces convex relaxations into the centroidal dynamics

model. Although the model complexity is reduced, convex

outer approximation may generate motions that violate the

system dynamics and cause tracking failures. To address

this issue, [47] propose to iteratively tighten the relaxation.

However, this requires the design of a customized optimization

solver.

In this article, we introduce multi-fidelity RHP, where in a

single optimization formulation, we employ an accurate model

in the execution horizon and a relaxed model in the prediction

horizon. This formulation is straightforward to implement

and can be solved directly with off-the-shelf Non-Linear

Programming (NLP) solvers. Furthermore, the combination

of the accurate model and the relaxed model guarantees the

dynamic consistency of the motion to be executed (execution

horizon), while in the meantime reduce the overall computa-

tion complexity of the TO problem.

1The centroidal model is non-convex due to the cross products (bilinear
terms) from the angular dynamics.
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A similar approach to our multi-fidelity RHP method is

also introduced in [50]. In that work, the authors present

a MPC framework based on Differential Dynamic Program-

ming (DDP) that combines whole-body dynamics and a non-

convex model with reduced order (single-rigid body model [2],

[38]) in a single formulation. Successful demonstrations of

2D quadrupedal locomotion and humanoid running has been

shown on flat surfaces. In contrast, our emphasis is RHP of

centroidal trajectories for a humanoid robot to traverse uneven

terrain. This problem requires careful selection of contact

locations and timings, as well as the modulation of the cen-

troidal momenta. In this regard, the relaxed model employed

in the prediction horizon needs to be carefully designed, as

the quality of the model can significantly affect the accuracy

of the value function approximated by the prediction horizon.

Furthermore, instead of searching for non-convex models with

reduced order, we focus on finding convex relaxations for the

prediction horizon.

B. Learning to Accelerate Multi-Contact Motion Planning

Recently, machine learning techniques have gained popular-

ity for bootstrapping the computation of locomotion planning.

For instance, [51] proposes to learn the evolution of the cen-

troidal momenta, which can guide an A* planner to generate

contact plans. Another line of research tries to accelerate

the computation speed of TO. For example, [13], [18], [52]

propose to learn (near)-optimal solutions to warm-start TO.

Alternatively, [22], [23], [53], [54] propose to shorten the plan-

ning horizon with a learned value function model placed as

the terminal cost. Following this idea, our locally-guided RHP

focuses on learning a value function model for multi-contact

planning. However, learning a value function for the multi-

contact problem is challenging. The main difficulty is that the

value function is defined in a coupled state-environment space,

which requires a flexible parameterization that can capture

the landscape changes of the value function with respect

to environment variations [23]. To deal with this issue, we

propose to learn an oracle to predict intermediate goal states

for completing a given task based on the current state, the final

goal, and the environment, and then we construct local value

functions based on these intermediate goal states.

Nevertheless, when predicting sequential actions with a

learned model, the prediction accuracy can decrease dramat-

ically once the robot reaches a state that is unexplored in

the training dataset. This problem is known as distribution

shift [55], which can be mitigated by data augmentation, i.e.

adding demonstrations from the states that either appeared

from the roll-out of the learned policy [55], [56], or sampled

from the expert policy with injected noise [57]. In this work,

we present a similar data augmentation strategy which focuses

on demonstrating corrective actions from the states that cause

convergence failures.

III. PROBLEM DESCRIPTION

Let us denote by x ∈ R
n the robot state and u ∈ R

m

the control input. In Receding Horizon Planning (RHP), each

cycle is required to compute a motion plan for immediate ex-

ecution in the next cycle. We define such a motion plan as the

composition of a state trajectory {x0, . . . ,xT } starting from a

given initial state x0, and a control trajectory {u0, . . . ,uT }.

To compute this motion plan, Receding Horizon Planning

(RHP) frameworks usually need to solve a TO problem with

the general form complying with the Bellman’s equation [20]:

min
x0,...,xT ,
u0,...,uT

T−1∑

t=0

l(xt,ut) + V (xT ) (1a)

s.t. xt+1 = F(xt,ut), (1b)

where l(·) is the running cost, V (·) is the value function,

(1b) is the system dynamics constraint, and F(·) represents

the discrete-time dynamics of the robot. As Bellman suggests,

the optimal policy—approximated by the motion plan to be

executed—should not only minimize its running cost l, but also

lead to a state xT that optimizes the value function V (xT ).
By definition, the value function is modeled as the optimal

cost of an infinite-horizon trajectory starting from xT till the

completion of the task, while respecting the system dynamics

constraint (Fig. 3-a):

V (xT ) = min
xT ,...,x∞,
uT ,...,u∞

∞∑

t=T

l(xt,ut) (2a)

s.t. xt+1 = F(xt,ut). (2b)

The value function V (xT ) reflects the feasibility and the

future effort required for accomplishing the given task starting

from any state xT , and provides gradients to direct the

optimal policy (motion to be executed) towards a state xT

that is favorable for the future. However, evaluating the value

function with an infinite-horizon trajectory is non-trivial, and

hence we need approximations.

Traditionally, RHP frameworks approximate the value func-

tion by considering a finite-horizon trajectory starting from the

time T to Tp ≪ ∞:

Ṽ (xT ) = min
xT ,...,xTp ,
uT ,...,uTp

Tp−1
∑

t=T

l(xt,ut) + ϕ(xTp
), (3a)

s.t. xt+1 = F(xt,ut), (3b)

where the optimal cost from the time Tp to infinity is lumped

into the terminal cost term ϕ(xTp
). By combining (3) into

(1), we can achieve a TO problem with an extended planning

horizon (Fig. 3-b):

min
x0,...,xTp ,
u0,...,uTp

T−1∑

t=0

l(xt,ut)

︸ ︷︷ ︸

Optimal Policy (EH)

+

Tp−1
∑

t=T

l(xt,ut) + ϕ(xTp
)

︸ ︷︷ ︸

Value Function Approximation (PH)

(4a)

s.t. xt+1 = F(xt,ut), (4b)

where we can split the planning horizon into an Execution

Horizon (EH) that computes optimal policy (the motion plan

to be executed) from the time 0 to T , and a Prediction Horizon

(PH) that approximates the value function by computing

trajectories from the time T to Tp.
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Horizon

0

Execution

Horizon

Prediction Horizon
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Horizon

T

a) Infinite-Horizon RHP

Tp0

V (xT ) = min
∞∑

t=T

l(xt,ut)
xT , ...,x∞

uT , ...,u∞

s.t. xt+1 = F(xt,ut)

Ṽ (xT ) = min
Tp−1∑

t=T

l(xt,ut) + ϕ(xTp
)

xT , ...,xTp
uT , ...,uTp

s.t. xt+1 = F(xt,ut) s.t. xt+1 = F̃(xt,ut)

c) Multi-Fidelity RHPb) Traditional RHP

Trajectory-based Approx. Learning-based Approx.

Execution

Horizon

T0

Ṽ (xT |x
∗)

d) Locally-Guided RHP

Oracle

x∗ = O(x0,xg,Ω)

Execution

Horizon

Prediction

Horizon

T Tp0

Fig. 3. a) Infinite-horizon RHP problem that models the value function with the prediction horizon of an infinite length; b) Traditional RHP approach which
approximates the value function by considering a finite-length prediction horizon (from time T to Tp). Nevertheless, traditional RHP struggles to computes
online, as the prediction horizon considers an accurate dynamics model (usually non-convex); c) Multi-fidelity RHP, where we improve the computation
efficiency by relaxing the model accuracy in the prediction horizon; d) Locally-Guided RHP shortens the planning horizon by approximating the value
function with a learned model.

Although (4) has a finite planning horizon, online com-

putation is still challenging for complex dynamical systems

such as legged robots. The computation complexity mainly

comes from the planning of the Prediction Horizon (PH) under

the consideration of the nonlinear dynamics constraints (4b),

which increases the dimensionality and non-convexity of an

already challenging problem.

To improve the computation efficiency, a promising direc-

tion is to mitigate the computation burden required for value

function approximation. In this work, we propose two novel

methods that can approximate the value function with reduced

computation complexity.

Our first method follows the trajectory-based formalism

which approximates the value function by computing a pre-

diction horizon that looks into the future. However, instead of

considering an accurate system dynamics constraint (usually

non-convex) in the prediction horizon, we propose to plan

the prediction horizon with a relaxed system dynamics model.

This gives rise to a novel TO formulation features a planning

horizon with multiple levels of model fidelity (Fig. 3-c):

min
x0,...,xTp ,
u0,...,uTp

T−1∑

t=0

l(xt,ut)

︸ ︷︷ ︸

EH (Accurate)

+

Tp−1
∑

t=T

l(xt,ut) + ϕ(xTp
)

︸ ︷︷ ︸

PH (Relaxed)

, (5a)

s.t. ∀t ∈ [0, T ] :

xt+1 = F(xt,ut), (Accurate Model) (5b)

∀t ∈ [T, Tp] :

xt+1 = F̃(xt,ut), (Relaxed Model) (5c)

where the EH remains to compute the optimal polity with the

accurate dynamics model (5b), while the PH approximates

the value function with the relaxed dynamics model (5c).

We call this approach as Receding Horizon Planning with

Multiple Levels of Model Fidelity or Multi-Fidelity RHP (MF-

RHP) for short. Comparing to the traditional TO formalism

(4), our multi-fidelity RHP ensures the Execution Horizon

(EH) is always dynamically consistent, while in the meantime

reducing the overall computation complexity of the TO. In this

work, we present and test three candidate multi-fidelity RHPs,

where the Prediction Horizon (PH) considers different convex

relaxations of the centroidal dynamics model.

Alternatively, another option for approximating the value

function is to learn a parametric model Ṽ (x|θ) from the past

experience [22]. Given this learned value function model, we

can shorten the planning horizon to only cover the Execution

Horizon (EH):

min
x0,...,xT ,
u0,...,uT

T−1∑

t=0

l(xt,ut)

︸ ︷︷ ︸

Optimal Policy (EH)

+ Ṽ (xT |θ),
︸ ︷︷ ︸

Learned Value Function

(6a)

s.t. xt+1 = F(xt,ut). (6b)

However, learning a value function for the multi-contact

problem can be challenging. The difficulty mainly comes from

the consideration of the environment model. This introduces

the challenge of finding a flexible parameterization that can
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represent the value function in the coupled state-environment

space [23]. To tackle this issue, we propose to learn an oracle

O that can predict intermediate goal states x∗ for completing

a given task, based on current robot state x0, the final goal

state xg , and the environment model Ω:

x∗ = O(x0,xg,Ω). (7)

We refer to these intermediate goal states as local objectives,

and we use them to construct local quadratic value functions:

Ṽ (xT |x
∗) = (xT − x∗)⊤(xT − x∗). (8)

We then use these local value functions to guide the short-

horizon TO (6) to plan the Execution Horizon (EH) towards

the predicted local objectives x∗. We call this approach as

Locally-Guided Receding Horizon Planning (LG-RHP) and

illustrate the idea in (Fig. 3-d). Although it is possible to

learn to predict the optimal policy of the Execution Horizon

(EH) directly from the past experiences, the learning error may

lead to trajectories that violate system dynamics and cause

tracking failures. Hence, in this work we decide to compute

the Execution Horizon (EH) using TO, which guarantees the

dynamic feasibility of the motion. Next, from Section IV to

Section VII, we present the technical details of our methods

in the context of multi-contact motion planning.

IV. ASSUMPTIONS

We make following assumptions in our work:

• We focus on planning centroidal trajectories of a hu-

manoid robot walking on uneven terrain. We define each

step contains three phases: pre-swing (double support),

swing (single support), and post-landing (double support).

This gives rise to a multi-phase TO formulation, where in

each phase the dynamics and kinematics constraints are

characterized by the contact configuration of that phase.

• We define the Execution Horizon (EH) always covers

the motion plan for making a single step (the first three

phases), while the Prediction Horizon (PH) can plan

ahead for multiple steps. The oracle is designed to predict

the local objective for making one step.

• We model the robot feet as rectangular patches. As

commonly done, we model each vertex of the rectangle

as a contact point.

• We approximate the kinematics constraints of the CoM

and the relative positions of the contacts as convex

polytopes. To generate these polytopes, we firstly offline

sample a large amount of robot configurations, from

which we can extract CoM positions and foot locations

in a given end-effector frame. Then, we compute the

polytopes as the convex hull of these CoM positions and

foot locations [58].

• We model the environment as a set of rectangular contact

surfaces. We predefine the sequence of these contact

surfaces in which the swing foot will land upon, while

we optimize the contact locations (within the surfaces)

and the contact timings.

• The swing foot trajectory is interpolated after we compute

the centroidal motion plan. This is achieved by connect-

ing the planned contact locations with a spline.

V. TRADITIONAL RHP FORMULATION FOR

MULTI-CONTACT MOTION PLANNING

In this section, we present the traditional RHP approach for

planning centroidal trajectories of a humanoid robot walking

on uneven terrain. This traditional RHP is considered as the

baseline of our work.

We describe the RHP problem as follows. In each planning

cycle, given a finite planning horizon of n steps, an initial robot

state xinit, a final goal state xg , and a sequence of contact

surfaces {S1, . . . ,Sn} that the robot will step upon, the RHP

framework aims to compute a multi-phase motion plan consists

of a state trajectory X , a control trajectory U , a sequence

of contact locations P and a list of phase switching timings

T . We elaborate the definition of these decision variables as

follows:

• X = {X1, . . . , XNph}: state trajectory Xq of all phases

q ∈ {1, . . . , Nph}. In each phase, we discretize the state

trajectory into Nk knots: Xq = {xq
1, . . . ,x

q
Nk

}. We

denote the state vector as x = [c⊤, ċ⊤,L⊤]⊤, where

c ∈ R
3 is the CoM position, ċ ∈ R

3 is the CoM velocity,

L ∈ R
3 is the total angular momentum expressed at the

CoM.

• U = {U1, . . . , UNph}: control input trajectory of all

phases. Same as the state trajectory, we discretize each

phase of the control trajectory into Nk knots: Uq =
{uq

1, . . . ,u
q
Nk

}. The control input vector is defined as

u = [f⊤

1 , . . . ,f
⊤

Nc
]⊤ which collects the contact force

fc ∈ R
3 of all contact points c ∈ {1, . . . , Nc}.

• P = {p1, . . . ,pn}: a sequence of footstep locations

(center of the foot), where pi ∈ R
3 denotes the contact

location of the i-th step. The orientation of each footstep

is defined as a constant, where the roll and the pitch

are given by the orientation of the corresponding contact

surface Si, and the yaw is set to zero degrees.

• T = {t1, . . . , tNph}: a list of phase switching timings,

where tq indicates the timing when the motion plan

switches from phase q to phase q + 1. Based on these

phase switching timings, we can define the time step of

each phase q as τ q = (tq − tq−1)/Nk.

To compute the motion plan, the traditional RHP usually

solves a TO problem given by:

min
X ,U ,T ,P

Nph∑

q=1

Jq(Xq, Uq) + ϕ(xT ) (9a)

s.t. x0 = xinit (9b)

0 ≤ t1 ≤ · · · ≤ tNph ≤ Tmax (9c)

∀i ∈ {1, . . . , n}:

pi ∈ Si (9d)

pi ∈ Zi (9e)

∀q ∈ {1, . . . , Nph}, ∀k ∈ {1, . . . , Nk}:

c
q
k ∈ Kq

l , ∀l ∈ Lq
cnt (9f)

x
q
k+1

= Fq(xq
k,u

q
k). (9g)

The cost function of (9) includes the running cost Jq of

each phase and the terminal cost ϕ(xT ). We define the running

cost Jq =
∑Nk

k=1
τ q(c̈qk

⊤c̈
q
k +L

q
k
⊤

L
q
k), which encourages the
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TO to generate smooth trajectories by penalizing large CoM

accelerations and angular momentum. The terminal cost is

defined as ϕ(xT ) = (xT − xg)
⊤(xT − xg), which attracts

the terminal state xT to approach the final goal state xg .

To ensure the motion is dynamically consistent, we intro-

duce constraints (9b)–(9g) described as follows:

• (9b) enforces the state trajectory to start from the given

initial state xinit.

• (9c) guarantees the phase switching timings tq to increase

monotonically and bounds the maximum motion duration

tNph by Tmax.

• (9d) restricts each contact location pi to stay on the pre-

assigned contact surface Si = {p ∈ R
3,dT

i p = ei, Sip ≤
si}. The equality defines the plane containing the surface,

where the surface normal is given by di ∈ R
3 and

ei ∈ R. The inequalities bound the surface by h half-

spaces, specified by the constant matrix Si ∈ R
h×3 and

the constant vector si ∈ R
h.

• (9e) implements the relative reachability constraint of the

foot steps, where each contact location pi is limited by

a reachable workspace Zi with respect to the 6-D pose

of the previous footstep pi−1. We represent the reachable

workspace as a convex polytope Zi : {p
i ∈ R

3,Zi(p
i −

pi−1) ≤ zi}, along with the orientation aligns to the

posture of the previous footstep [58], [59].

• (9f) is the CoM reachability constraint. In each phase q,

the CoM position at k-th knot is restricted to stay within

the reachable space Kq
l established by each foot l in active

contact. Similarly, we approximate the reachable space as

a convex polytope Kq
l : {cqk ∈ R

3,Kq
l (c − p

q
l ) ≤ k

q
l },

where p
q
l ∈ R

3 is the location of the active contact l
in phase q. The orientation of these polytopes are also

aligned to pose of the active contacts [58], [59].

• (9g) imposes the system dynamics constraint. We ap-

proximate the integrals by the forward Euler integra-

tion scheme, and we consider the centroidal dynamics

model [34], [41]:

c
q
k+1

= c
q
k + τ qċqk, (10a)

ċ
q
k+1

= ċ
q
k + τ q

(
1

m

∑

c∈Cq

f
q
c,k − g

)

, (10b)

L
q
k+1

= L
q
k + τ q

∑

c∈Cq

(pc − c
q
k)× f

q
c,k, (10c)

where m is the total mass of the robot, g is the gravita-

tional acceleration, Cq is the set that collects the indices

of the contact points in active contact with the ground in

phase q, i.e., the vertices of the stance foot, and pc is the

location of each active contact point c ∈ Cq . We constrain

the contact force associated to each active contact point

by the linearized friction cone −µf n̂
c ≤ f t̂1,t̂2

c ≤ µf n̂
c ,

where µ is the friction coefficient, f n̂
c and f t̂1,t̂2

c are the

normal and tangential components of the contact force,

respectively.

As discussed in Section III, in addition to the Execution

Horizon (EH), traditional RHP often requires the consideration

of a Prediction Horizon (PH) that acts as a trajectory-based

a) Traditional RHP

Execution Horizon (EH)
(High Complexity)

Centroidal Model

− Non-convex Dynamics

− Variable Contact Timing

Prediction Horizon (PH)
(High Complexity)

− Rectangular Foot (4 Contacts
per foot)

t

b) Multi-Fidelity RHP

Execution Horizon (EH)
(High Complexity)

Centroidal Model

− Non-convex Dynamics

− Variable Contact Timing

Prediction Horizon (PH)
(Low Complexity)

Convex Relaxation

− Rectangular Foot
(4 Contacts per foot)

+ Convex Dynamics

+ Single-Point Foot or
Rectangular Foot

+ Fixed Contact Timing

t

Fig. 4. Complexity comparison between traditional RHP and our multi-fidelity
RHP. We use orange to denote higher computation complexity, while green
means lower computation complexity. Our multi-fidelity RHP formulation
has reduced complexity due to the introduction of convex relaxations in the
prediction horizon.

approximation of the value function. However, traditional RHP

often plans the entire horizon with an accurate dynamics

model, e.g., the nonlinear centroidal dynamics model (10).

This can significantly increase the dimensionality and non-

convexity of the TO, which hinders online computation. To

achieve online multi-contact RHP, in the following sections,

we present our methods to simplify the computation for value

function approximation.

VI. RHP WITH MULTIPLE LEVELS OF MODEL FIDELITY

In this section, we introduce Receding Horizon Planning

(RHP) with Multiple Levels of Model Fidelity. Unlike the tra-

ditional RHP (Fig. 4a) which computes the entire horizon with

an accurate dynamics model, our multi-fidelity RHP (Fig. 4b)

employs a convex relaxation of the centroidal dynamics model

in the Prediction Horizon (PH) for value function approxima-

tion. This simplifies the overall computation complexity of the

TO. Next, we present three candidate multi-fidelity RHPs with

different convex relaxations.

A. Candidate 1: Linear CoM Dynamics

In our first candidate, the PH only considers the linear CoM

dynamics defined by (10a)–(10b). This allows us to remove the

non-convexity introduced by the angular dynamics (10c). As

a result, in the PH, the state vector reduces to x = [c⊤, ċ⊤]⊤

and the running cost becomes Jq =
∑Nk

k=1
τ q(c̈qk

⊤c̈
q
k) which

only penalizes the CoM accelerations. However, due to the

contact timing optimization (modulated by the phase switching

timings tq), the linear CoM dynamics is still non-convex.

To eliminate this non-convexity, we choose to fix the phase

switching timings tq, ∀q ∈ [4, Nph] in the PH.
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(a) (b) (c)

Fig. 5. Schematics of the models used in the Prediction Horizon (PH):
a) linear CoM dynamics (Candidate 1); b) convex relaxation of angular
momentum rate dynamics (dashed arrow) with rectangular contacts (Candidate
2); c) convex relaxation of angular momentum rate dynamics (dashed arrow)
with point contacts (Candidate 3).

B. Candidate 2: Convex Angular Dynamics with Rectangular

Contacts

For our second candidate, in addition to the linear CoM dy-

namics, we also consider a convex outer approximation of the

angular dynamics (10c) in the PH. This convex approximation

is based on the method described in [47]. For completeness,

we briefly introduce the formulation.

In the angular momentum dynamics (10c), the non-

convexity mainly comes from the bilinear terms result from the

cross product between the lever arm (pc − c) and the contact

force vector fc. According to the principle described in [47],

we can approximate each bilinear term αβ as the difference

between two bounded quadratic terms ψ+ ∈ R and ψ− ∈ R,

along with two convex trust-region constraints:

αβ =
1

4
(ψ+ − ψ−), (11a)

ψ+ ≥ (α+ β)2, (11b)

ψ− ≥ (α− β)2. (11c)

Furthermore, to retain a low-dimensional model with the state

vector of x = [c⊤, ċ⊤]⊤, we avoid the explicit modeling of

the angular momentum L. Instead, we penalize the ψ+ and

ψ− in the running cost as a proxy to minimize the angular

momentum rate, along with the CoM acceleration. Lastly,

same as the first candidate, we fix the phase switching timings

in the PH. Compared to the centroidal dynamics model, our

second candidate model has increased dimensionality due to

the introduction of the auxiliary variables ψ+ and ψ− for

approximating the angular dynamics. Nevertheless, this also

allows our second candidate model to be fully convex.

C. Candidate 3: Convex Angular Dynamics with Point Con-

tacts

To reduce the dimensionality of the convex relaxation of

the angular dynamics, we propose our third candidate model

in which we switch the rectangular foot to the point foot and

apply the same modeling as described in the second candidate.

As a consequence, the control input reduces to u = [f⊤

L ,f
⊤

R ]
⊤

where fL ∈ R
3 and fR ∈ R

3 refers to the contact force vector

of the left and right foot, respectively. This reduces the number

of auxiliary variables (ψ+ and ψ−) as well as the associated

trust region constraints introduced by (11).

To provide an intuition of the computation complexity

of these candidate models, we illustrate their schematics in

TABLE I
Knot-wise model complexity of the centroidal dynamics model and the three

convex relaxations.

❳
❳
❳
❳

❳
❳

❳❳
Model

No. of Decision
variables

Non-convex
Constraints

Convex
Constraints

Centroidal Dynamics 36 12 0
Convex (CoM only) 18 0 6

Convex (Rectangular Foot) 78 0 48
Convex (Point Foot) 12 0 12

Fig. 5, and compare their model complexity in terms of

dimensionality, number of non-convex and convex constraints

in Table I.

VII. LOCALLY-GUIDED RECEDING HORIZON PLANNING

In this section, we present locally-guided RHP (LG-RHP)

which approximate the value function with a learned model.

The core idea of the our approach is to learn an oracle that

can predict local objectives for completing a given task based

on the initial robot state, the final goal and the environment

model. These local objectives are then used for constructing

local value functions that guide the planing of the Execution

Horizon (EH). Next, in Section VII-A, we present the mod-

eling of the oracle in the context of multi-contact planning.

Then, we describe the interface to the short-horizon TO in

Section VII-B.

A. Oracle Modelling for Multi-Contact Planning

In this section, we firstly describe the oracle formulation

in the context of multi-contact planning and introduce the

associate variable definitions (see Fig. 6-a). Following the idea

in Section III, we define the oracle O as:

x∗,p∗,T ∗ = O(δl/r,x0,p0,Ω,xg). (12)

The oracle is designed to predict a goal configuration for

making a step, which includes:

• x∗: the target CoM state.

• p∗: the target contact location for the swing foot to reach.

• T
∗ = {t̃1, t̃2, t̃3}: the target phase switching timings for

the three phases that compose of the step.

To make the prediction, the oracle takes into account the

following inputs:

• δl/r ∈ {L,R}: the swing foot indicator telling which foot

(left/right) is going to re-position its location.

• x0: the initial CoM state.

• p0: the initial contact location of the swing foot.

• Ω = {Sl0,Sr0,S1, . . . ,Sn}: a local preview of the envi-

ronment model. We define Sl0, Sr0 as the contact surfaces

that the left and right feet initially stand upon, S1, . . . ,Sn

as the contact surfaces that future n steps will land on.

Each contact surface is represented by its four vertices:

S = {V1, . . . ,V4}, where Vi ∈ R
3, i ∈ {1, . . . , 4} is the

3-D location of the i-th vertex.

• xg: the final goal state placed in front of the robot (fixed

in the world frame). This final goal encourages the robot

to continuously move forward.



IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. XX, APRIL 2024 9

p∗

α2r2

α1r1 r1

r2

(b)(a)

V1

V4V3

V2

WΣ

p∗

p0

x0
x∗

xg

Fig. 6. (a) Definition of the oracle variables. x0 is the initial CoM state, p0

is the initial swing-foot position, xg is the final goal state, x∗ and p∗ are the
predicted target CoM state and the target contact location of the swing foot
for making one step, respectively. The purple patches are the initial contact
surfaces, while the blue patches are the contact surfaces for future steps. We
model each contact surface with its four vertices Vi. We define all spatial
terms in the contact foot frame WΣ established at the stationary foot (non-
swing foot), except for the final goal state xg is fixed in the world frame.
(b) The target contact location p∗ is represented as the vector sum of α1r1
and α2r2, which scale along the borders of the contact surface r1, r2 ∈ R

3,
with the proportion defined by α1, α2 ∈ [0, 1].

As illustrated in Fig. 6-a, we define the spatial quantities

such as the CoM states, contact locations and the environment

model in the so-called contact-foot frame WΣ. This frame

locates at the position of the stationary foot (the non-swing

foot), while having the same orientation with respect to the

surface in contact.

Furthermore, we introduce an on-surface parameterization

for the target contact location (Fig. 6-b), which transforms

the 3-D contact location as the sum of two vectors p∗ =
α1r1 + α2r2, scaling along the surface borders r1, r2 ∈ R

3,

and we predict the scaling factors α1, α2 ∈ [0, 1].

We model the oracle with a Neural Network (NN) model.

Considering the oracle is involved in an online RHP loop,

it is essential that the NN can ensure fast computation. To

this end, we employ a compact NN model with 4 hidden

layers, where each layer contains 256 neurons with ReLu

activation functions. We find that the evaluation of this NN

only takes 1ms. Previously, such compact NN models have

been proven effective for similar tasks, i.e., predicting the cost

and dynamics feasibility for reaching to a given state [51], and

our experiment result (Section VIII) also certifies that our NN

model is flexible enough to encode the oracle. Additionally, we

also find that increasing the number of hidden layers and neu-

rons does not bring improvements on the prediction accuracy.

We implement the NN with the Tensorflow framework [60],

and both the training and the prediction are achieved with the

CPU mode.

To train the oracle, we employ an incremental training

scheme. The key idea of our approach is to improve the

prediction accuracy by incrementally adding data points to

demonstrate recovery actions from the states that cause con-

vergence failures. As illustrated in Fig. 7, in each training

iteration i, we train an oracle Oi based on the current dataset

D = D0 ∪ D∗
1 ∪ . . . ∪ D∗

i−1, where D0 is the initial dataset,

and D∗
1 ∪ . . . ∪ D∗

i−1 are the augmented datasets obtained

from previous training iterations. The initial dataset D0 is

achieved by rolling out the traditional RHP with a 3-step

Initial

Data D0

Current

Data D
Oracle Oi

Augmented

Data D∗
i

Compute Corrective Data-Points

Fail to Converge

Train

Ground-Truth Traj.
Add

LG-RHP Traj.
Corrective Traj.

Fig. 7. Procedure of the incremental training scheme. In each training iteration
i, we train an oracle Oi based on the data-set D that aggregates the initial
dataset D0 and the augmented datasets D∗

i
. The augmented dataset adds

recovery actions (purple nodes) computed by the long-horizon RHP. They
start from the diverged states (blue nodes) that are 1 to 3 cycles prior to
when LG-RHP fails to converge (the dashed blue node), until the cycle aligns
with the ground-truth trajectory (black nodes). In these trajectories, each node
refers to the state reached by the execution horizon (making one step).

Prediction Horizon (PH)2 over a set of randomly sampled

environments, and then extracting the datapoints from the

Execution Horizon (EH) of each cycle. For computing the

augmented dataset D∗
i , we firstly use locally-guided RHP with

the currently trained oracle Oi to plan trajectories in a RHP

fashion on the previously sampled environments. Then, we use

the traditional RHP to compute recovery actions, which starts

from 1 to 3 cycles before the locally-guided RHP fails, until

the cycle converges back to the ground-truth trajectory (roll-

out of traditional RHP on the same terrain). We compute the

recovery actions from 1 to 3 cycles before the convergence

failures, since we observe that the roll-out of locally-guided

RHP often exhibits large deviations from the ground-truth

trajectory in these cycles. We repeat the process until there

is no further improvement on the convergence rate.

B. Interfacing to the Short-horizon TO

To guide the locally-guided RHP, we adapt the short-

horizon version of (9) that only plans the Execution Horizon

(EH) with the following changes. First, we replace the terminal

cost with (xT − x∗)⊤(xT − x∗) + (p1 − p∗)⊤(p1 − p∗) that

encourages the terminal state xT and the contact location

p1 to approach the predicted targets x∗ and p∗. Second,

we introduce constraints to narrow down the search space

of phase switching timings ti around their predicted values

(1−ϵ)t̃q ≤ tq ≤ (1+ϵ)t̃q , where ϵ is a user-defined slack. This

is because we empirically find that reducing the search space

of the phase switching timings can result in more efficient

computation than using cost terms to bias their decisions.

VIII. SIMULATION STUDIES

In this section, we evaluate the computation performance of

multi-fidelity RHP and locally-guided RHP over a set of multi-

contact scenarios in simulation. To the best of our knowledge,

there is no accessible method focused on accelerating the

computation speed of multi-contact RHP by simplifying the

2We choose 3-step Prediction Horizon (PH), as we find a longer lookahead
does not improve the quality of the motion (cost), while increasing the
computation time.
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TABLE II
Computation performance for the moderate slope terrain (CS1). We use the incremental training scheme presented in Section VII-A to train the oracle for

LG-RHP. The training process lasts for 5 training iterations, after which we do not observe any improvements in the convergence rate (see Section VIII-E).

Method
Episodic Success Rate Cycle-wise Success Rate

Success
(Offline)

Success
(Online)

Time
Out

Fail to
Converge

Success
(Offline)

Success
(Online)

Time
Out

Fail to
Converge

Baseline 1-Step PH 100.0% 0.0% 100.0% 0.0% 100.0% 51.31% 48.69% 0.0%

MF-RHP 1
(CoM)

1 to 3-Step

PH 0.0% - - - - - - -

MF-RHP 2
(Rectangle)

1-Step PH 72.50% 0.0% 72.50% 27.50% 98.83% 69.22% 29.61% 1.17%

2-Step PH 76.32% 0.0% 76.32% 23.68% 99.05% 44.88% 54.17% 0.95%

3-Step PH 97.37% 0.0% 97.37% 2.63% 99.91% 5.66% 94.25% 0.09%

MF-RHP 3
(Point)

1-Step PH 79.49% 0.0% 79.49% 20.51% 99.16% 75.11% 24.90% 0.84%

2-Step PH 83.78% 0.0% 83.78% 16.22% 99.38% 67.08% 32.30% 0.62%

3-Step PH 97.5% 0.0% 97.5% 2.5% 99.91% 49.78% 50.14% 0.09%

LG-RHP - 75.68% 67.57% 8.11% 24.32% 99.05% 98.63% 0.42% 0.95%

value function approximation. Therefore, to highlight the com-

putation advantage of our methods, we compare them against

the traditional RHP (baseline) which approximates the value

function by planning the prediction horizon with an accurate

dynamics model. The video of our simulations can be found

at https://youtu.be/STBYJl7jvsg.

A. Evaluation Setup

We consider the following two types of terrains: 1) moderate

slope terrain (Fig. 9) and 2) large slope terrain (Fig. 10).

Planning multi-contact motions on these terrains can be chal-

lenging. The key issue is that the admissible contact force

is limited by the orientation of the surface in contact. As a

result, in order to find a feasible momentum trajectory of the

CoM, the planning algorithm has to carefully select the contact

locations and the timings [47].

On these terrains, we use each RHP framework to offline

compute centroidal trajectories of the humanoid robot Ta-

los [21] in a receding horizon fashion. To give more detail,

we consider a RHP loop where each planning cycle aims to

compute the motion plan to be executed for the next cycle.

Under the assumption that the controller can track the planned

motion without having large deviations, we enforce the motion

plan of the next cycle to always starts from the terminal state

of the Execution Horizon (EH) planned for the current cycle.

To highlight computation benefit of our proposed RHP

frameworks, we consider an online setting, where we impose

computation time limit in each cycle. To give more detail,

we denote a cycle achieves online computation, if the TO

converges within the time budget—the duration of the motion

to be executed (EH) in the current cycle. In the case of the

TO fail to converge within the time budget, we still leave the

TO to compute until convergence, unless there is no solutions

found (fail to converge).

We test all the RHP frameworks on the terrains that are

unseen during the training of the locally-guided RHP, and we

refer to the trial on each terrain as an episode. To validate the

dynamic feasibility of the planned trajectories, we track them

by using a whole-body inverse dynamics controller [24] in

simulation. More specifically, in our simulation, we employ the

inverse dynamics controller to verify the existence of feasible

contact forces and joint torques required for executing the

planned motions. This verification is conducted within a for-

ward integration loop implemented based on Pinocchio [61].

B. Implementation Details

We use the software package CasADi [62] to model the

TO problems in Python, and solve them using the interior-

point method of KNITRO 10.30 [63]. Furthermore, we also

leverage CasADi to provide gradients and Hessians via au-

tomatic differentiation. Although analytical methods such as

Pinocchio [61] can further improve the computation speed

of these derivatives, we use CasADi since computing the

derivatives with automatic differentiation is not the major

computation bottleneck (only 10% of the total computation

time is used for derivative computation). In our work, all the

computations are carried out on a desktop with an Intel i9-

CPU (3.6GHz) and 64GB memory.

For locally-guided RHP, we train separate oracles for the

two types of the terrains. This is because we find the data

distributions of these terrains have different modalities, i.e.

when traversing the large slopes, the robot tends to exhibit

larger momentum variations than walking on the moderate

slopes. Mixing these data points together can lead to a dis-

continuous and unbalanced dataset, on which a single neural

network model can struggle to interpolate. In Section X, we

discuss the potential options that can generalize across these

two modalities. To train the oracle, we use the incremental

training scheme described in Section VII-A, and we show that

this training scheme can improve the prediction accuracy of the

oracle in Section VIII-E. We train the oracle with the ADAM

algorithm [64], and we set the batch size to 1280 datapoints

and the learning rate to 1 × 10−5. We use the mean square

error function as the loss function. When testing the locally-

guided RHP, we employ the oracle with the best prediction

accuracy achieved after 5 training iterations.

We generate the training environments and testing environ-

ments by a random sampling process. Specifically, for a given

set of contact surfaces, we first determine their orientations

with uniform sampling, i.e., rotating either around the roll or

https://youtu.be/STBYJl7jvsg
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0.63s
1.30s1.7s 1.02s 1.69s 0.89s

0.41s 0.97s0.53s 0.73s

Fig. 8. Simulation result of our third multi-fidelity RHP candidate with 1-step prediction horizon on the moderate slopes (5-12 degrees). Owing to the
reduced model complexity in the prediction horizon, our multi-fidelity RHP can achieve online computation, e.g., the snapshots where the computation time
for planning the next cycle (the green bar) is less than the duration of the motion being executed in the current cycle (the orange bar). Nevertheless, there could
be occasions when the computation time exceeds the motion duration of the current cycle (the red bar). The video is available at https://youtu.be/STBYJl7jvsg.

the pitch axis. After that, we use the uniformly sampling to

decide the slope angle of each contact surface. To increase

the chance of covering a large variety of training examples,

we sample 3852 moderate slope terrains and 6245 large slope

terrains for training.

C. Case Study 1 (CS1): Moderate Slope

In this section, we present the experiment result of our

first case study: walking on the moderate slopes (Fig. 9).

Although we can quickly find quasi-static motions for this

type of terrain3 [59], we are interested in planning dynamic

walking motions using TO. This provides us with a unified

approach to handle non-quasi-static cases, such as the large

slope terrain. Furthermore, walking dynamically can also allow

more efficient task completion. In this case study, we set the

slack of the phase switching timing constraints for locally-

guided RHP as ϵ = 0.6. We find this can increase the chance of

finding a solution (enlarged search space) without sacrificing

much computation time.

We evaluate the performance of the each RHP framework

based on episodic success rate and cycle-wise success rate

in both the offline and online setting. We declare an episode

is successful if the chosen RHP framework can compute the

motion plan for all the cycles within the episode. In this

case study, we define that each episode contains a maximum

number of 28 cycles.

As the Table II indicates, in the offline mode (unlimited

time budget), the baseline can achieve a 100% episodic success

rate on the moderate slope terrain with only 1-step Prediction

Horizon (PH). This means the baseline can successfully find

solutions for all the cycles (100% offline cycle-wise success

rate). However, due to the non-convex nature of the centroidal

dynamics constraint, the baseline has nearly half of the cycles

(48.69%) fail to converge online (time out).

In contrast, the experiment result of multi-fidelity RHP

demonstrates that we can improve the computation efficiency

by trading off the model accuracy in the Prediction Horizon

3This is because the force vectors from the friction cone associated to each
contact surface can cancel the gravity.

TABLE III
Average computation time of the baseline and the multi-fidelity RHP

candidates with 1-step PH on the moderate slope terrain (CS1)

Method Avg. Comput. Time Avg. Time Budget

Baseline 2.38 +/- 2.66s 1.77 +/- 0.33s
MF-RHP 2 (Rectangle) 1.03 +/- 1.06s 1.20 +/- 0.40s

MF-RHP 3 (Point) 0.90 +/- 0.81s 1.21 +/- 0.38s

(PH). However, the trade-off cannot be arbitrary. For instance,

although our first multi-fidelity RHP candidate features the

simplest model in the PH (linear CoM dynamics), it always

fails to complete an episode after a few cycles, no matter how

many steps lookahead we assign to the PH. This suggests that

considering the angular dynamics in the PH is critical. Indeed,

despite we consider convex relaxed angular dynamics con-

straints in our second and third multi-fidelity RHP candidate,

both of them can achieve an offline episodic success rate of

72.5% to 79.49% with only 1-step PH. Furthermore, owing to

the relaxed dynamics model employed in the PH, our second

multi-fidelity RHP candidate can achieve 69.22% of the cycles

converging online, which outperforms the baseline (51.31%

cycles computed online). This demonstrates that reducing the

non-convexity of the TO problem can improve the computation

efficiency. Moreover, as our third multi-fidelity RHP candidate

reduces the dimensionality of the convex relaxation (switching

to point foot), it further improves computation efficiency and

increases the online cycles-wise success rate to 75.11%. In

Table III, we list the average computation time of the baseline

and our second and third multi-fidelity RHP candidates.

On the other hand, we also notice that our second and

third multi-fidelity RHP candidate still have the risk to fail

to converge, i.e. when considering 1-step PH, the second and

the third multi-fidelity RHP candidate fail during 20.52% to

27.50% of the episodes due to convergence issues. Although

we can improve the convergence rate by extending the length

of the PH, this can increase the dimensionality of the TO

problem and hinders online computation. For instance, when

considering 3-step PH, both of our second and third multi-

fidelity RHP can achieve a high episodic success rate (97%)

that is close to the baseline. Nevertheless, this gives rise to

https://youtu.be/STBYJl7jvsg
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Fig. 9. Simulation result of locally-guided RHP on moderate slopes (5-12 degrees). Owing the shortened planning horizon, our locally-guided RHP achieves
the fastest computation speed, which allows online RHP for the entire episode, i.e., the computation time for planning the next cycle (green bar) is always
smaller than the motion duration for the current cycle (orange bar) in the episode shown in this figure. The video is available at https://youtu.be/STBYJl7jvsg.

TABLE IV
Average computation time of locally-guided RHP v.s. average time budget

for the cycles that converged online.

Terrain Avg. Comput. Time Avg. Time Budget

Moderate Slope (CS1) 0.37 +/- 0.19s 1.97 +/- 0.23s
Large Slope (CS2) 0.36 +/- 0.23s 2.01 +/- 0.48s

50.14% and 94.25% cycles fail to achieve online computation.

In Fig. 8, we illustrate a sequence of simulation snapshots of

our third multi-fidelity RHP candidate with 1-step PH, which

achieves the best online convergence rate among all multi-

fidelity RHP candidates.

Compared to the baseline and multi-fidelity RHP, we show

that locally-guided RHP achieves the fastest computation

speed, where 98.63% of the cycles converge online. Fur-

thermore, owing to the fast computation, our locally-guided

RHP can maintain online computation for 67.57% episodes,

whereas the baseline and the multi-fidelity RHP struggle

to achieve online computation consecutively for a complete

episode. Additionally, as Table IV shows, locally-guided RHP

only consumes on average 19% of the time budget. This

suggests the potential of using locally-guided RHP in real

robot control, as the remaining time budget can be allocated

to the overheads, e.g. data transmission. However, due to the

prediction error of the oracle, locally-guided RHP also has

the chance to fail to converge, i.e. locally-guided RHP failed

24.43% episodes as the robot is directed towards ill-posed

states which can cause convergence failures. In Fig. 9, we

show a sequence of the simulation snapshots for the locally-

guided RHP.

D. Case Study 2 (CS2): Large Slope

In this section, we present the experiment result for the

large slope terrain, on which the robot cannot maintain static

stability and has to traverse the terrain dynamically. We define

that each episode starts from the cycle when the large slope

is captured inside the lookahead horizon and ends at the

cycle when the robot gets off the large slope. For locally-

guided RHP, we set the slack of the phase switching timing

constraints as ϵ = 0.15, as empirically determined to give a

good balance between the success rate and the computation

speed.

We list the computation performance of each RHP frame-

works in Table V. As we can observe, in an offline setting,

the baseline can still achieve 100% episodic success rate on

the considered large slope terrains. However, this requires

the baseline to consider a 2-step PH, which can significantly

increase the computation complexity. As a result, the baseline

only has 7.99% of the cycles converging online.

On the other hand, we find that multi-fidelity RHP candi-

dates struggle to converge for the large slope terrain. To give

more detail, similar to CS1, since our first multi-fidelity RHP

ignores the angular dynamics in the PH, it can never complete

a single episode on the large slope terrain. However, despite

our second and third multi-fidelity RHP candidate consider

convex relaxations of the angular dynamics, they still fail to

complete 41.81% to 63.49% episodes. This result suggests

that the convex relaxed models we employed in the PH may

not be accurate enough to represent the momentum variation

of the highly dynamic motion for traversing the large slope,

and further investigation on the balance between the model

accuracy and computation complexity is needed.

In contrast, despite the increased terrain complexity, locally-

guided RHP still achieves the highest computation efficiency

among all the RHP frameworks. More specifically, our experi-

ment result shows that locally-guided RHP has 95.99% cycles

successfully converging and 95.0% of the cycles achieving on-

line computation. Owing to the fast computation, our locally-

guided RHP can also maintain online computation for 76.1%

of the episodes. For the episodes that fail to achieve online

computation consecutively, 3.8% of them are due to time

out, and the rest (20.1%) are caused by convergence failures.

Furthermore, as indicated in Table IV, our locally-guided RHP

only consumes on average 18% of the time budget. In Fig. 10,

we show a sequence of simulation snapshots for locally-guided

RHP on the large slope terrain.

E. Improving Prediction Accuracy with Incremental Training

Scheme

This section demonstrates the effectiveness of our incre-

mental training scheme described in Section VII-A. In Ta-

ble VI, we list the episodic success rate of locally-guided RHP

https://youtu.be/STBYJl7jvsg
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TABLE V
Computation Performance for the Large Slope Terrain (CS2). We use the incremental training scheme presented in Section VII-A to train the oracle for

LG-RHP. The training process lasts for 5 training iterations, after which we do not observe any improvements in the convergence rate (see Section VIII-E).

Method
Episodic Success Rate Cycle-wise Success Rate

Success
(Offline)

Success
(Online)

Time
Out

Fail to
Converge

Success
(Offline)

Success
(Online)

Time
Out

Fail to
Converge

Baseline
1-Step PH 78.47% 0.25% 78.22% 21.53% 94.37% 22.93% 71.44% 5.63%

2-Step PH 100.0% 0.0% 100.0% 0.0% 100.0% 7.99% 92.01% 0.0%

MF-RHP 1
(CoM)

1 to 3-Step

PH 0.0% - - - - - - -

MF-RHP 2
(Rectangle)

1-Step PH 40.13% 2.36% 37.77% 59.87% 83.0% 43.63% 39.37% 17.0%

2-Step PH 52.66% 0.27% 52.39% 47.43% 89.90% 26.58% 63.32% 10.10%

3-Step PH 53.38% 0.0% 53.38% 46.62% 91.81% 8.00% 83.80% 8.19%

MF-RHP 3
(Point)

1-Step PH 36.51% 4.89% 31.62% 63.49% 81.98% 52.50% 29.48% 18.02%

2-Step PH 57.27% 0.77% 56.50% 42.73% 90.92% 37.54% 53.37% 9.08%

3-Step PH 58.19% 0.0% 58.19% 41.81% 92.64% 20.65% 71.99% 7.36%

LG-RHP - 79.9% 76.1% 3.8% 20.1% 95.99% 95.0% 0.99% 4.01%

TABLE VI
Episodic success rate of different iterations of the incremental training

scheme on the training environments.

Terrain Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5

Moderate (CS1) 67.2% 76.2% 80.3% 81.8% 82.1%
Large (CS2) 71.5% 75.3% 79.5% 80.4% 81.0%

achieved on the training environments with oracles trained

from different iterations of the data augmentation process. Our

result shows that adding corrective datapoints of interest can

increase the prediction accuracy, which improves the episodic

success rate of locally-guided RHP. We find the success rate

saturates after 5 training iterations.

IX. REAL-WORLD EXPERIMENTS

Based on our simulation study (Section VIII), we find that

our locally-guided RHP approach features the best computa-

tion efficiency compared to all the RHP frameworks consid-

ered. This computation advantage enables us to demonstrate

online receding horizon planning on the torque-controlled

humanoid robot platform Talos [21]. We consider real-world

scenarios where online motion adaption is critical, i.e., travers-

ing uneven terrain with unexpected changes. Next, we present

these robot experiments in detail. We describe the software

implementation in Section IX-A, and demonstrate the results

in Section IX-B. The video of the experiments can be found

at https://youtu.be/STBYJl7jvsg.

A. Software Implementation

To achieve the robot experiments, we build a software

framework that consists of the following two components:

1) a planning node, which computes the motion plan in an

online receding horizon fashion using locally-guided RHP

based on the perceived environment, and 2) a robot control

stack that executes the planned trajectories in the real-world

while considering state feedback of the robot.

The interplay between these two components are described

as following. At the beginning of each cycle, the robot control

stack informs the planning node to compute the motion plan

for the next cycle, while in the meantime starts executing the

motion already planned for the current cycle. We assume that

robot can always track the planned trajectories without having

large deviations. Hence, we define that the motion plan for the

next cycle always starts from the terminal state of the current

cycle. We recall that in each cycle, the planning node always

computes the Execution Horizon (EH) that covers the motion

plan of making one step to reach the local objective. The

prediction of the local objective is based on the preview of the

environment. With preview we refer to the current perceived

terrain model that is ahead of the robot. In our work, we realize

the terrain perception based on the VICON motion capture

system. The terrain perception module identifies different

terrain geometries through the detection of a VICON marker

plate. Once the planning node completes the computation, it

will send the planned motion to the robot control module for

execution in the next cycle.

To track the planned trajectories, our robot control stack

constantly updates the torque command of each joint to

achieve the desired motion. In more detail, in each control

loop that runs at 500Hz, the robot control stack firstly decides

the desired CoM acceleration and the foot state based on the

planned trajectories as well as the state feedback of the robot.

For instance, the desired CoM acceleration ẍ is determined

through a PD control law:

ẍ = Kp(x
des − xfb) +Kd(ẋ

des − ẋfb), (13)

where Kp and Kd are the PD gains, xdes and ẋdes are

the desired CoM position and velocity interpolated from the

planned trajectories, and xfb and ẋfb are the state feedback

of the CoM position and velocity. To set the desired foot

state, we firstly create swing trajectories in between adjacent

contacts, and then query the foot state from these swing

trajectories for each time step of the control loop. After having

the desired CoM acceleration and the desired foot state, the

robot control stack employs a whole-body inverse dynamics

controller developed by PAL Robotics to compute the torque

command of each joint. To ensure successful tracking, the

inverse dynamics controller requires a precise whole-body

https://youtu.be/STBYJl7jvsg
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Fig. 10. Simulation result of locally-guided RHP on the large slope terrain (17-25 degrees). The blue block is the large slope (25 degrees), while the rest
are moderate slopes (5-12 degrees). The robot tends to build momentum to achieve dynamic balancing on the large slope. We show that locally-guided RHP
can be used online, as the computation time of the next cycle (green bar) is smaller than the motion duration of the current cycle (orange bar). The video is
available at https://youtu.be/STBYJl7jvsg.

model to accurately capture the inertial characteristics of the

robot. When there are model uncertainties, it is worthwhile to

consider robust control strategies to accommodate noise and

inaccuracies within the control framework [24].

Our software implementation is based on the ROS frame-

work [65], and the communication between the planning node

and the robot control stack is achieved through the ROS

subscriber/publisher protocol. Furthermore, we implement the

planning node in Python as described in Section VIII-B, and

we develop the robot control stack using C++.

B. Experiment Result

In this section, we present the results of our real-world

robot experiments. To highlight the benefit of achieving online

receding horizon planning, we consider the scenarios where

the environment changes during run-time and the robot has to

adapt its motion on-the-fly to achieve reliable and continuous

operation.

Specifically, in Fig. 11, we consider a scenario where

we change the flat surfaces to an up-and-down hill terrain

along the pathway of the robot. During the first few cycles,

the preview of the environment is considered as flat regions

(covered by a curtain). While the robot is moving forward,

the flat region changes to an up-and-down hill terrain by

removing the curtain. The planning node notices the change of

the terrain by detecting the VICON marker plate, and updates

the environment model accordingly. During this experiment,

locally-guided RHP successfully achieved online computation

of the contact and motion plans that are consistent to the latest

terrain condition perceived the robot. For instance, the average

computation time of locally-guided RHP is 0.22 +/- 0.076

seconds, which is smaller than the time budget 3.5 seconds.

This fast computation speed allows the robot to safely traverse

this changing environment. In Fig. 11, we show the snapshots

of this experiment, as well as the motion plan generated in

each cycle along with the terrain model perceived in that cycle.

In Fig. 12, we demonstrate another changing environment

scenario, where we add a stair during the robot operation.

Same as in the previous scenario, the locally-guided RHP also

achieved online receding horizon planning in this scenario.

https://youtu.be/STBYJl7jvsg
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Fig. 11. Snapshots for our first real-world experiment in changing environments and the motion planned in each cycle. In this scenario, we change part of the
environment from flat surfaces to an up-and-down hill terrain during run-time. We indicate this terrain change by placing a VICON marker next to the terrain,
and the planning node modified the terrain model accordingly, once it detects the VICON marker plate. Owing to the fast computation, our locally-guided
RHP successfully achieved online receding horizon planning in this scenario, which allows the robot to reliably traverse the terrain. The robot moves from
left to right, top to down. The inclination of the slope is 10 degrees. The video is available at https://youtu.be/STBYJl7jvsg.

The average computation time is 0.23 +/- 0.1 seconds (the time

budget is 3.5 seconds). This enables the robot to successfully

overcome the newly introduced stair.

Furthermore, we also perform real-world experiments on

challenging uneven terrains, such as continuously walking on

1) random slopes where the blocks are oriented around either

the y-axis or the diagonal axis, 2) up-and-down hill terrain,

and 3) the v-shape terrain. The inclination of these slopes

are 10 degrees. In these experiments, our locally-guided RHP

achieves online computation for all the cycles. The average

computation time is 0.21 +/- 0.06 seconds, and the time budget

is 3.5 seconds. The snapshots of these experiments are shown

in Fig. 13.

X. DISCUSSION

In this section, we compare the advantages and disadvan-

tages of each RHP framework based on our experiment result.

From the result of the baseline, we firstly verify that con-

sidering an accurate system dynamic model in the Prediction

Horizon (PH) can guarantee a high convergence rate (100% for

the terrains we considered). This is expected as the accurate

system dynamics model allows the PH to approximate the

value function as accurately as possible. Furthermore, we also

find that although the PH does not need to be infinite long, hav-

ing a PH with sufficient length is important to the convergence

of the baseline. For instance, our experiment result shows that

the baseline only requires 1-step PH to achieve successful RHP

on the moderate slope terrain. However, to traverse large slope

terrain where static stability cannot be maintained, the baseline

may need 2-step PH. Despite the high convergence rate, the

downside of the baseline is the long computation time due to

the consideration of non-convex centroidal dynamics model,

which hinders its online usage.

To facilitate online multi-contact RHP, we explore the trade-

https://youtu.be/STBYJl7jvsg
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Fig. 12. Snapshots of our second real-world experiment in changing environment. In this case, we add a stair (4cm height) while robot is walking. The
planning node detects the stair based on the position measurement of the VICON marker plate attached on the stair. In this experiment, our locally-guided
RHP successfully achieved online computation in each cycle, which allows the robot to safely overcome the stair. The robot moves from left to right, top to
down. The video is available at https://youtu.be/STBYJl7jvsg.

off between the computation efficiency and the model accuracy

in the PH. This gives rise to multi-fidelity RHP, where we

reduce the TO complexity by employing convex relaxed model

in the PH. From our experiment result, we can draw following

conclusions. First, we find that the multi-fidelity RHP always

fails to complete an episode if we only consider linear CoM

dynamics in the PH (Candidate 1). This suggests that the

convex relaxation employed in the PH cannot be arbitrary and

considering the angular dynamics is important. This finding

leads to our second and third multi-fidelity RHP candidates,

where we model the angular dynamics with a convex relax-

ation. The results show that our second and third multi-fidelity

RHP candidates can improve computation efficiency, e.g., for

the moderate slope, they outperform the baseline with 20% to

25% more cycles computed online (converge within the time

budget). On the other hand, planning the PH with a relaxed

model can inevitably affect the accuracy of the value function

modeled by the PH, which can cause convergence failures.

Nevertheless, since the PH considers a carefully designed

convex relaxation, the occurrence of convergence failures is

marginal for our second and third multi-fidelity RHP candi-

dates, e.g., only 1% to 2% of the cycles fail to converge (see

Table II). Although we can further improve the convergence

rate of our multi-fidelity RHP by extending the length of

the PH, this increases the dimensionality of the TO problem,

which hinders online computation. Furthermore, we realize

that on the large slope terrain, our multi-fidelity RHP fails to

complete about half of the episodes, and extending the length

of the PH does not improve much on the convergence rate.

This suggests that computing the PH with our proposed convex

relaxations may lead to inaccurate value function approxima-

tions for the large slope terrain. We guess the inaccuracy

comes from the following two factors. First, the proposed

convex relaxations may not be tight enough to capture the

momentum changes of highly dynamic motions [49]. Second,

the manually fixed phase switching timings in the PH can be

invalid for modeling such dynamic motions. To conclude, the

result of multi-fidelity RHP successfully demonstrates that we

can achieve online multi-contact RHP by relaxing the model

accuracy along the planning horizon. For future studies, we

believe it is worthwhile to improve the performance of multi-

fidelity RHP in challenging scenarios such as the large slope

case, e.g., finding tight convex relaxation of the dynamics and

convex formulation of the contact timing optimization.

To further improve the computation efficiency of multi-

contact RHP, we propose locally-guided RHP where we

approximate the value function with a learned model. More

specifically, we introduce an oracle to predict local objectives

for achieving a given task, and we then construct local value

functions to attract the Execution Horizon (EH) towards these

predicted local objectives. This approach features a shortened

planning horizon (only plans the the EH) and we demonstrate

that locally-guided RHP can achieve the best online conver-

gence rate in simulation (95% to 98.63% cycles converged on-

line) compared to the baseline and the multi-fidelity RHP. This

computation advantage also enables us to demonstrate online

receding horizon on our real-world humanoid robot platform

Talos in dynamically changing environments (Section IX).

However, locally-guided RHP still struggles in the following

two cases. First, the oracle can have prediction errors due to

imperfect fitting and insufficient data coverage. This can lead

to inaccurate value functions which direct the robot towards

ill-posed states and cause convergence failures. Although we

can mitigate this issue by an incremental training scheme

which demonstrates recovery actions from unseen states, we

find it is hard to cover all the possible combinations of the

robot state and environment models. To further improve the

prediction accuracy, we believe it is worthwhile to enhance the

https://youtu.be/STBYJl7jvsg
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a) Random Slopes

b) Up-and-Down Hills

c) V-shape Terrain

Fig. 13. Snapshots of our real-world experiment on challenging uneven terrains. Our scenarios include: a) random slopes (the slopes are oriented around
either the y-axis or the diagonal axis), b) up-and-down hills, and c) v-shape terrain. The robot moves from left to right, top to down. The inclination of all
the slope is 10 degrees. The video is available at https://youtu.be/STBYJl7jvsg.

sampling methods to cover the input space of the oracle more

effectively. Meanwhile, exploring methods to impose safety

constraints in the short-horizon TO could be also beneficial

for improving the convergence rate. Second, although locally-

guided RHP only computes the EH, it is still a nonlinear

programming problem that has no guarantee on computation

time and can fail to convergence online. To alleviate this issue,

a viable option is to reduce the number of decision variables

by representing trajectories with parameterized curvatures, e.g.

Bézier Curves [41]. Moreover, as mentioned in Section VIII-B,

we find that the datapoints for the two types of terrains

exhibit different modalities. This can impose challenges when

training a single Neural Network on the combined dataset.

Although we capture the two modalities by using separate

Neural Networks, it is worthwhile to explore a more unified

approach that can handle multimodal data, e.g. using mixture

density networks [66].

In this work, we assume the sequence of contact surfaces

is predefined [5], [59] and the selection of gait patterns is

given, i.e. the sequence in which the feet make and break

contacts with the environment [67]. Ideally, these discrete de-

cisions should be automatically resolved by the optimization.

However, this gives rise to combinatorial problems which are

difficult to solve. In the future, we suggest to extend both

https://youtu.be/STBYJl7jvsg
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multi-fidelity RHP and locally-guided RHP to consider the

combinatorial aspect of the multi-contact planning problem.

Furthermore, it is also worthwhile to extend our methods

to generalize across different tasks, for example, considering

different goal positions and behaviour modes (making a turn

and side walking).

XI. CONCLUSION

In this article, we propose multi-fidelity RHP and locally-

guided RHP, two novel methods that can achieve online multi-

contact RHP on uneven terrains. The core idea of our methods

is to find computationally efficient approximations of the value

function. To this end, multi-fidelity RHP approximates the

value function by computing the prediction horizon with con-

vex relaxed models. Alternatively, locally-guided RHP focuses

on learning a value function model, in which we train an oracle

to predict local objectives for completing a given task, and we

then build local value functions based on these local objectives.

The experiment result of the multi-fidelity RHP demon-

strates that it is possible to achieve online computation by

relaxing the model accuracy in the prediction horizon. This

approach is straight-forward to implement. However, consid-

ering relaxed models in the prediction horizon can downgrade

the accuracy of the value function approximation, which may

cause convergence failures. To improve the performance of

multi-fidelity RHP, we believe future investigations on the

balance between the computation efficiency and the model

accuracy is important.

Owing to the shortened planning horizon, our locally-guided

RHP achieves the best online convergence rate among all the

RHP frameworks. This computation advantage enables us to

demonstrate online receding horizon planning on our real-

world humanoid robot platform Talos in dynamically changing

environments. Nevertheless, we find that the oracle can have

prediction errors due to inadequate data coverage and lead to

convergence failures. To alleviate this issue, we employ an

incremental training scheme to add datapoints from the states

that cause convergence failures. We still found it was hard to

achieve 100% prediction accuracy with this approach, showing

that further investigations on improving the learning accuracy

is necessary.
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