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Abstract—We present a framework for online coordinated
obstacle avoidance with formal safety guarantees. Such a formally
verified trajectory planner can be used in shared human-robot
workspaces to guarantee safety. The obstacle avoidance is based
on estimation of the human occupancy on two different time
scales. A long-term plan is created based on a probabilistic
task representation, learned by demonstration, and an estimate
of the human occupancy to be avoided. Using an additional
overapproximative, short-term prediction of human motion we
guarantee that the robot can always account for sudden or reflex
movements. We demonstrate our two-level obstacle avoidance
in simulation. The results show that our method reduces the
number of safety stops one would encounter when using only the
formal safety verification, and synthesizes alternative movement
plans that preserves the coordination observed in the original
demonstrations.

I. INTRODUCTION

Programming by Demonstration (PbD) allows humans to

transfer skills to robots using only a few demonstrations

[1]. Small and medium enterprises that require flexible au-

tomation can benefit from such a technique, as it allows

fast reprogramming without advanced programming expertise.

Operating robots in such environments, however, requires

safety guarantees. In previous work we showed how a robot

trajectory can be formally verified online to guarantee safety

of humans separated from the robot by a light curtain [2]; the

robot will execute a previously verified controlled stop if the

proposed trajectory is unsafe. Although the safe stops provide

a formal safety guarantee, they might be avoided if the robot

is allowed to deviate from its original trajectory.

Tracking a single trajectory is unnecessarily restrictive when

deviations from the trajectory do not interfere with task

performance. Instead, we rely on a control strategy based on

the minimal intervention principle stating “Deviations from the

average trajectory are only corrected when they interfere with

task performance.” [3]. In previous work [4], [5], we showed

that task-space representations with a probabilistic form can

be used to define task performance. This probabilistic form

effectively represents the task as a distribution over trajectories

instead of a single trajectory. The encoded variance of, and

correlation among the state variables facilitate synthesis of
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alternative movements that maintain the original movement

characteristics, also referred to as coordination patterns [6].

In this work we employ the previously proposed prob-

abilistic task representation in [5] to generate alternative

trajectories to avoid unnecessary stops caused by the formal

safety verification. These alternative trajectories are obtained

by intentionally deviating the robot from the average trajectory,

by introducing via-points in the objective function.

Avoiding dynamic obstacles such as humans in trajectory

planning gives rise to several approaches. Distance metrics

are used to scale robot velocity while preserving the spatial

path so that the robot slows down as the human gets closer

[7]. Dynamic Road Maps (DRMs) [8] precompute a graph

of configurations, and paths are quickly planned by graph

traversal of non-colliding nodes. Mainprice and Berenson [9]

predict human motion to compute occupancy probabilities in

task space, used by a trajectory optimiser to plan a non-

colliding path.

Exploiting task representations to quickly generate alterna-

tive movement plans can lead to high-performing and ver-

satile algorithms. The Dynamic Movement Primitives (DMP)

framework has multiple extensions that involve obstacle avoid-

ance. Park et al. [10] use a dynamic potential field that

considers the dynamics of the obstacle to achieve smoother

avoidance behavior compared to static potential fields. Krug

and Dimitrov use the DMP framework in a Model Predictive

Control (MPC) approach [11], where obstacles are avoided

by including them as a constraint in an optimization problem.

However, since DMP does not encode correlation among state

variables, coordinated recovery of disturbances that interfere

with the task performance is not possible.

Khansari and Billard [12] propose a local obstacle avoidance

technique for autonomous dynamical systems (DS), which

modulates the DS such that it avoids dynamic obstacles,

while conserving the stability properties of the original DS. In

contrast to DMP, this approach can recover from avoidance

in a coordinated way, but the complexity of the motions that

can be encoded is limited.

Although the methods described above are all effective,

none of them provides a formal guarantee on safety. Two

main ways to guarantee safety in shared workspaces exist [13]:

ensuring non-contact, and limiting force and power within

contacts. We focus on the former, though our approach may

be adapted to the latter. Piecewise planning which formally

guarantees noncollision is proposed by Petti and Fraichard for

mobile robots [14] and adapted to serial-link robots in [2].

Our goal is to control a robot to complete a previously
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Fig. 1: (a) Long-term planning around expected human movement;
(b) short-term failsafe manoeuvre in case of unexpected motion.

demonstrated task while formally guaranteeing that the trajec-

tory used to complete the task is safe at all times. We define

the terms Reachable Occupancy and Expected Occupancy of

the human and Safe Trajectory of the robot:

Definition 1 (Expected and Reachable Occupancy). Let

Y(t, ũ) ⊂ R
3 be the subset of Cartesian space which the

human occupies at time t, following a trajectory ũ. The

reachable occupancy at time t is Γr(t) = {Y(t, ũ)|ũ ∈ Ũ}
where Ũ is the set of all possible trajectories. Expected

occupancy Γe(t) = {Y(t, ũ)|ũ ∈ Ũe} ⊆ Γr(t) contains the

most likely trajectories, Ũ .

Definition 2 (Safe Trajectory). We define a robot trajectory

as a function ξ : [0,∞) → R
n, where ξ(t) ∈ R

n is the

state of the robot at time t. Let A(ξ) ⊂ R
3 be the spatial

occupancy of the robot. We call a robot trajectory x safe when

∀t > 0 : A(ξ(t)) ∩ Γr(t) = ∅ ∨ ξ̇(t) = 0 holds.

In other words, if the robot is not stationary, the robot must

not collide with the human. Such a measure of safety may

be used to comply with workplace standards in areas where

robots work with humans [15]. In this first work we only

consider avoiding collision between the robot end-effector and

the human arm — one of the fastest moving parts of the human

body. Methods for quickly calculating occupied volumes of

kinematic chains over a range of joint positions (e.g., [16]) can

be used to extend the proposed method to collision-checking

for the entire robot. The method used to model the human

arm (see Sec. III-A) can be straightforwardly extended to the

entire body.

The novelty of the proposed approach lies in the combina-

tion of long-term and short-term plans. As humans move fast

and unpredictably, the reachable occupancy grows fast and

would unnecessarily restrict movement if we were to plan the

trajectory around it. Hence we take a two-step approach: A

long term plan (Fig. 1a) is generated from the probabilistic

task encoding, by avoiding expected human motion. A short-

term plan (Fig. 1b) consists of the first part of the long-term

plan, followed by a failsafe stopping manoeuvre, which has

been verified safe. If the next part of the long-term plan is not

verified safe, the failsafe trajectory is executed. Both plans are

continuously updated.

The paper is structured as follows: in the next section we

describe the proposed approach. The methods are detailed in

Sec. III. We present the results of a simulation in Sec. IV, and

discuss and conclude in Sec. V.

II. APPROACH

Algorithm 1 Formally verified obstacle avoidance

1: ⊲ Initialization:

2: u1:Np
, ξ̃1:Np

← predictControl(ξ0, ∅)
3: ū0:∞ ← 0

4: k ← 0
5: while not at end of motion do

6: γk ← getHumanState()

7: ⊲ Verify control for next iteration:

8: ūk+1:∞ ← verify(ūk:∞,uk+1,γk, ξk)

9: ⊲ Prediction:

10: p← generateViaPoints(γk, ξ̃k+(1:Np))

11: uk+(2:(Np+1)), ξ̃k+(2:(Np+1))← predictControl(ξ̃k+1,p)

12: ⊲ Apply command verified previous timestep:

13: ξk+1 ← applyControl(ūk)

14: k ← k + 1

Algorithm 1 explains our approach. ξk is the state of the

system and γk is the state of the human at discrete time k, or a

sequence of time steps k1 : k2. Estimated states are indicated

by ξ̃. Verified control inputs uk are indicated by ūk. p is the

vector of via-points that are generated to avoid obstacles. Np

is the prediction horizon.

At each time step k our method:

• verifies safety of the new short-term plan uk+1:∞ (input

uk+1 plus stop) using an overapproximative model of

human behaviour (line 8) and updates the control input,

• generates inputs uk+(2:(Np+1))
1 taking into account

predicted occupancy of the human (lines 10-11),

• executes the control command ūk, and observes the state

of the system to be used in the computations of the next

time step. (line 13).

These three steps may be executed in parallel since their

inputs and outputs are independent. The verification of the

subsequent time step provides a formal safety guarantee on

a short horizon because no control command is executed

without being previously verified. In case the verifier fails

to verify uk+1, the previously verified failsafe manoeuver

ūk+1:∞ guarantees a safe stop. To guide the trajectory around

the human and hence minimise the chance that a trajectory

will be determined to be unsafe, we also check if the expected

human occupancy collides with the long term motion plan

ξ̃k:(1+Np). If collision is detected, we generate a via-point p

that is taken into account in the control input prediction (lines

10-11). Details on human occupancy and verification of its

intersection by the robot are given in Secs. III-A and III-B,

respectively.

The robot motion is encoded in a Hidden Semi-Markov

Model (HSMM), providing a probabilistic movement repre-

sentation. This representation allows reproduction in which

1Here, a scalar added to a vector index e.g. k + (2 : (Np + 1)) is taken
to mean (k + 2) : (k +Np + 1)



TABLE I: Acceleration parameters used in both models, ms
−2.

Overapproximative (Γr(t)) Expected Γe(t)

Hand 189 10
Elbow 163 5

deviations from the desired path are only corrected when they

interfere with task performance, as demonstrated in previous

work [4], [5]. Secs. III-C and III-D describe the learning and

reproduction of the task in detail.

III. METHODS

A. Human Arm Expected and Reachable Occupancies

The human arm occupancy Γ(t) must be quick to calculate,

easy to collision-check, and conservative for the case of the

formal verification. In [17], a kinematic model of the human

arm is used to create a set of enclosing swept volumes, though

complexity grows exponentially with the number of degrees of

freedom of the kinematic model, increasing collision-checking

time.

In our prediction, we consider the arm as two rigid bodies:

the upper arm from shoulder (S) to elbow (E) and the

forearm from elbow (E) to hand (H). Reachable occupancies

of points S, E and H are calculated from the sensor data

of position and velocity found online (in our case, infrared

motion capture of markers on shoulder, elbow and wrist),

and a set of accelerations determined offline. Both expected

and (overapproximative) reachable occupancies are based on

the same model; the former uses empirically chosen expected

accelerations whereas the latter uses maximum accelerations

from analysis of motion capture data. 38 subjects aged 18–49

performed punching, sideways and upward-sweeping motions

as fast as possible to capture maximum forward, lateral and

vertical accelerations, see Tab. I.

We show now how the arm occupancy is calculated. Let

B(r) = {z ∈ R
3| ‖z‖2 ≤ r}. We call the set in R

3 in which

a point y ∈ R
3 after time t may be located the reachable set

Ry(t), which is:

Ry(t) = y(0)⊕B(δy)⊕ (ẏ(0)⊕B(δẏ)) · t⊕B(
amax

2
· t2),

where y(0) and ẏ(0) are the initial position and speed of the

point, δy and δẏ ∈ R are maximum measurement uncertainties

of position and velocity respectively, amax ∈ R is the max-

imum acceleration magnitude and ⊕ is the Minkowski sum

defined over sets G and H as G⊕H = {g+h | g ∈ G, h ∈ H}.
We enclose the reachable set of time interval [ta, tb], denoted

by Ry([ta, tb]), in a sphere enclosing Ry(ta) and Ry(tb). We

omit the proof that the sphere encloses the reachable set of

the interval for brevity. The occupancy of the forearm RF

and upper arm RU are capsules enclosing the convex hull

(CH) of RH and RE , and of RE and RS , respectively. RF

and RU are extended by the maximum length of a human

hand, 0.205m (from [18]) and the estimated maximum radius

of the upper arm with clothes, 0.08m, respectively. RU and

S(0)

RUA([ta, tb])

RFA([ta, tb])

RH ([ta, tb])
RH (tb)

RH (ta)

H(0)

E(0)up
pe

r
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Fig. 2: Occupancy of the human arm for time interval [ta, tb]. For
the hand, the reachable set of the interval encloses the reachable sets
from ta to tb.

Γr([tk+2, tk+2 + ts])

Γr([tk+1, tk+2])

Γr(tk)

tk+1 + ts
tk+2 + ts

tk+2

tk+1

tk

Fig. 3: Verifying safety of a manoeuvre. The desired trajectory
during time interval [tk+1, tk+2] is determined to be unsafe, as the
subsequent safe stop intersects the reachable occupancy. Hence, the
safe stop verified in the previous timestep is executed.

RF are capsules, which are fast to collision-check as in [19],

see Fig. 2.

RF ([ta, tb]) = CH(RH([ta, tb]),RE([ta, tb]))⊕B(0.205),

RU ([ta, tb]) = CH(RS([ta, tb]),RE([ta, tb]))⊕B(0.08),

Γ([ta, tb]) = RF ([ta, tb]) ∪RU ([ta, tb]).
(1)

To generate the via points in line 10 of Alg. 1, we check

whether human and robot intersect at specific times in the

future. If so, we find the plane on which both forearm and

upper arm in Γe([ta, tb]) lie. We then move any intersecting

points normal to this plane in the direction from which the end-

effector approaches, until they lie just outside the boundary of

the expected occupancy.

By abstracting the human body to a set of rigid links

enclosed in capsules, this method can be extended to the whole

body of one or more humans, where the complexity grows

linearly with the number of capsules.

B. Formal Verification of Robot Trajectory

We now consider verifying the short-term plans, shown in

Fig. 3. During time interval [tk, tk+1], we verify whether the

trajectory for [tk+1, tk+2] and a subsequent controlled stop

of duration ts will intersect the reachable occupancies in

their respective time intervals. If no intersection occurs, the

control input uk+1 at tk+1 is verified. Otherwise, the control

input ūk+1 — part of the failsafe manoeuvre verified in the

previous time step — is applied as shown in Fig. 3. In our

implementation, input is the acceleration of the robot, which

is constant over a time step and during a controlled stop.

Proposition 1. The centre of a sphere of radius r under

constant acceleration a has position s(τ) at time τ . Then



the Minkowski sum of line segment L from s(0) to s(t) and a

sphere of radius
|a|
8 t2 + r bounds the set {s(τ)| 0 ≤ τ ≤ t}.

Proof. Let v be the velocity at time 0. Then:

s(τ) = s(0) + vτ +
a

2
τ2. (2)

Where 0 ≤ τ ≤ t, the point

s∗(τ) = s(0)
t− τ

t
+ s(t)

τ

t
(3)

lies on L. Substituting s(t) = s(0)+vt+a
2 t

2 into (3), subtract-

ing (2) and rearranging, we obtain s∗(τ)− s(τ) = a

2 τ(t− τ).
The magnitude of this is a maximum at τ = t

2 , hence the

distance from s(τ) to the point s∗(τ) on L is no greater than
|a|
8 t2, to which we add r to account for the moving sphere’s

radius.

C. Probabilistic Movement Encoding

The robot is programmed by providing N demonstrations

of the skill to transfer. Each demonstration consists of Tn data

points ξt = [x⊤

t , ẋ
⊤

t ]
⊤

, where xt and ẋt are the robot position

and velocity in task space, n ∈ {1, ... , N} and t ∈ {1, ... , Tn}.
The demonstrated data are encoded in a Hidden Semi-

Markov Model (HSMM) [20], an extension of the Hidden

Markov Model (HMM) in which the state self-transistion

probabilities aii are set to zero, and state duration is explic-

itly modeled as a probability distribution. In this work we

model this duration using a Gaussian N (µD
i ,Σ

D
i ) defined

by a duration mean µD
i and variance ΣD

i . Each hidden state

is represented by a single multivariate Gaussian N (µi,Σi)
encoding the local movement dynamics with the mean and

covariance defined as

µi =

[

µi,x

µi,ẋ

]

, Σi =

[

Σi,xx Σi,xẋ

Σi,ẋx Σi,ẋẋ

]

,

respectively. Summarizing, an HSMM with K states is defined

by the parameters {ai,j,Πi, µ
D
i ,Σ

D
i ,µi,Σi}Ki,j , with Πi the

state priors. These parameters are estimated from the demon-

stration data by Expectation Maximization (EM) using an

efficient Forward-Backward algorithm [21].

D. Control Prediction

The control commands are computed using linear uncon-

strained Model Predictive Control (MPC) [22]. Similarly to

our previous work [5], we consider a quadratic cost function

in both system state and control input, namely

J =

k+Np+1
∑

r=k+1

(

ξ̂r−ξr
)⊤

Qr

(

ξ̂r−ξr
)

+

k+Np
∑

r=k+1

u⊤

rRr ur,

and a discrete linear system ξk+1 = Aξk +Buk.

The task specifying parameters of the cost function are

generated from the probabilistic model of the movement and

the newly introduced via-points ph:

ξ̂r=

{

ph, if r=h

µsr
, otherwise

Qr=











[

cxI 0

0 cẋI

]

, if r=h

(Σsr )
−1, otherwise

where sr indicates the index of the activated state at time r,

and h indicates a time step on the control horizon. The list

of indices [sk+2, ... , sk+Np+2] is generated from the HSMM

transition model using a procedure detailed below. The im-

portance of the via-point is controlled through the tracking

costs cx and cẋ representing the tracking cost on the desired

position and velocity of the via-point.

The cost is optimized using the standard Riccati equations

for a tracking problem (see e.g. [23]),

Pr = Qr−A
⊤(Pr+1B(B⊤Pr+1B+R)−1

B⊤Pr+1−Pr+1)A

dr = (A⊤−A⊤Pr+1B(B⊤Pr+1B+R)−1B⊤)

(Pr+1(Aξ̂r − ξ̂r+1)+dr+1),

using initial conditions PNp+1 = QNp+1 and dNp+1 = 0.

Pr and dr are then used to compute the control inputs

uk+(2:(Np+1)) and the state predictions ξ̃k+(2:Np+1), using

forward integration

ξ̃r+1 = Aξ̃r+Bur, ur = Kr(ξ̂r−ξ̃r) + f r

with feedback gain and feedforward terms defined as

Kr = (B⊤PrB +R)−1B⊤PrA,

f r =−(B
⊤PrB+R)−1B⊤(P r(Aξ̂r−ξ̂r)+dr).

The construction of the objective function used in our

approach is based on a state sequence s =
{

s1, ... , sNp

}

,

that is regenerated at each time step of the reproduction. This

process relies on the forward variable αi,k of the HSMM. It

defines the probability of being in state i at time step k given

the observation {ξ1, ξ2, ... , ξk}, i.e. P(i|ξ1, ξ2, ... , ξk), and is

recursively computed with (see e.g. [24])

αi,k=ΠiN
D

k,i

k
∏

r=1

Nr,i +
K
∑

j=1

k−1
∑

d=1

αj,t−d aj,iN
D

d,i

k
∏

r=k−d+1

Nr,i,

when k is smaller than the time history dmax, otherwise

αi,k=

dmax
∑

d=1

K
∑

j=1

αj,k−d aj,i N
D

d,i

k
∏

r=k−d+1

Nr,i,

with Nr,i = N
(

ξr| µi,Σi

)

and ND

d,i = N (d|µD

i ,Σ
D

i ).
At each time step the forward variable is used for

two purposes. First, to keep track of the probability

P(i|ξ1, ξ2, ... , ξk). Here, αi,k is computed while taking into

account the current system state ξk. This process is initialized

with the priors, i.e. αi,0 = Πi. Second, Np predictions are

computed to create the state sequence prediction s with

sr = argmax
i∈{1,··· ,K}

αi,r, ∀ r ∈ {k + 1, k + 2, · · · , k +Np}.

When computing the predictions, we assume that the prob-

ability of ξr being in a given state is 1 for all states, i.e.

Nr,i = 1∀i
When a safety stop is active — because the action uk was

not verified to be safe — one can either continue or pause
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Fig. 4: Visualization of the HSMM models used to verify the
proposed approach. Each column represents the model of one letter.
Top row: 2D representation of the 3D-letter models used, gray lines
indicate (partial) demonstrations, each coloured ellipsoid represents
a Gaussian (boundary is one standard deviation, colours correspond
to transition in the second row), arrows originating from the centers
represent the mean velocity encoded by that Gaussian. Bottom row:
The state transition duration model. Interconnecting arrows represent
between state transition probability, outer arrows indicate state prior
probability. The colour intensity of the arrows indicate magnitude of
the probability.

Fig. 5: Movement reproduction results for each of the letter models.
Each trajectory represents a different test case: C0 (grey-dotted), C1
(green) and C2 (blue). The location of the human arm, and the plane
used to generate the via-points are visualized by the red capsules
intersected with the cyan plane. The 3D ellipsoids represent the same
Gaussians as presented in Fig. 4, with corresponding colours.

the update of the forward variable. In the former case, the

temporal behavior encoded in the HSMM is respected; The

predicted state sequence will evolve, thereby omitting part of

the trajectory to ensure that the system reaches the final state

in time. In the latter case, such re-planning will not occur, and

the system will continue the trajectory once the robot resumes

normal operation. We choose the latter to ensure reproduction

of the original movement.

TABLE II: Number of safety stops observed for different experimen-
tal conditions: no interference (C0), formal verification (C1), formal
verification & replanning (C3).

S M C

C1 0 128 18

C2 0 0 0

IV. EVALUATION

We evaluate the approach on a 3D data set containing free-

air drawing motions of the letters S, M and C captured,

filtered and scaled from a Leap Motion Controller.2 The

demonstration data consists of a combination of full and partial

demonstrations: S:(1,6), M:(1,6) C:(3,3), (full, partial). The

movement dynamics are encoded in K Gaussians forming

an HSMM, where K is set empirically. The EM procedure

is repeatedly initialized using the K-means algorithm while

keeping the model with highest log-likelihood. Fig. 4 shows

2D projections of the models obtained. In the reproductions

the trajectory is performed close to a moving arm. The arm

movement is from the publicly available CMU Graphics Lab

Motion Capture Database3.

Each letter is reproduced under three different conditions:

C0) Normal reproduction without considering the human,

C1) Reproduction with avoidance based on the formal safety

verification, C2) Reproduction with avoidance based on the

formal safety verification with additional obstacle avoidance.

We empirically set the prediction horizon to Np = 50, the cost

matrix R = 1e−8 I and the via-point strength cx = 2e − 3,

cẋ = 0. The time step is 16.7ms; potential via-points were

calculated at time steps 10 and 20 of the prediction horizon.

A reproduction is terminated when the HSMM reaches the

final state and the observed velocity is zero.

The resulting trajectories are visualized in Fig. 5 and infor-

mation on the number of safety stops is summarized in Tab. II.

A clear difference between the different conditions can be seen

for the letters M and C. Although the via point introduced

in C2 deforms the letters, the curvature remains consistent

with the shape of the original trajectory, because the motion

synthesis respects the encoded movement coordination. The

reproduction of C1 fails since it is stopped by the verifier, and

no safe control command was found before terminal conditions

of the experiments were met.

The reproduction of the letter S shows that C2 does not

always outperform C1: during reproduction, C2 seemed to be

too cautious in planning via-points to avoid the human, while

the formal verification did not require to stop once.

Tab. III displays mean, average, maximum and minimum

computation times required for the verification and the pre-

diction step. These values correspond to a simulation of

the experiment on a computer with a 2.5GHz i7 processor

and 16GB RAM using MATLAB. In our implementation the

2https://www.leapmotion.com/, retrieved April 15, 2016
3Subject 80, movement 69 “Painting” http://mocap.cs.cmu.edu,

retrieved August 1, 2015



TABLE III: Overview of computation times [ms] (n=1299)

µt σt tmax tmin

Verification 0.19 0.08 1.02 0.15

Prediction/Optimization 5.50 0.38 11.60 5.28

prediction and verification were performed sequentially, but

they can be performed in parallel as previously discussed

in Sec. II. There are no iterative optimisation or collision-

checking steps in the method, hence computation time is

deterministic and suitable for real-time application.

The correctness of this approach depends on the human

models used being conservative. We account for reflex move-

ments by determining the dynamic parameters of the human

from data of unrestricted human movements executed as fast as

possible. Such movements may happen in industrial scenarios,

for example when a worker touches something hot or sharp,

or deliberately tries to ‘trick’ the robot.

The effectiveness of this approach depends on the capability

of the sensors. The sensor data in our experiment is updated

with 60Hz, however, industrial safety-certified camera sys-

tems4 have lower frame rates and higher latency.

V. CONCLUSION & FUTURE WORK

We presented an approach that combines probabilistic task

representations with formal methods to achieve formally safe

coordinated obstacle avoidance. In both scenarios C1 and C2,

safety is guaranteed, but where the trajectory is replanned

through via points, no unnecessary stopping occurs. The

formal verifier provides a closed form alternative to the

usage of hard contraints to guarantee obstacle avoidance. This

reduces the computation required for trajectory optimization,

while guaranteeing avoidance of the robot and maintaining

coordination patterns found in the demonstration data.

In future work we plan to improve the proposed method

by improved selection of the via-points and their strength

parameters (cx and cẋ), and verify the approach in a real robot-

human scenario. Additionally, we may consider a different

safety criterion to Def. 2, such as limiting impact energy

specified in [25]. To the authors’ best knowledge, this work is

the first to combine the ease of imitation learning with formal

safety guarantees for the human.
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