

Why learn a programming language?
If you’re using Excel, SPSS, Stata, JASP, …

• Automate analyses
→ less error-prone

..which goes hand in hand with:

• Reproducibility

• Customize:
• Special plots
• Tweak analyses

• Run simulations

• For fun

Why program?

An example custom plot:

• Main choices:

R

Python

• Others

Julia

Matlab

• ..is also choosing a community

Choosing a programming language
as a researcher

1995 / 1976 (S)

1991

2012

1979

Free & open?
(Hackable, “own your code-

running environment”)

Yes

Yes

Yes

No

Online community

(→ Learning resources &
documentation iterations)

Huge

Huge

Medium

Large

First released
(The new builds on &
learns from the old)

In Python / R / Matlab:
“Avoid for-loops”
“Write vectorized code”

Julia syntax

using Unitful: MΩ, ms, mV # Import from package

"""
Simulate a simple leaky-integrate-and-fire (LIF) neuron, given
input current `I` and a timestep `Δt`.
Return when the neuron fires its first spike.

The neuron’s input resistance `R` and time constant `τ` can be
customized by keyword argument.
"""
function first_spike(I, Δt; R = 100MΩ, τ = 20ms)

N = length(I) # Number of samples
v = -70mV # Resting membrane potential
for i in 1:N

dv = -v + R*I[i] # Leaky current integration
v += dv/τ * Δt # Euler integration of ODE
if v > -55mV # Spike!

return time = i * Δt
end

end
return nothing # Never spiked

end

Compilation: Your code ⇝ the CPU

• If one line of Julia code corresponds
to just a few CPU instructions

• ..then the same line in base Python / R / Matlab will often
correspond to an order of magnitude more CPU instructions *

• ..That’s why the code that does the ‘real’ numeric work in these

languages is actually written in C / C++

NumPy, PyTorch, Tensorflow, dplyr, …: all have their core written

in a different language

• ..That’s why, to have your code run fast, you’re discouraged from

writing for-loops for numeric code ..

• .. and instead use the provided library functions

e.g. np.where(…)

• Python is often used as “glue-code” (see next slide)

• If you want a custom numeric algorithm that’s not provided by

the libraries, you need to learn C / C++

The “two languages-problem”

Matlab added JIT compilation in 2015
(but it’s rather opaque)

Python can have JIT compilation via the fantastic
Numba package. (But you can only use base
Python with Numba, not arbitrary other packages).

*

“z = x + y”

CPU instructions:

JuliaR / Python

http://www.mathworks.com/products/matlab/performance.html

JIT compilation

• Why is this ↑ ?
• The same line of code (say, z = x + y) does different things,

based on the type of x and y
• If they’re integers (8 + 3), use the `leaq` CPU instruction
• If one is a float (8 + 3.3), call `convert` and use the floating point processor unit
• If they’re both plots, call subroutines, to compose the plots together into a bigger figure
• …

• Python, R, and Matlab need to check the types of x and y
every time the line is run, and then call the appropriate subroutines
• Hence all these extra CPU instructions

• Julia will infer the types of x and y
• When? The first time the function that contains our line of code is called
• It does this type inference based on the arguments that the function was called with (more

specifically, their types), and by analyzing the function’s source code you wrote

• I then compiles a fast version of the function
This is just-in-time (JIT) compilation

• If one line of Julia code corresponds to just a few CPU instructions

• ..then the same line in base Python / R / Matlab* will often correspond to an order of
magnitude more CPU instructions

Data analysis in Julia
• DataFrames.jl

• Tidyverse’s dplyr & Python’s Pandas equivalent
• Better API than Pandas, imho

• In the very capable hands of Bogumił Kamiński
• Check out his tutorials:

github.com/bkamins/Julia-DataFrames-Tutorial

• Work in Jupyter notebooks
• Via IJulia.jl
• Ju stands for Julia (r for R).

• missing datatype is built-in in Julia
• distinct from nothing

• I plot using Python’s matplotlib 😄
• Via PyPlot.jl
• There’s also Makie.jl
• ..and Gadfly.jl, which is ggplot-inspired

Example of working with a DataFrame containing
missing values, in a Jupyter notebook
(loading data from Arrow, which is useful for data interchange with
R or Python):

Source: https://github.com/bkamins/Julia-
DataFrames-Tutorial/blob/master/04_loadsave.ipynb

https://github.com/bkamins/Julia-DataFrames-Tutorial
https://github.com/bkamins/Julia-DataFrames-Tutorial/blob/master/04_loadsave.ipynb

Julia likes

• Unicode variable names & operators
• Easy input of LaTeX & Unicode names:
• Plus reverse lookup:

• Some code is read much more than it is written. There, readability counts!
• For throwaway / exploratory code, not worth the slower input though
• Real-life example from my own code:

julia> \partial<tab>
↓

julia> ∂

izh() = begin
Conductance-based synaptic current
I_syn = gₑ*(v-Eₑ) + gᵢ*(v-Eᵢ)
Izhikevich 2D system
Δ.v = (k*(v-vₗ)*(v-vₜ) - u - I_syn) / C # Membrane potential
Δ.u = a*(b*(v-vᵣ) - u) # Adaptation current
Synaptic conductance decay
Δ.gₑ = -gₑ / τ # (gₑ is sum over all exc synapses)
Δ.gᵢ = -gᵢ / τ

end
has_spiked() = (v ≥ vₛ)
on_self_spike() = begin

v = vᵣ
u += Δu

end

Compact operator :)

Julia likes
• Community

• Discourse forum & Slack

• Scientists

• Contribute to ecosystem
(open source, build upon others)

• As close-to-the-metal as you like
• Look under the hood. Understand why

something is slow/fast, and how it works

• “data structures + functions” design style
• Decoupling is good
• Versus: when you’re designing software in Python,

you’re often pushed towards a coupled OOP design, with
inheritance

• Keyword argument syntax sugar:
•

• Inspectability
• @edit to jump to source code of

anything… amazing

• @code_native to see cpu instructions

• ? for documentation

• Dependency management
• Single, ergonomic tool (↔ Python)

• Pkg.jl, with `]` REPL mode

• Easy reproducibility via thin environments
• Project.toml & Manifest.toml

• Not just for Julia code, for e.g. data too!
• Artifacts.jl, DataDeps.jl

• And for binaries: Yggdrasil & BinaryBuilder.jl

• Macro’s
• Lisp-like. ‘Code as data’options = [some object]

simulate(x, options = options) # Python
simulate(x; options) # Julia

Julia annoyances
• Package startup time 💀 (“time-to-first-plot”)

• Language developers are working hard this year to improve this

• No winning plotting package yet

• `name.<tab>` autocompletion (API discovery) not as good as Python
• “Power of the dot” in OOP languages

• Getting floats to print with lower precision is way more difficult than it
should be for new users

• Traits / interfaces (lack of)

• Error handling is underdeveloped / under-practiced
(“→ silent fails & crashes”)

• See also:
• yuri.is/not-julia
• danluu.com/julialang
• viralinstruction.com/posts/badjulia

https://twitter.com/alexisgallagher/status/1483487864843214853
https://yuri.is/not-julia/
https://danluu.com/julialang/
https://viralinstruction.com/posts/badjulia/

• (i.e. there’s nasty hidden bugs everywhere)

• Not true for Base Julia:
• every line there is pored over by many language developers
• automatic test coverage is very comprehensive

• For other people’s packages:
• Not a problem in my experience.
• But you have to inspect the packages that you use, if they’re not in

Julia Base; and make a value judgement about their quality
• A lot of Julia packages are of very high quality in my experience

• Except for the lack of error checking (of inputs and outputs)
• Julia doesn’t hold your hand:

you gotta know what you’re doing mathematically / numerically / statistically

“Julia has a correctness problem”

Why did I switch to Julia?
parameters = (

Izhikevich neuron
C = 100 * pF
k = 0.7 * (nS/mV)
vₗ = - 60 * mV
vₜ = - 40 * mV
a = 0.03 / ms
b = - 2 * nS
vₛ = 35 * mV
vᵣ = - 50 * mV
Δu = 100 * pA
Synapses
Eₑ = 0 * mV
Eᵢ = -80 * mV
τ = 7 * ms
Inputs
Nₑ = 40
Nᵢ = 10
N = Nₑ + Nᵢ
Δgₑ = 60nS / Nₑ
Δgᵢ = 60nS / Nᵢ
Integration
Δt = 0.1ms
T = 10seconds

)

•🎄 Advent of Code :) (2021)

• Physical units in neuron simulations:

• I could keep using:
• my Jupyter notebook workflow

• my Matplotlib experience

https://adventofcode.com/

Tips
• Code must be type-inferable (“type-stable”)

• Put everything in (small) functions
• If using globals: `const`, or typed

• Read the manual
• Especially the “Performance tips” section, if you’re wondering why

your code is not as fast as promised. Also:

• Ask questions on the forum
• discourse.julialang.org
• People are very eager to help, and the community managers do a great job

• Use Revise.jl (Use all of Tim Holy’s packages actually).

• This minizes nr. of times you have to restart the Julia session (re: time-to-first-X problem)
• Plus:
• If using VS Code, there’s a plugin for Julia. Also: the JuliaMono font :) Example:
• On Windows, use the Julia REPL in the Windows Terminal
• Put commonly used snippets in your startup.jl

• Don’t load unnecessary packages
• Julia Base has no real latency (time-to-first-X) problem.

It’s loading many packages that gets you
• Especially packages that have many dependencies themselves

(looking at you SciML ecosystem :P)

• Do you really need this package?
Can you just implement it yourself / copy the relevant part?

• Learn by doing
• Like by doing some Advent of Code puzzles!

Code excerpt from the
JuliaMono homepage.
Original by Zygmunt Szpak
⊗ = kron
N = length(𝒟[1])
ℳ, ℳʹ = 𝒟
Λ₁, Λ₂ = 𝒞
𝐞₁ = @SMatrix [1.0; 0.0; 0.0]
𝐞₂ = @SMatrix [0.0; 1.0; 0.0]
for n = 1:N

index = SVector(1,2)
𝚲ₙ[1:2,1:2] .= Λ₁[n][index,index
𝚲ₙ[3:4,3:4] .= Λ₂[n][index,index
𝐦 = hom(ℳ[n])
𝐦ʹ = hom(ℳʹ[n])
𝐔ₙ = (𝐦 ⊗ 𝐦ʹ)
∂ₓ𝐮ₙ = [(𝐞₁ ⊗ 𝐦ʹ) (𝐞₂ ⊗ 𝐦ʹ) (
𝐁ₙ = ∂ₓ𝐮ₙ * 𝚲ₙ * ∂ₓ𝐮ₙ'
𝚺ₙ = 𝛉' * 𝐁ₙ * 𝛉
𝚺ₙ⁻¹ = inv(𝚺ₙ)
…

end

https://discourse.julialang.org/
https://juliamono.netlify.app/

Should you use Julia?

• Do you ‘just’ need data analysis, automation,
and pretty, customized plots?
• Then, no

• Or do you also write custom numeric algorithms / simulations?
• Then, yes :)
• ..Unless you already know Matlab and don’t have the time
• ..Plus, Python and R have huge ecosystems of packages that might

already do your custom thing
• A concrete example in computational neuroscience: Brian Python package for

spiking neural network simulations (core written in C++)
• Also, Python has Numba for JIT-optimization of hot inner loops

(numba.pydata.org). That might be enough for your use case

https://numba.pydata.org/

Links

• “Seven Lines of Julia”: examples of Julia, in different applications.
• “What cool thing can you do in seven lines of code?”

• tfiers.github.io/phd
• made with JupyterBook

• auto-built and -published with GitHub Actions on GitHub Pages

• github.com/schluppeck/ng-data-club
• Repo of the Lunchtime data club

• Discussion of these slides on Julia Discourse
• (woah meta)

https://discourse.julialang.org/t/seven-lines-of-julia-examples-sought/50416?filter=summary
https://tfiers.github.io/phd
https://jupyterbook.org/
https://jupyterbook.org/en/stable/publish/gh-pages.html
https://github.com/schluppeck/ng-data-club
https://discourse.julialang.org/t/julia-for-research-summary-slides/91397

