{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Dimuon spectrum\n", "\n", "This code is a columnar adaptation of [a ROOT tutorial](https://root.cern.ch/doc/master/df102__NanoAODDimuonAnalysis_8py.html) showcasing the awkward array toolset, and utilizing FCAT histograms." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import time\n", "import uproot\n", "import uproot_methods\n", "import awkward\n", "\n", "%matplotlib inline\n", "from coffea import hist" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# uproot supports xrootd, but its nicer to have them local (about 7 GB)\n", "!mkdir -p data\n", "!xrdcp root://eospublic.cern.ch//eos/root-eos/cms_opendata_2012_nanoaod/Run2012B_DoubleMuParked.root data/\n", "!xrdcp root://eospublic.cern.ch//eos/root-eos/cms_opendata_2012_nanoaod/Run2012C_DoubleMuParked.root data/" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tstart = time.time()\n", "\n", "files = [\n", " 'data/Run2012B_DoubleMuParked.root',\n", " 'data/Run2012C_DoubleMuParked.root',\n", "]\n", "\n", "masshist = hist.Hist(\"Counts\", hist.Bin(\"mass\", r\"$m_{\\mu\\mu}$ [GeV]\", 30000, 0.25, 300))\n", "\n", "branches = ['nMuon', 'Muon_pt', 'Muon_eta', 'Muon_phi', 'Muon_mass', 'Muon_charge']\n", "for chunk in uproot.iterate(files, 'Events', branches=branches, entrysteps=500000, namedecode='ascii'):\n", " p4 = uproot_methods.TLorentzVectorArray.from_ptetaphim(\n", " chunk.pop('Muon_pt'),\n", " chunk.pop('Muon_eta'),\n", " chunk.pop('Muon_phi'),\n", " chunk.pop('Muon_mass'),\n", " )\n", " muons = awkward.JaggedArray.zip(p4=p4, charge=chunk['Muon_charge'])\n", "\n", " twomuons = (muons.counts == 2)\n", " opposite_charge = (muons['charge'].prod() == -1)\n", " dimuons = muons[twomuons & opposite_charge].distincts()\n", " dimuon_mass = (dimuons.i0['p4'] + dimuons.i1['p4']).mass\n", " masshist.fill(mass=dimuon_mass.flatten())\n", " \n", "elapsed = time.time() - tstart" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig, ax, _ = hist.plot1d(masshist)\n", "ax.set_xscale('log')\n", "ax.set_yscale('log')\n", "ax.set_ylim(0.1, 1e6)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"Events/s:\", masshist.values()[()].sum()/elapsed)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }