{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Hello World, `pyhf` style" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Two bin counting experiment with a background uncertainty**" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pyhf" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Returning the observed and expected** $\\mathrm{CL}_{s}$" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Observed: 0.05290116224852556, Expected: 0.06445521290832805\n" ] } ], "source": [ "pdf = pyhf.simplemodels.hepdata_like(signal_data=[12.0, 11.0], bkg_data=[50.0, 52.0], bkg_uncerts=[3.0, 7.0])\n", "CLs_obs, CLs_exp = pyhf.infer.hypotest(1.0, [51, 48] + pdf.config.auxdata, pdf, return_expected=True)\n", "print('Observed: {}, Expected: {}'.format(CLs_obs, CLs_exp))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Returning the observed** $\\mathrm{CL}_{s}$, $\\mathrm{CL}_{s+b}$, **and** $\\mathrm{CL}_{b}$" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Observed CL_s: 0.05290116224852556, CL_sb: 0.023599998519978738, CL_b: 0.4461149342826869\n" ] } ], "source": [ "CLs_obs, p_values = pyhf.infer.hypotest(1.0, [51, 48] + pdf.config.auxdata, pdf, return_tail_probs=True)\n", "print('Observed CL_s: {}, CL_sb: {}, CL_b: {}'.format(CLs_obs, p_values[0], p_values[1]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A reminder that \n", "$$\n", "\\mathrm{CL}_{s} = \\frac{\\mathrm{CL}_{s+b}}{\\mathrm{CL}_{b}} = \\frac{p_{s+b}}{1-p_{b}}\n", "$$" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "assert CLs_obs == p_values[0]/p_values[1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Returning the expected** $\\mathrm{CL}_{s}$ **band values**" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Observed CL_s: 0.05290116224852556\n", "\n", "Expected CL_s(-2 σ): 0.0026064088679947964\n", "Expected CL_s(-1 σ): 0.013820657528619273\n", "Expected CL_s : 0.06445521290832805\n", "Expected CL_s(1 σ): 0.23526103626937836\n", "Expected CL_s(2 σ): 0.5730418174887743\n" ] } ], "source": [ "CLs_obs, CLs_exp_band = pyhf.infer.hypotest(1.0, [51, 48] + pdf.config.auxdata, pdf, return_expected_set=True)\n", "print('Observed CL_s: {}\\n'.format(CLs_obs))\n", "for p_value, n_sigma in enumerate(np.arange(-2,3)):\n", " print('Expected CL_s{}: {}'.format(' ' if n_sigma==0 else '({} σ)'.format(n_sigma),CLs_exp_band[p_value]))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.5" } }, "nbformat": 4, "nbformat_minor": 2 }