{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Morphological operations\n", "\n", "Morphology is the study of shapes. In image processing, some simple operations can get you a long way. The first things to learn are *erosion* and *dilation*. In erosion, we look at a pixel’s local neighborhood and replace the value of that pixel with the minimum value of that neighborhood. In dilation, we instead choose the maximum." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from matplotlib import pyplot as plt, cm\n", "import skdemo" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "image = np.array([[0, 0, 0, 0, 0, 0, 0],\n", " [0, 0, 0, 0, 0, 0, 0],\n", " [0, 0, 1, 1, 1, 0, 0],\n", " [0, 0, 1, 1, 1, 0, 0],\n", " [0, 0, 1, 1, 1, 0, 0],\n", " [0, 0, 0, 0, 0, 0, 0],\n", " [0, 0, 0, 0, 0, 0, 0]], dtype=np.uint8)\n", "plt.imshow(image);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The documentation for scikit-image's morphology module is\n", "[here](http://scikit-image.org/docs/0.10.x/api/skimage.morphology.html).\n", "\n", "Importantly, we must use a *structuring element*, which defines the local\n", "neighborhood of each pixel. To get every neighbor (up, down, left, right, and\n", "diagonals), use `morphology.square`; to avoid diagonals, use\n", "`morphology.diamond`:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from skimage import morphology\n", "sq = morphology.square(width=3)\n", "dia = morphology.diamond(radius=1)\n", "print(sq)\n", "print(dia)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The central value of the structuring element represents the pixel being considered, and the surrounding values are the neighbors: a 1 value means that pixel counts as a neighbor, while a 0 value does not. So:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "skdemo.imshow_all(image, morphology.erosion(image, sq))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "skdemo.imshow_all(image, morphology.dilation(image, sq))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "skdemo.imshow_all(image, morphology.dilation(image, dia))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Erosion and dilation can be combined into two slightly more sophisticated operations, *opening* and *closing*. Here's an example:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "image = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", " [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", " [0, 0, 1, 1, 1, 1, 1, 1, 0, 0],\n", " [0, 0, 1, 1, 1, 1, 1, 1, 0, 0],\n", " [0, 0, 1, 1, 1, 1, 1, 1, 0, 0],\n", " [0, 0, 1, 1, 1, 0, 0, 1, 0, 0],\n", " [0, 0, 1, 1, 1, 0, 0, 1, 0, 0],\n", " [0, 0, 1, 1, 1, 0, 0, 1, 0, 0],\n", " [0, 0, 1, 1, 1, 1, 1, 1, 0, 0],\n", " [0, 0, 1, 1, 1, 1, 1, 1, 0, 0],\n", " [0, 0, 1, 1, 1, 1, 1, 1, 0, 0],\n", " [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", " [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], np.uint8)\n", "plt.imshow(image);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What happens when run an erosion followed by a dilation of this image?\n", "\n", "What about the reverse?\n", "\n", "Try to imagine the operations in your head before trying them out below." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "skdemo.imshow_all(image, morphology.opening(image, sq)) # erosion -> dilation" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "skdemo.imshow_all(image, morphology.closing(image, sq)) # dilation -> erosion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**: use morphological operations to remove noise from a binary image." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from skimage import data, color\n", "hub = color.rgb2gray(data.hubble_deep_field()[350:450, 90:190])\n", "plt.imshow(hub);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Remove the smaller objects to retrieve the large galaxy." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.2" } }, "nbformat": 4, "nbformat_minor": 1 }