""" ================================================== Balance model complexity and cross-validated score ================================================== This example balances model complexity and cross-validated score by finding a decent accuracy within 1 standard deviation of the best accuracy score while minimising the number of PCA components [1]. The figure shows the trade-off between cross-validated score and the number of PCA components. The balanced case is when n_components=10 and accuracy=0.88, which falls into the range within 1 standard deviation of the best accuracy score. [1] Hastie, T., Tibshirani, R.,, Friedman, J. (2001). Model Assessment and Selection. The Elements of Statistical Learning (pp. 219-260). New York, NY, USA: Springer New York Inc.. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC def lower_bound(cv_results): """ Calculate the lower bound within 1 standard deviation of the best `mean_test_scores`. Parameters ---------- cv_results : dict of numpy(masked) ndarrays See attribute cv_results_ of `GridSearchCV` Returns ------- float Lower bound within 1 standard deviation of the best `mean_test_score`. """ best_score_idx = np.argmax(cv_results["mean_test_score"]) return ( cv_results["mean_test_score"][best_score_idx] - cv_results["std_test_score"][best_score_idx] ) def best_low_complexity(cv_results): """ Balance model complexity with cross-validated score. Parameters ---------- cv_results : dict of numpy(masked) ndarrays See attribute cv_results_ of `GridSearchCV`. Return ------ int Index of a model that has the fewest PCA components while has its test score within 1 standard deviation of the best `mean_test_score`. """ threshold = lower_bound(cv_results) candidate_idx = np.flatnonzero(cv_results["mean_test_score"] >= threshold) best_idx = candidate_idx[ cv_results["param_reduce_dim__n_components"][candidate_idx].argmin() ] return best_idx pipe = Pipeline( [ ("reduce_dim", PCA(random_state=42)), ("classify", LinearSVC(random_state=42, C=0.01)), ] ) param_grid = {"reduce_dim__n_components": [6, 8, 10, 12, 14]} grid = GridSearchCV( pipe, cv=10, n_jobs=1, param_grid=param_grid, scoring="accuracy", refit=best_low_complexity, ) X, y = load_digits(return_X_y=True) grid.fit(X, y) n_components = grid.cv_results_["param_reduce_dim__n_components"] test_scores = grid.cv_results_["mean_test_score"] plt.figure() plt.bar(n_components, test_scores, width=1.3, color="b") lower = lower_bound(grid.cv_results_) plt.axhline(np.max(test_scores), linestyle="--", color="y", label="Best score") plt.axhline(lower, linestyle="--", color=".5", label="Best score - 1 std") plt.title("Balance model complexity and cross-validated score") plt.xlabel("Number of PCA components used") plt.ylabel("Digit classification accuracy") plt.xticks(n_components.tolist()) plt.ylim((0, 1.0)) plt.legend(loc="upper left") best_index_ = grid.best_index_ print("The best_index_ is %d" % best_index_) print("The n_components selected is %d" % n_components[best_index_]) print( "The corresponding accuracy score is %.2f" % grid.cv_results_["mean_test_score"][best_index_] ) plt.show()