""" ======================================== Label Propagation digits active learning ======================================== Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to have a model trained with 30 labeled examples. Note you can increase this to label more than 30 by changing `max_iterations`. Labeling more than 30 can be useful to get a sense for the speed of convergence of this active learning technique. A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain mistakes, but we will train the next model with their true labels. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from scipy import stats from sklearn import datasets from sklearn.metrics import classification_report, confusion_matrix from sklearn.semi_supervised import LabelSpreading digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 40 max_iterations = 5 unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:] f = plt.figure() for i in range(max_iterations): if len(unlabeled_indices) == 0: print("No unlabeled items left to label.") break y_train = np.copy(y) y_train[unlabeled_indices] = -1 lp_model = LabelSpreading(gamma=0.25, max_iter=20) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_indices] true_labels = y[unlabeled_indices] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print("Iteration %i %s" % (i, 70 * "_")) print( "Label Spreading model: %d labeled & %d unlabeled (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples) ) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # compute the entropies of transduced label distributions pred_entropies = stats.distributions.entropy(lp_model.label_distributions_.T) # select up to 5 digit examples that the classifier is most uncertain about uncertainty_index = np.argsort(pred_entropies)[::-1] uncertainty_index = uncertainty_index[ np.isin(uncertainty_index, unlabeled_indices) ][:5] # keep track of indices that we get labels for delete_indices = np.array([], dtype=int) # for more than 5 iterations, visualize the gain only on the first 5 if i < 5: f.text( 0.05, (1 - (i + 1) * 0.183), "model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10, ) for index, image_index in enumerate(uncertainty_index): image = images[image_index] # for more than 5 iterations, visualize the gain only on the first 5 if i < 5: sub = f.add_subplot(5, 5, index + 1 + (5 * i)) sub.imshow(image, cmap=plt.cm.gray_r, interpolation="none") sub.set_title( "predict: %i\ntrue: %i" % (lp_model.transduction_[image_index], y[image_index]), size=10, ) sub.axis("off") # labeling 5 points, remote from labeled set (delete_index,) = np.where(unlabeled_indices == image_index) delete_indices = np.concatenate((delete_indices, delete_index)) unlabeled_indices = np.delete(unlabeled_indices, delete_indices) n_labeled_points += len(uncertainty_index) f.suptitle( ( "Active learning with Label Propagation.\nRows show 5 most " "uncertain labels to learn with the next model." ), y=1.15, ) plt.subplots_adjust(left=0.2, bottom=0.03, right=0.9, top=0.9, wspace=0.2, hspace=0.85) plt.show()