{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Detection error tradeoff (DET) curve\n\nIn this example, we compare two binary classification multi-threshold metrics:\nthe Receiver Operating Characteristic (ROC) and the Detection Error Tradeoff\n(DET). For such purpose, we evaluate two different classifiers for the same\nclassification task.\n\nROC curves feature true positive rate (TPR) on the Y axis, and false positive\nrate (FPR) on the X axis. This means that the top left corner of the plot is the\n\"ideal\" point - a FPR of zero, and a TPR of one.\n\nDET curves are a variation of ROC curves where False Negative Rate (FNR) is\nplotted on the y-axis instead of the TPR. In this case the origin (bottom left\ncorner) is the \"ideal\" point.\n\n
- See :func:`sklearn.metrics.roc_curve` for further information about ROC\n curves.\n\n - See :func:`sklearn.metrics.det_curve` for further information about\n DET curves.\n\n - This example is loosely based on\n `sphx_glr_auto_examples_classification_plot_classifier_comparison.py`\n example.\n\n - See `sphx_glr_auto_examples_model_selection_plot_roc_crossval.py` for\n an example estimating the variance of the ROC curves and ROC-AUC.