{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Plot the support vectors in LinearSVC\n\nUnlike SVC (based on LIBSVM), LinearSVC (based on LIBLINEAR) does not provide\nthe support vectors. This example demonstrates how to obtain the support\nvectors in LinearSVC.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Authors: The scikit-learn developers\n# SPDX-License-Identifier: BSD-3-Clause\n\nimport matplotlib.pyplot as plt\nimport numpy as np\n\nfrom sklearn.datasets import make_blobs\nfrom sklearn.inspection import DecisionBoundaryDisplay\nfrom sklearn.svm import LinearSVC\n\nX, y = make_blobs(n_samples=40, centers=2, random_state=0)\n\nplt.figure(figsize=(10, 5))\nfor i, C in enumerate([1, 100]):\n # \"hinge\" is the standard SVM loss\n clf = LinearSVC(C=C, loss=\"hinge\", random_state=42).fit(X, y)\n # obtain the support vectors through the decision function\n decision_function = clf.decision_function(X)\n # we can also calculate the decision function manually\n # decision_function = np.dot(X, clf.coef_[0]) + clf.intercept_[0]\n # The support vectors are the samples that lie within the margin\n # boundaries, whose size is conventionally constrained to 1\n support_vector_indices = np.where(np.abs(decision_function) <= 1 + 1e-15)[0]\n support_vectors = X[support_vector_indices]\n\n plt.subplot(1, 2, i + 1)\n plt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)\n ax = plt.gca()\n DecisionBoundaryDisplay.from_estimator(\n clf,\n X,\n ax=ax,\n grid_resolution=50,\n plot_method=\"contour\",\n colors=\"k\",\n levels=[-1, 0, 1],\n alpha=0.5,\n linestyles=[\"--\", \"-\", \"--\"],\n )\n plt.scatter(\n support_vectors[:, 0],\n support_vectors[:, 1],\n s=100,\n linewidth=1,\n facecolors=\"none\",\n edgecolors=\"k\",\n )\n plt.title(\"C=\" + str(C))\nplt.tight_layout()\nplt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.21" } }, "nbformat": 4, "nbformat_minor": 0 }