{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n# `__sklearn_is_fitted__` as Developer API\n\nThe `__sklearn_is_fitted__` method is a convention used in scikit-learn for\nchecking whether an estimator object has been fitted or not. This method is\ntypically implemented in custom estimator classes that are built on top of\nscikit-learn's base classes like `BaseEstimator` or its subclasses.\n\nDevelopers should use :func:`~sklearn.utils.validation.check_is_fitted`\nat the beginning of all methods except `fit`. If they need to customize or\nspeed-up the check, they can implement the `__sklearn_is_fitted__` method as\nshown below.\n\nIn this example the custom estimator showcases the usage of the\n`__sklearn_is_fitted__` method and the `check_is_fitted` utility function\nas developer APIs. The `__sklearn_is_fitted__` method checks fitted status\nby verifying the presence of the `_is_fitted` attribute.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## An example custom estimator implementing a simple classifier\nThis code snippet defines a custom estimator class called `CustomEstimator`\nthat extends both the `BaseEstimator` and `ClassifierMixin` classes from\nscikit-learn and showcases the usage of the `__sklearn_is_fitted__` method\nand the `check_is_fitted` utility function.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Authors: The scikit-learn developers\n# SPDX-License-Identifier: BSD-3-Clause\n\nfrom sklearn.base import BaseEstimator, ClassifierMixin\nfrom sklearn.utils.validation import check_is_fitted\n\n\nclass CustomEstimator(BaseEstimator, ClassifierMixin):\n def __init__(self, parameter=1):\n self.parameter = parameter\n\n def fit(self, X, y):\n \"\"\"\n Fit the estimator to the training data.\n \"\"\"\n self.classes_ = sorted(set(y))\n # Custom attribute to track if the estimator is fitted\n self._is_fitted = True\n return self\n\n def predict(self, X):\n \"\"\"\n Perform Predictions\n\n If the estimator is not fitted, then raise NotFittedError\n \"\"\"\n check_is_fitted(self)\n # Perform prediction logic\n predictions = [self.classes_[0]] * len(X)\n return predictions\n\n def score(self, X, y):\n \"\"\"\n Calculate Score\n\n If the estimator is not fitted, then raise NotFittedError\n \"\"\"\n check_is_fitted(self)\n # Perform scoring logic\n return 0.5\n\n def __sklearn_is_fitted__(self):\n \"\"\"\n Check fitted status and return a Boolean value.\n \"\"\"\n return hasattr(self, \"_is_fitted\") and self._is_fitted" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.21" } }, "nbformat": 4, "nbformat_minor": 0 }