""" =============================== Nearest Centroid Classification =============================== Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from matplotlib.colors import ListedColormap from sklearn import datasets from sklearn.inspection import DecisionBoundaryDisplay from sklearn.neighbors import NearestCentroid # import some data to play with iris = datasets.load_iris() # we only take the first two features. We could avoid this ugly # slicing by using a two-dim dataset X = iris.data[:, :2] y = iris.target # Create color maps cmap_light = ListedColormap(["orange", "cyan", "cornflowerblue"]) cmap_bold = ListedColormap(["darkorange", "c", "darkblue"]) for shrinkage in [None, 0.2]: # we create an instance of Nearest Centroid Classifier and fit the data. clf = NearestCentroid(shrink_threshold=shrinkage) clf.fit(X, y) y_pred = clf.predict(X) print(shrinkage, np.mean(y == y_pred)) _, ax = plt.subplots() DecisionBoundaryDisplay.from_estimator( clf, X, cmap=cmap_light, ax=ax, response_method="predict" ) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, edgecolor="k", s=20) plt.title("3-Class classification (shrink_threshold=%r)" % shrinkage) plt.axis("tight") plt.show()