""" ========================================================= Feature agglomeration ========================================================= These images show how similar features are merged together using feature agglomeration. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from sklearn import cluster, datasets from sklearn.feature_extraction.image import grid_to_graph digits = datasets.load_digits() images = digits.images X = np.reshape(images, (len(images), -1)) connectivity = grid_to_graph(*images[0].shape) agglo = cluster.FeatureAgglomeration(connectivity=connectivity, n_clusters=32) agglo.fit(X) X_reduced = agglo.transform(X) X_restored = agglo.inverse_transform(X_reduced) images_restored = np.reshape(X_restored, images.shape) plt.figure(1, figsize=(4, 3.5)) plt.clf() plt.subplots_adjust(left=0.01, right=0.99, bottom=0.01, top=0.91) for i in range(4): plt.subplot(3, 4, i + 1) plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation="nearest") plt.xticks(()) plt.yticks(()) if i == 1: plt.title("Original data") plt.subplot(3, 4, 4 + i + 1) plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16, interpolation="nearest") if i == 1: plt.title("Agglomerated data") plt.xticks(()) plt.yticks(()) plt.subplot(3, 4, 10) plt.imshow( np.reshape(agglo.labels_, images[0].shape), interpolation="nearest", cmap=plt.cm.nipy_spectral, ) plt.xticks(()) plt.yticks(()) plt.title("Labels") plt.show()