""" ================================================= Demo of affinity propagation clustering algorithm ================================================= Reference: Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages Between Data Points", Science Feb. 2007 """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import numpy as np from sklearn import metrics from sklearn.cluster import AffinityPropagation from sklearn.datasets import make_blobs # %% # Generate sample data # -------------------- centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs( n_samples=300, centers=centers, cluster_std=0.5, random_state=0 ) # %% # Compute Affinity Propagation # ---------------------------- af = AffinityPropagation(preference=-50, random_state=0).fit(X) cluster_centers_indices = af.cluster_centers_indices_ labels = af.labels_ n_clusters_ = len(cluster_centers_indices) print("Estimated number of clusters: %d" % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print( "Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels) ) print( "Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels, metric="sqeuclidean") ) # %% # Plot result # ----------- import matplotlib.pyplot as plt plt.close("all") plt.figure(1) plt.clf() colors = plt.cycler("color", plt.cm.viridis(np.linspace(0, 1, 4))) for k, col in zip(range(n_clusters_), colors): class_members = labels == k cluster_center = X[cluster_centers_indices[k]] plt.scatter( X[class_members, 0], X[class_members, 1], color=col["color"], marker="." ) plt.scatter( cluster_center[0], cluster_center[1], s=14, color=col["color"], marker="o" ) for x in X[class_members]: plt.plot( [cluster_center[0], x[0]], [cluster_center[1], x[1]], color=col["color"] ) plt.title("Estimated number of clusters: %d" % n_clusters_) plt.show()