""" ============================================= Neighborhood Components Analysis Illustration ============================================= This example illustrates a learned distance metric that maximizes the nearest neighbors classification accuracy. It provides a visual representation of this metric compared to the original point space. Please refer to the :ref:`User Guide ` for more information. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from matplotlib import cm from scipy.special import logsumexp from sklearn.datasets import make_classification from sklearn.neighbors import NeighborhoodComponentsAnalysis # %% # Original points # --------------- # First we create a data set of 9 samples from 3 classes, and plot the points # in the original space. For this example, we focus on the classification of # point no. 3. The thickness of a link between point no. 3 and another point # is proportional to their distance. X, y = make_classification( n_samples=9, n_features=2, n_informative=2, n_redundant=0, n_classes=3, n_clusters_per_class=1, class_sep=1.0, random_state=0, ) plt.figure(1) ax = plt.gca() for i in range(X.shape[0]): ax.text(X[i, 0], X[i, 1], str(i), va="center", ha="center") ax.scatter(X[i, 0], X[i, 1], s=300, c=cm.Set1(y[[i]]), alpha=0.4) ax.set_title("Original points") ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) ax.axis("equal") # so that boundaries are displayed correctly as circles def link_thickness_i(X, i): diff_embedded = X[i] - X dist_embedded = np.einsum("ij,ij->i", diff_embedded, diff_embedded) dist_embedded[i] = np.inf # compute exponentiated distances (use the log-sum-exp trick to # avoid numerical instabilities exp_dist_embedded = np.exp(-dist_embedded - logsumexp(-dist_embedded)) return exp_dist_embedded def relate_point(X, i, ax): pt_i = X[i] for j, pt_j in enumerate(X): thickness = link_thickness_i(X, i) if i != j: line = ([pt_i[0], pt_j[0]], [pt_i[1], pt_j[1]]) ax.plot(*line, c=cm.Set1(y[j]), linewidth=5 * thickness[j]) i = 3 relate_point(X, i, ax) plt.show() # %% # Learning an embedding # --------------------- # We use :class:`~sklearn.neighbors.NeighborhoodComponentsAnalysis` to learn an # embedding and plot the points after the transformation. We then take the # embedding and find the nearest neighbors. nca = NeighborhoodComponentsAnalysis(max_iter=30, random_state=0) nca = nca.fit(X, y) plt.figure(2) ax2 = plt.gca() X_embedded = nca.transform(X) relate_point(X_embedded, i, ax2) for i in range(len(X)): ax2.text(X_embedded[i, 0], X_embedded[i, 1], str(i), va="center", ha="center") ax2.scatter(X_embedded[i, 0], X_embedded[i, 1], s=300, c=cm.Set1(y[[i]]), alpha=0.4) ax2.set_title("NCA embedding") ax2.axes.get_xaxis().set_visible(False) ax2.axes.get_yaxis().set_visible(False) ax2.axis("equal") plt.show()