# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause """ ========================================= Plot Hierarchical Clustering Dendrogram ========================================= This example plots the corresponding dendrogram of a hierarchical clustering using AgglomerativeClustering and the dendrogram method available in scipy. """ import numpy as np from matplotlib import pyplot as plt from scipy.cluster.hierarchy import dendrogram from sklearn.cluster import AgglomerativeClustering from sklearn.datasets import load_iris def plot_dendrogram(model, **kwargs): # Create linkage matrix and then plot the dendrogram # create the counts of samples under each node counts = np.zeros(model.children_.shape[0]) n_samples = len(model.labels_) for i, merge in enumerate(model.children_): current_count = 0 for child_idx in merge: if child_idx < n_samples: current_count += 1 # leaf node else: current_count += counts[child_idx - n_samples] counts[i] = current_count linkage_matrix = np.column_stack( [model.children_, model.distances_, counts] ).astype(float) # Plot the corresponding dendrogram dendrogram(linkage_matrix, **kwargs) iris = load_iris() X = iris.data # setting distance_threshold=0 ensures we compute the full tree. model = AgglomerativeClustering(distance_threshold=0, n_clusters=None) model = model.fit(X) plt.title("Hierarchical Clustering Dendrogram") # plot the top three levels of the dendrogram plot_dendrogram(model, truncate_mode="level", p=3) plt.xlabel("Number of points in node (or index of point if no parenthesis).") plt.show()