""" ========================================== One-class SVM with non-linear kernel (RBF) ========================================== An example using a one-class SVM for novelty detection. :ref:`One-class SVM ` is an unsupervised algorithm that learns a decision function for novelty detection: classifying new data as similar or different to the training set. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% import numpy as np from sklearn import svm # Generate train data X = 0.3 * np.random.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * np.random.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) y_pred_train = clf.predict(X_train) y_pred_test = clf.predict(X_test) y_pred_outliers = clf.predict(X_outliers) n_error_train = y_pred_train[y_pred_train == -1].size n_error_test = y_pred_test[y_pred_test == -1].size n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size # %% import matplotlib.font_manager import matplotlib.lines as mlines import matplotlib.pyplot as plt from sklearn.inspection import DecisionBoundaryDisplay _, ax = plt.subplots() # generate grid for the boundary display xx, yy = np.meshgrid(np.linspace(-5, 5, 10), np.linspace(-5, 5, 10)) X = np.concatenate([xx.reshape(-1, 1), yy.reshape(-1, 1)], axis=1) DecisionBoundaryDisplay.from_estimator( clf, X, response_method="decision_function", plot_method="contourf", ax=ax, cmap="PuBu", ) DecisionBoundaryDisplay.from_estimator( clf, X, response_method="decision_function", plot_method="contourf", ax=ax, levels=[0, 10000], colors="palevioletred", ) DecisionBoundaryDisplay.from_estimator( clf, X, response_method="decision_function", plot_method="contour", ax=ax, levels=[0], colors="darkred", linewidths=2, ) s = 40 b1 = ax.scatter(X_train[:, 0], X_train[:, 1], c="white", s=s, edgecolors="k") b2 = ax.scatter(X_test[:, 0], X_test[:, 1], c="blueviolet", s=s, edgecolors="k") c = ax.scatter(X_outliers[:, 0], X_outliers[:, 1], c="gold", s=s, edgecolors="k") plt.legend( [mlines.Line2D([], [], color="darkred"), b1, b2, c], [ "learned frontier", "training observations", "new regular observations", "new abnormal observations", ], loc="upper left", prop=matplotlib.font_manager.FontProperties(size=11), ) ax.set( xlabel=( f"error train: {n_error_train}/200 ; errors novel regular: {n_error_test}/40 ;" f" errors novel abnormal: {n_error_outliers}/40" ), title="Novelty Detection", xlim=(-5, 5), ylim=(-5, 5), ) plt.show()