""" ============================================================== Restricted Boltzmann Machine features for digit classification ============================================================== For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (:class:`BernoulliRBM `) can perform effective non-linear feature extraction. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% # Generate data # ------------- # # In order to learn good latent representations from a small dataset, we # artificially generate more labeled data by perturbing the training data with # linear shifts of 1 pixel in each direction. import numpy as np from scipy.ndimage import convolve from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import minmax_scale def nudge_dataset(X, Y): """ This produces a dataset 5 times bigger than the original one, by moving the 8x8 images in X around by 1px to left, right, down, up """ direction_vectors = [ [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]], ] def shift(x, w): return convolve(x.reshape((8, 8)), mode="constant", weights=w).ravel() X = np.concatenate( [X] + [np.apply_along_axis(shift, 1, X, vector) for vector in direction_vectors] ) Y = np.concatenate([Y for _ in range(5)], axis=0) return X, Y X, y = datasets.load_digits(return_X_y=True) X = np.asarray(X, "float32") X, Y = nudge_dataset(X, y) X = minmax_scale(X, feature_range=(0, 1)) # 0-1 scaling X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0) # %% # Models definition # ----------------- # # We build a classification pipeline with a BernoulliRBM feature extractor and # a :class:`LogisticRegression ` # classifier. from sklearn import linear_model from sklearn.neural_network import BernoulliRBM from sklearn.pipeline import Pipeline logistic = linear_model.LogisticRegression(solver="newton-cg", tol=1) rbm = BernoulliRBM(random_state=0, verbose=True) rbm_features_classifier = Pipeline(steps=[("rbm", rbm), ("logistic", logistic)]) # %% # Training # -------- # # The hyperparameters of the entire model (learning rate, hidden layer size, # regularization) were optimized by grid search, but the search is not # reproduced here because of runtime constraints. from sklearn.base import clone # Hyper-parameters. These were set by cross-validation, # using a GridSearchCV. Here we are not performing cross-validation to # save time. rbm.learning_rate = 0.06 rbm.n_iter = 10 # More components tend to give better prediction performance, but larger # fitting time rbm.n_components = 100 logistic.C = 6000 # Training RBM-Logistic Pipeline rbm_features_classifier.fit(X_train, Y_train) # Training the Logistic regression classifier directly on the pixel raw_pixel_classifier = clone(logistic) raw_pixel_classifier.C = 100.0 raw_pixel_classifier.fit(X_train, Y_train) # %% # Evaluation # ---------- from sklearn import metrics Y_pred = rbm_features_classifier.predict(X_test) print( "Logistic regression using RBM features:\n%s\n" % (metrics.classification_report(Y_test, Y_pred)) ) # %% Y_pred = raw_pixel_classifier.predict(X_test) print( "Logistic regression using raw pixel features:\n%s\n" % (metrics.classification_report(Y_test, Y_pred)) ) # %% # The features extracted by the BernoulliRBM help improve the classification # accuracy with respect to the logistic regression on raw pixels. # %% # Plotting # -------- import matplotlib.pyplot as plt plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(rbm.components_): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r, interpolation="nearest") plt.xticks(()) plt.yticks(()) plt.suptitle("100 components extracted by RBM", fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()