""" =================== Isotonic Regression =================== An illustration of the isotonic regression on generated data (non-linear monotonic trend with homoscedastic uniform noise). The isotonic regression algorithm finds a non-decreasing approximation of a function while minimizing the mean squared error on the training data. The benefit of such a non-parametric model is that it does not assume any shape for the target function besides monotonicity. For comparison a linear regression is also presented. The plot on the right-hand side shows the model prediction function that results from the linear interpolation of thresholds points. The thresholds points are a subset of the training input observations and their matching target values are computed by the isotonic non-parametric fit. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from matplotlib.collections import LineCollection from sklearn.isotonic import IsotonicRegression from sklearn.linear_model import LinearRegression from sklearn.utils import check_random_state n = 100 x = np.arange(n) rs = check_random_state(0) y = rs.randint(-50, 50, size=(n,)) + 50.0 * np.log1p(np.arange(n)) # %% # Fit IsotonicRegression and LinearRegression models: ir = IsotonicRegression(out_of_bounds="clip") y_ = ir.fit_transform(x, y) lr = LinearRegression() lr.fit(x[:, np.newaxis], y) # x needs to be 2d for LinearRegression # %% # Plot results: segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)] lc = LineCollection(segments, zorder=0) lc.set_array(np.ones(len(y))) lc.set_linewidths(np.full(n, 0.5)) fig, (ax0, ax1) = plt.subplots(ncols=2, figsize=(12, 6)) ax0.plot(x, y, "C0.", markersize=12) ax0.plot(x, y_, "C1.-", markersize=12) ax0.plot(x, lr.predict(x[:, np.newaxis]), "C2-") ax0.add_collection(lc) ax0.legend(("Training data", "Isotonic fit", "Linear fit"), loc="lower right") ax0.set_title("Isotonic regression fit on noisy data (n=%d)" % n) x_test = np.linspace(-10, 110, 1000) ax1.plot(x_test, ir.predict(x_test), "C1-") ax1.plot(ir.X_thresholds_, ir.y_thresholds_, "C1.", markersize=12) ax1.set_title("Prediction function (%d thresholds)" % len(ir.X_thresholds_)) plt.show() # %% # Note that we explicitly passed `out_of_bounds="clip"` to the constructor of # `IsotonicRegression` to control the way the model extrapolates outside of the # range of data observed in the training set. This "clipping" extrapolation can # be seen on the plot of the decision function on the right-hand.