{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Plotting Cross-Validated Predictions\n\nThis example shows how to use\n:func:`~sklearn.model_selection.cross_val_predict` together with\n:class:`~sklearn.metrics.PredictionErrorDisplay` to visualize prediction\nerrors.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Authors: The scikit-learn developers\n# SPDX-License-Identifier: BSD-3-Clause" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will load the diabetes dataset and create an instance of a linear\nregression model.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn.datasets import load_diabetes\nfrom sklearn.linear_model import LinearRegression\n\nX, y = load_diabetes(return_X_y=True)\nlr = LinearRegression()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ":func:`~sklearn.model_selection.cross_val_predict` returns an array of the\nsame size of `y` where each entry is a prediction obtained by cross\nvalidation.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn.model_selection import cross_val_predict\n\ny_pred = cross_val_predict(lr, X, y, cv=10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since `cv=10`, it means that we trained 10 models and each model was\nused to predict on one of the 10 folds. We can now use the\n:class:`~sklearn.metrics.PredictionErrorDisplay` to visualize the\nprediction errors.\n\nOn the left axis, we plot the observed values $y$ vs. the predicted\nvalues $\\hat{y}$ given by the models. On the right axis, we plot the\nresiduals (i.e. the difference between the observed values and the predicted\nvalues) vs. the predicted values.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n\nfrom sklearn.metrics import PredictionErrorDisplay\n\nfig, axs = plt.subplots(ncols=2, figsize=(8, 4))\nPredictionErrorDisplay.from_predictions(\n y,\n y_pred=y_pred,\n kind=\"actual_vs_predicted\",\n subsample=100,\n ax=axs[0],\n random_state=0,\n)\naxs[0].set_title(\"Actual vs. Predicted values\")\nPredictionErrorDisplay.from_predictions(\n y,\n y_pred=y_pred,\n kind=\"residual_vs_predicted\",\n subsample=100,\n ax=axs[1],\n random_state=0,\n)\naxs[1].set_title(\"Residuals vs. Predicted Values\")\nfig.suptitle(\"Plotting cross-validated predictions\")\nplt.tight_layout()\nplt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is important to note that we used\n:func:`~sklearn.model_selection.cross_val_predict` for visualization\npurpose only in this example.\n\nIt would be problematic to\nquantitatively assess the model performance by computing a single\nperformance metric from the concatenated predictions returned by\n:func:`~sklearn.model_selection.cross_val_predict`\nwhen the different CV folds vary by size and distributions.\n\nIt is recommended to compute per-fold performance metrics using:\n:func:`~sklearn.model_selection.cross_val_score` or\n:func:`~sklearn.model_selection.cross_validate` instead.\n\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.21" } }, "nbformat": 4, "nbformat_minor": 0 }