{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Plot multi-class SGD on the iris dataset\n\nPlot decision surface of multi-class SGD on iris dataset.\nThe hyperplanes corresponding to the three one-versus-all (OVA) classifiers\nare represented by the dashed lines.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Authors: The scikit-learn developers\n# SPDX-License-Identifier: BSD-3-Clause\n\nimport matplotlib.pyplot as plt\nimport numpy as np\n\nfrom sklearn import datasets\nfrom sklearn.inspection import DecisionBoundaryDisplay\nfrom sklearn.linear_model import SGDClassifier\n\n# import some data to play with\niris = datasets.load_iris()\n\n# we only take the first two features. We could\n# avoid this ugly slicing by using a two-dim dataset\nX = iris.data[:, :2]\ny = iris.target\ncolors = \"bry\"\n\n# shuffle\nidx = np.arange(X.shape[0])\nnp.random.seed(13)\nnp.random.shuffle(idx)\nX = X[idx]\ny = y[idx]\n\n# standardize\nmean = X.mean(axis=0)\nstd = X.std(axis=0)\nX = (X - mean) / std\n\nclf = SGDClassifier(alpha=0.001, max_iter=100).fit(X, y)\nax = plt.gca()\nDecisionBoundaryDisplay.from_estimator(\n clf,\n X,\n cmap=plt.cm.Paired,\n ax=ax,\n response_method=\"predict\",\n xlabel=iris.feature_names[0],\n ylabel=iris.feature_names[1],\n)\nplt.axis(\"tight\")\n\n# Plot also the training points\nfor i, color in zip(clf.classes_, colors):\n idx = np.where(y == i)\n plt.scatter(\n X[idx, 0],\n X[idx, 1],\n c=color,\n label=iris.target_names[i],\n edgecolor=\"black\",\n s=20,\n )\nplt.title(\"Decision surface of multi-class SGD\")\nplt.axis(\"tight\")\n\n# Plot the three one-against-all classifiers\nxmin, xmax = plt.xlim()\nymin, ymax = plt.ylim()\ncoef = clf.coef_\nintercept = clf.intercept_\n\n\ndef plot_hyperplane(c, color):\n def line(x0):\n return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1]\n\n plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls=\"--\", color=color)\n\n\nfor i, color in zip(clf.classes_, colors):\n plot_hyperplane(i, color)\nplt.legend()\nplt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.21" } }, "nbformat": 4, "nbformat_minor": 0 }