""" ========================================================= Pipelining: chaining a PCA and a logistic regression ========================================================= The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction. We use a GridSearchCV to set the dimensionality of the PCA """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np import polars as pl from sklearn import datasets from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler # Define a pipeline to search for the best combination of PCA truncation # and classifier regularization. pca = PCA() # Define a Standard Scaler to normalize inputs scaler = StandardScaler() # set the tolerance to a large value to make the example faster logistic = LogisticRegression(max_iter=10000, tol=0.1) pipe = Pipeline(steps=[("scaler", scaler), ("pca", pca), ("logistic", logistic)]) X_digits, y_digits = datasets.load_digits(return_X_y=True) # Parameters of pipelines can be set using '__' separated parameter names: param_grid = { "pca__n_components": [5, 15, 30, 45, 60], "logistic__C": np.logspace(-4, 4, 4), } search = GridSearchCV(pipe, param_grid, n_jobs=2) search.fit(X_digits, y_digits) print("Best parameter (CV score=%0.3f):" % search.best_score_) print(search.best_params_) # Plot the PCA spectrum pca.fit(X_digits) fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True, figsize=(6, 6)) ax0.plot( np.arange(1, pca.n_components_ + 1), pca.explained_variance_ratio_, "+", linewidth=2 ) ax0.set_ylabel("PCA explained variance ratio") ax0.axvline( search.best_estimator_.named_steps["pca"].n_components, linestyle=":", label="n_components chosen", ) ax0.legend(prop=dict(size=12)) # For each number of components, find the best classifier results components_col = "param_pca__n_components" is_max_test_score = pl.col("mean_test_score") == pl.col("mean_test_score").max() best_clfs = ( pl.LazyFrame(search.cv_results_) .filter(is_max_test_score.over(components_col)) .unique(components_col) .sort(components_col) .collect() ) ax1.errorbar( best_clfs[components_col], best_clfs["mean_test_score"], yerr=best_clfs["std_test_score"], ) ax1.set_ylabel("Classification accuracy (val)") ax1.set_xlabel("n_components") plt.xlim(-1, 70) plt.tight_layout() plt.show()