""" ======================================== `__sklearn_is_fitted__` as Developer API ======================================== The `__sklearn_is_fitted__` method is a convention used in scikit-learn for checking whether an estimator object has been fitted or not. This method is typically implemented in custom estimator classes that are built on top of scikit-learn's base classes like `BaseEstimator` or its subclasses. Developers should use :func:`~sklearn.utils.validation.check_is_fitted` at the beginning of all methods except `fit`. If they need to customize or speed-up the check, they can implement the `__sklearn_is_fitted__` method as shown below. In this example the custom estimator showcases the usage of the `__sklearn_is_fitted__` method and the `check_is_fitted` utility function as developer APIs. The `__sklearn_is_fitted__` method checks fitted status by verifying the presence of the `_is_fitted` attribute. """ # %% # An example custom estimator implementing a simple classifier # ------------------------------------------------------------ # This code snippet defines a custom estimator class called `CustomEstimator` # that extends both the `BaseEstimator` and `ClassifierMixin` classes from # scikit-learn and showcases the usage of the `__sklearn_is_fitted__` method # and the `check_is_fitted` utility function. # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.validation import check_is_fitted class CustomEstimator(BaseEstimator, ClassifierMixin): def __init__(self, parameter=1): self.parameter = parameter def fit(self, X, y): """ Fit the estimator to the training data. """ self.classes_ = sorted(set(y)) # Custom attribute to track if the estimator is fitted self._is_fitted = True return self def predict(self, X): """ Perform Predictions If the estimator is not fitted, then raise NotFittedError """ check_is_fitted(self) # Perform prediction logic predictions = [self.classes_[0]] * len(X) return predictions def score(self, X, y): """ Calculate Score If the estimator is not fitted, then raise NotFittedError """ check_is_fitted(self) # Perform scoring logic return 0.5 def __sklearn_is_fitted__(self): """ Check fitted status and return a Boolean value. """ return hasattr(self, "_is_fitted") and self._is_fitted