""" ================================================================ Biclustering documents with the Spectral Co-clustering algorithm ================================================================ This example demonstrates the Spectral Co-clustering algorithm on the twenty newsgroups dataset. The 'comp.os.ms-windows.misc' category is excluded because it contains many posts containing nothing but data. The TF-IDF vectorized posts form a word frequency matrix, which is then biclustered using Dhillon's Spectral Co-Clustering algorithm. The resulting document-word biclusters indicate subsets words used more often in those subsets documents. For a few of the best biclusters, its most common document categories and its ten most important words get printed. The best biclusters are determined by their normalized cut. The best words are determined by comparing their sums inside and outside the bicluster. For comparison, the documents are also clustered using MiniBatchKMeans. The document clusters derived from the biclusters achieve a better V-measure than clusters found by MiniBatchKMeans. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from collections import Counter from time import time import numpy as np from sklearn.cluster import MiniBatchKMeans, SpectralCoclustering from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.cluster import v_measure_score def number_normalizer(tokens): """Map all numeric tokens to a placeholder. For many applications, tokens that begin with a number are not directly useful, but the fact that such a token exists can be relevant. By applying this form of dimensionality reduction, some methods may perform better. """ return ("#NUMBER" if token[0].isdigit() else token for token in tokens) class NumberNormalizingVectorizer(TfidfVectorizer): def build_tokenizer(self): tokenize = super().build_tokenizer() return lambda doc: list(number_normalizer(tokenize(doc))) # exclude 'comp.os.ms-windows.misc' categories = [ "alt.atheism", "comp.graphics", "comp.sys.ibm.pc.hardware", "comp.sys.mac.hardware", "comp.windows.x", "misc.forsale", "rec.autos", "rec.motorcycles", "rec.sport.baseball", "rec.sport.hockey", "sci.crypt", "sci.electronics", "sci.med", "sci.space", "soc.religion.christian", "talk.politics.guns", "talk.politics.mideast", "talk.politics.misc", "talk.religion.misc", ] newsgroups = fetch_20newsgroups(categories=categories) y_true = newsgroups.target vectorizer = NumberNormalizingVectorizer(stop_words="english", min_df=5) cocluster = SpectralCoclustering( n_clusters=len(categories), svd_method="arpack", random_state=0 ) kmeans = MiniBatchKMeans( n_clusters=len(categories), batch_size=20000, random_state=0, n_init=3 ) print("Vectorizing...") X = vectorizer.fit_transform(newsgroups.data) print("Coclustering...") start_time = time() cocluster.fit(X) y_cocluster = cocluster.row_labels_ print( f"Done in {time() - start_time:.2f}s. V-measure: \ {v_measure_score(y_cocluster, y_true):.4f}" ) print("MiniBatchKMeans...") start_time = time() y_kmeans = kmeans.fit_predict(X) print( f"Done in {time() - start_time:.2f}s. V-measure: \ {v_measure_score(y_kmeans, y_true):.4f}" ) feature_names = vectorizer.get_feature_names_out() document_names = list(newsgroups.target_names[i] for i in newsgroups.target) def bicluster_ncut(i): rows, cols = cocluster.get_indices(i) if not (np.any(rows) and np.any(cols)): import sys return sys.float_info.max row_complement = np.nonzero(np.logical_not(cocluster.rows_[i]))[0] col_complement = np.nonzero(np.logical_not(cocluster.columns_[i]))[0] # Note: the following is identical to X[rows[:, np.newaxis], # cols].sum() but much faster in scipy <= 0.16 weight = X[rows][:, cols].sum() cut = X[row_complement][:, cols].sum() + X[rows][:, col_complement].sum() return cut / weight bicluster_ncuts = list(bicluster_ncut(i) for i in range(len(newsgroups.target_names))) best_idx = np.argsort(bicluster_ncuts)[:5] print() print("Best biclusters:") print("----------------") for idx, cluster in enumerate(best_idx): n_rows, n_cols = cocluster.get_shape(cluster) cluster_docs, cluster_words = cocluster.get_indices(cluster) if not len(cluster_docs) or not len(cluster_words): continue # categories counter = Counter(document_names[doc] for doc in cluster_docs) cat_string = ", ".join( f"{(c / n_rows * 100):.0f}% {name}" for name, c in counter.most_common(3) ) # words out_of_cluster_docs = cocluster.row_labels_ != cluster out_of_cluster_docs = np.where(out_of_cluster_docs)[0] word_col = X[:, cluster_words] word_scores = np.array( word_col[cluster_docs, :].sum(axis=0) - word_col[out_of_cluster_docs, :].sum(axis=0) ) word_scores = word_scores.ravel() important_words = list( feature_names[cluster_words[i]] for i in word_scores.argsort()[:-11:-1] ) print(f"bicluster {idx} : {n_rows} documents, {n_cols} words") print(f"categories : {cat_string}") print(f"words : {', '.join(important_words)}\n")