{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n# SVM: Maximum margin separating hyperplane\n\nPlot the maximum margin separating hyperplane within a two-class\nseparable dataset using a Support Vector Machine classifier with\nlinear kernel.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Authors: The scikit-learn developers\n# SPDX-License-Identifier: BSD-3-Clause\n\nimport matplotlib.pyplot as plt\n\nfrom sklearn import svm\nfrom sklearn.datasets import make_blobs\nfrom sklearn.inspection import DecisionBoundaryDisplay\n\n# we create 40 separable points\nX, y = make_blobs(n_samples=40, centers=2, random_state=6)\n\n# fit the model, don't regularize for illustration purposes\nclf = svm.SVC(kernel=\"linear\", C=1000)\nclf.fit(X, y)\n\nplt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)\n\n# plot the decision function\nax = plt.gca()\nDecisionBoundaryDisplay.from_estimator(\n clf,\n X,\n plot_method=\"contour\",\n colors=\"k\",\n levels=[-1, 0, 1],\n alpha=0.5,\n linestyles=[\"--\", \"-\", \"--\"],\n ax=ax,\n)\n# plot support vectors\nax.scatter(\n clf.support_vectors_[:, 0],\n clf.support_vectors_[:, 1],\n s=100,\n linewidth=1,\n facecolors=\"none\",\n edgecolors=\"k\",\n)\nplt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.21" } }, "nbformat": 4, "nbformat_minor": 0 }