{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Feature agglomeration\n\nThese images show how similar features are merged together using\nfeature agglomeration.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Authors: The scikit-learn developers\n# SPDX-License-Identifier: BSD-3-Clause\n\nimport matplotlib.pyplot as plt\nimport numpy as np\n\nfrom sklearn import cluster, datasets\nfrom sklearn.feature_extraction.image import grid_to_graph\n\ndigits = datasets.load_digits()\nimages = digits.images\nX = np.reshape(images, (len(images), -1))\nconnectivity = grid_to_graph(*images[0].shape)\n\nagglo = cluster.FeatureAgglomeration(connectivity=connectivity, n_clusters=32)\n\nagglo.fit(X)\nX_reduced = agglo.transform(X)\n\nX_restored = agglo.inverse_transform(X_reduced)\nimages_restored = np.reshape(X_restored, images.shape)\nplt.figure(1, figsize=(4, 3.5))\nplt.clf()\nplt.subplots_adjust(left=0.01, right=0.99, bottom=0.01, top=0.91)\nfor i in range(4):\n plt.subplot(3, 4, i + 1)\n plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation=\"nearest\")\n plt.xticks(())\n plt.yticks(())\n if i == 1:\n plt.title(\"Original data\")\n plt.subplot(3, 4, 4 + i + 1)\n plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16, interpolation=\"nearest\")\n if i == 1:\n plt.title(\"Agglomerated data\")\n plt.xticks(())\n plt.yticks(())\n\nplt.subplot(3, 4, 10)\nplt.imshow(\n np.reshape(agglo.labels_, images[0].shape),\n interpolation=\"nearest\",\n cmap=plt.cm.nipy_spectral,\n)\nplt.xticks(())\nplt.yticks(())\nplt.title(\"Labels\")\nplt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.21" } }, "nbformat": 4, "nbformat_minor": 0 }