""" ================================================= SVM: Separating hyperplane for unbalanced classes ================================================= Find the optimal separating hyperplane using an SVC for classes that are unbalanced. We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automatically correction for unbalanced classes. .. currentmodule:: sklearn.linear_model .. note:: This example will also work by replacing ``SVC(kernel="linear")`` with ``SGDClassifier(loss="hinge")``. Setting the ``loss`` parameter of the :class:`SGDClassifier` equal to ``hinge`` will yield behaviour such as that of a SVC with a linear kernel. For example try instead of the ``SVC``:: clf = SGDClassifier(n_iter=100, alpha=0.01) """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.lines as mlines import matplotlib.pyplot as plt from sklearn import svm from sklearn.datasets import make_blobs from sklearn.inspection import DecisionBoundaryDisplay # we create two clusters of random points n_samples_1 = 1000 n_samples_2 = 100 centers = [[0.0, 0.0], [2.0, 2.0]] clusters_std = [1.5, 0.5] X, y = make_blobs( n_samples=[n_samples_1, n_samples_2], centers=centers, cluster_std=clusters_std, random_state=0, shuffle=False, ) # fit the model and get the separating hyperplane clf = svm.SVC(kernel="linear", C=1.0) clf.fit(X, y) # fit the model and get the separating hyperplane using weighted classes wclf = svm.SVC(kernel="linear", class_weight={1: 10}) wclf.fit(X, y) # plot the samples plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired, edgecolors="k") # plot the decision functions for both classifiers ax = plt.gca() disp = DecisionBoundaryDisplay.from_estimator( clf, X, plot_method="contour", colors="k", levels=[0], alpha=0.5, linestyles=["-"], ax=ax, ) # plot decision boundary and margins for weighted classes wdisp = DecisionBoundaryDisplay.from_estimator( wclf, X, plot_method="contour", colors="r", levels=[0], alpha=0.5, linestyles=["-"], ax=ax, ) plt.legend( [ mlines.Line2D([], [], color="k", label="non weighted"), mlines.Line2D([], [], color="r", label="weighted"), ], ["non weighted", "weighted"], loc="upper right", ) plt.show()